Heterogeneous Relationships Between CO2 Emissions and Renewable Energy in Agriculture in the Visegrad Group Countries
Abstract
1. Introduction
2. The Relationships Between CO2 Emissions and Economic, Social, and Technological Factors—Literature Review
2.1. Relationships Between CO2 Emissions and Groups of Factors
2.2. Research Methods Used
2.3. Indication of Research Directions and Research Gaps
3. Materials and Methods
- i—lag index (from 0 to q or from 1 to p);
- p—number of lags of the endogenous variable;
- q—number of lags of the explanatory variables;
- et—random component.
4. Results and Discussion
5. Conclusions and Recommendations
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
| ARDL | Autoregressive Distributed Lag | 
| Agri | Agriculture | 
| CO2 | Carbon dioxide | 
| RE | Renewable energy | 
| REC | Renewable energy consumption | 
| OP | Openness of the economy | 
| LP | Labor productivity | 
| FI | Factor income | 
Appendix A
| Authors | Countries | Period | Methodology | Main Results | 
|---|---|---|---|---|
| [54] | 94 middle-income countries | 2000–2015 | two-step generalized method of moments (GMM) regression | There is a negative relationship between renewable energy production, the added value of agricultural production and CO2 emissions per capita. | 
| [41] | Turkey | 1970–2017 | bootstrap ARDL, fully modified OLS, and dynamic ordinary least squares long-run estimators | Agriculture, renewable energy production and economic globalization increase environmental pollution. | 
| [59] | 38 sub-Saharan African countries | 2000–2019 | The differentiated-generalized method of moments (GMM) | Renewable energy use can reduce CO2 emissions, while agriculture increases emissions. | 
| [53] | BRIC countries | 1971–2016 | Fourier-ADL cointegration test, TY causality test | Globalization increases pollution indicators, while renewable energy production reduces environmental pressure (China). Furthermore, globalization increases CO2 emissions, while renewable energy production improves environmental quality in Brazil. Casualty: Agri <=> environmental degradation; globalization → ecological footprint and CO2 emissions; RE → ecological indicators. | 
| [41] | Marocco | 1980–2013 | ARDL, Granger causality test | Economic growth, agricultural production and agricultural land use contribute to increased renewable energy, while falling CO2 emissions increase renewable energy consumption. Short-term casuality: agricultural value added → RE, agricultural land use → RE. | 
| [52] | Somalia | 1990–2020 | ARDL, DOLS | In the long term, the added value of agriculture and the use of renewable energy significantly reduce both the ecological footprint and CO2 emissions. In the short term, the added value of agriculture temporarily increases the ecological footprint and CO2 emissions. Urbanization increases both the ecological footprint and CO2 emissions in the short and long term. | 
| [60] | 12 MENA countries | 1975–2008 | Panel cointegration, FMOLS, DOLS, Granger causality test | CO2 influences renewable energy consumption (FMOLS, DOLS). Casuality: short-term: RE → CO2; long-term: causality running from GDP → RE; CO2 → RE. | 
| [51] | 6 South Asian countries | 1991–2019 | FE, RE and dynamic panels | Agriculture, fertilizers, non-renewable energy, tourism, GDP growth and government spending in selected regions increase CO2 emissions, while the use of clean energy reduces emission levels. | 
| [49] | 13 developed and developing Asia Pacific countries | 2005–2017 | Panel cointegration, Granger causality test | Long-term casuality: RE → CO2 and Population → CO2. Short-term casuality: Agri → GDP; economic development, population, and clean energy increase CO2 emissions. | 
| [61] | Tunisia | 1980–2011 | VECM, Granger causality | Short-term casuality: agri value added <=> CO2 emissions and between agri value added <=> trade, NRE → agri value added, RE → CO2. Long-term estimates indicate that non-renewable energy, agri value added increases CO2 emissions, while renewable energy reduces CO2 emissions. | 
| [62] | BRICS-M-A countries | 1999–2021 | Panel VAR/GMM, Granger causality analysis | Strong impact of delayed CO2 on RE, CO2 delayed by 2 periods reduces RE, and green technology supports REC without directly reducing CO2 emissions. REC does not Granger Cause CO2 and CO2 does not Granger Cause REC. | 
| [63] | South Africa | 1990–2021 | ARDL, FMOLS, DOLS, CCR, Granger Causality Tests | Growth in the agricultural sector leads to deterioration of the environment; Lack of causality for: CO2 → Agriculture GDP; Agriculture GDP → CO2; CO2 → Renewable Energy Renewable Energy → CO2; Renewable Energy → Agriculture GDP; Agriculture GDP → Renewable Energy. | 
References
- FAO. Greenhouse Gas Emissions from Agrifood Systems—Global, Regional and Country Trends, 2000–2022; FAOSTAT Analytical Brief Series, No. 94; FAO: Rome, Italy, 2024. [Google Scholar]
- Jebli, M.B.; Youssef, S.B. The role of renewable energy and agriculture in reducing CO2 emissions: Evidence for North Africa countries. Ecol. Indic. 2017, 74, 295–301. [Google Scholar] [CrossRef]
- Li, L.; Awada, T.; Shi, Y.; Jin, V.L.; Kaiser, M. Global greenhouse gas emissions from agriculture: Pathways to sustainable reductions. Glob. Change Biol. 2025, 31, e70015. [Google Scholar] [CrossRef]
- Klinthong, W.; Yang, Y.-H.; Huang, C.-H.; Tan, C.-S. A review: Microalgae and their applications in CO2 capture and renewable energy. Aerosol Air Qual. Res. 2015, 15, 712–742. [Google Scholar] [CrossRef]
- York, R.; McGee, J.A. Does renewable energy development decouple economic growth from CO2 emissions? Socius Sociol. Res. A Dyn. World 2017, 3, 2378023116689098. [Google Scholar] [CrossRef]
- Chiu, C.-L.; Chang, T.-H. What proportion of renewable energy supplies is needed to initially mitigate CO2 emissions in OECD member countries? Renew. Sustain. Energy Rev. 2009, 13, 1669–1674. [Google Scholar] [CrossRef]
- Razmjoo, A.; Kaigutha, L.G.; Vaziri Rad, M.A.; Marzband, M.; Davarpanah, A.; Denai, M. A technical analysis investigating energy sustainability utilizing reliable renewable energy sources to reduce CO2 emissions in a high potential area. Renew. Energy 2021, 164, 46–57. [Google Scholar] [CrossRef]
- AlNemer, H.A.; Hkiri, B.; Tissaoui, K. Dynamic impact of renewable and non-renewable energy consumption on CO2 emission and economic growth in Saudi Arabia: Fresh evidence from wavelet coherence analysis. Renew. Energy 2023, 209, 340–356. [Google Scholar] [CrossRef]
- Kwilinski, A.; Lyulyov, O.; Pimonenko, T. Reducing transport sector CO2 emissions patterns: Environmental technologies and renewable energy. J. Open Innov. Technol. Mark. Complex. 2024, 10, 100217. [Google Scholar] [CrossRef]
- Lin, B.; Zhu, J. Determinants of renewable energy technological innovation in China under CO2 emissions constraint. J. Environ. Manag. 2019, 247, 662–671. [Google Scholar] [CrossRef]
- Xue, M.; Mihai, D.; Brutu, M.; Popescu, L.; Sinisi, C.I.; Bansal, A.; Mohammad, M.A.A.; Muhammad, T.; Shabbir, M.S. Examining the impact of energy policies on CO2 emissions with information and communication technologies and renewable energy. Stud. Nonlinear Dyn. Econom. 2024, 28, 545–552. [Google Scholar] [CrossRef]
- Robalino-López, A.; Mena-Nieto, A.; García-Ramos, J.E. System dynamics modeling for renewable energy and CO2 emissions: A case study of Ecuador. Energy Sustain. Dev. 2014, 20, 11–20. [Google Scholar] [CrossRef]
- Jeon, H. CO2 emissions, renewable energy and economic growth in the US. Electr. J. 2022, 35, 107170. [Google Scholar] [CrossRef]
- Augustowski, Ł.; Kułyk, P. Dynamic analysis of CO2 emissions and their determinants in the countries of Central and Eastern Europe. Energies 2024, 17, 4639. [Google Scholar] [CrossRef]
- Balsalobre-Lorente, D.; Parente, C.C.D.S.; Leitão, N.C.; Cantos-Cantos, J.M. The influence of economic complexity processes and renewable energy on CO2 emissions of BRICS: What about Industry 4.0? Resour. Policy 2023, 82, 103547. [Google Scholar] [CrossRef]
- Grodzicki, T.; Jankiewicz, M. The impact of renewable energy and urbanization on CO2 emissions in Europe—Spatio-temporal approach. Environ. Dev. 2022, 44, 100755. [Google Scholar] [CrossRef]
- Shahnazi, R.; Dehghan Shabani, Z. The effects of renewable energy, spatial spillover of CO2 emissions and economic freedom on CO2 emissions in the EU. Renew. Energy 2021, 169, 293–307. [Google Scholar] [CrossRef]
- Chen, C.; Pinar, M.; Stengos, T. Renewable energy and CO2 emissions: New evidence with the panel threshold model. Renew. Energy 2022, 194, 117–128. [Google Scholar] [CrossRef]
- Sadorsky, P. Renewable energy consumption, CO2 emissions and oil prices in the G7 countries. Energy Econ. 2009, 31, 456–462. [Google Scholar] [CrossRef]
- Bhattacharya, M.; Awaworyi Churchill, S.; Paramati, S.R. The dynamic impact of renewable energy and institutions on economic output and CO2 emissions across regions. Renew. Energy 2017, 111, 157–167. [Google Scholar] [CrossRef]
- Fu, Q.; Álvarez-Otero, S.; Sial, M.S.; Comite, U.; Zheng, P.; Samad, S.; Oláh, J. Impact of renewable energy on economic growth and CO2 emissions—Evidence from BRICS countries. Processes 2021, 9, 1281. [Google Scholar] [CrossRef]
- Mirziyoyeva, Z.; Salahodjaev, R. Renewable energy, GDP and CO2 emissions in high-globalized countries. Front. Energy Res. 2023, 11, 1123269. [Google Scholar] [CrossRef]
- Li, B.; Haneklaus, N. The role of renewable energy, fossil fuel consumption, urbanization and economic growth on CO2 emissions in China. Energy Rep. 2021, 7, 783–791. [Google Scholar] [CrossRef]
- Waheed, R.; Chang, D.; Sarwar, S.; Chen, W. Forest, agriculture, renewable energy, and CO2 emission. J. Clean. Prod. 2018, 172, 4231–4238. [Google Scholar] [CrossRef]
- Dogan, E.; Seker, F. Determinants of CO2 emissions in the European Union: The role of renewable and non-renewable energy. Renew. Energy 2016, 94, 429–439. [Google Scholar] [CrossRef]
- Bilgili, F.; Koçak, E.; Bulut, Ü. The dynamic impact of renewable energy consumption on CO2 emissions: A revisited Environmental Kuznets Curve approach. Renew. Sustain. Energy Rev. 2016, 54, 838–845. [Google Scholar] [CrossRef]
- Jamil, K.; Liu, D.; Gul, R.F.; Hussain, Z.; Mohsin, M.; Qin, G.; Khan, F.U. Do remittance and renewable energy affect CO2 emissions? An empirical evidence from selected G-20 countries. Energy Environ. 2021, 33, 916–932. [Google Scholar] [CrossRef]
- Dogan, E.; Ozturk, I. The influence of renewable and non-renewable energy consumption and real income on CO2 emissions in the USA: Evidence from structural break tests. Environ. Sci. Pollut. Res. Int. 2017, 24, 10846–10854. [Google Scholar] [CrossRef]
- Sinha, A.; Shahbaz, M. Estimation of Environmental Kuznets Curve for CO2 emission: Role of renewable energy generation in India. Renew. Energy 2018, 119, 703–711. [Google Scholar] [CrossRef]
- Saidi, K.; Ben Mbarek, M. Nuclear energy, renewable energy, CO2 emissions, and economic growth for nine developed countries: Evidence from panel Granger causality tests. Prog. Nucl. Energy 2016, 88, 364–374. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, Z.; Zhong, Z. CO2 emissions, economic growth, renewable and non-renewable energy production and foreign trade in China. Renew. Energy 2019, 131, 208–216. [Google Scholar] [CrossRef]
- Karaaslan, A.; Çamkaya, S. The relationship between CO2 emissions, economic growth, health expenditure, and renewable and non-renewable energy consumption: Empirical evidence from Turkey. Renew. Energy 2022, 190, 457–466. [Google Scholar] [CrossRef]
- Boontome, P.; Therdyothin, A.; Chontanawat, J. Investigating the causal relationship between non-renewable and renewable energy consumption, CO2 emissions and economic growth in Thailand. Energy Procedia 2017, 138, 925–930. [Google Scholar] [CrossRef]
- Abbasi, K.R.; Adedoyin, F.F.; Abbas, J.; Hussain, K. The impact of energy depletion and renewable energy on CO2 emissions in Thailand: Fresh evidence from the novel dynamic ARDL simulation. Renew. Energy 2021, 180, 1439–1450. [Google Scholar] [CrossRef]
- Adebayo, T.S.; Ullah, S. Towards a sustainable future: The role of energy efficiency, renewable energy, and urbanization in limiting CO2 emissions in Sweden. Sustain. Dev. 2024, 32, 244–259. [Google Scholar] [CrossRef]
- Huang, Y.; Kuldasheva, Z.; Salahodjaev, R. Renewable energy and CO2 emissions: Empirical evidence from major energy consuming countries. Energies 2021, 14, 7504. [Google Scholar] [CrossRef]
- Mirziyoyeva, Z.; Salahodjaev, R. Renewable energy and CO2 emissions intensity in the top carbon intense countries. Renew. Energy 2022, 192, 507–512. [Google Scholar] [CrossRef]
- Gierałtowska, U.; Asyngier, R.; Nakonieczny, J.; Salahodjaev, R. Renewable energy, urbanization, and CO2 emissions: A global test. Energies 2022, 15, 3390. [Google Scholar] [CrossRef]
- Campiotti, C.; Belmonte, A.; Catanese, V.; Di Carlo, F.; Dondi, F.; Scoccianti, M.; Lucerti, G. Renewable energy for greenhouse agriculture. J. Sustain. Energy 2010, 1, 1–10. [Google Scholar]
- Qiao, H.; Zheng, F.; Jiang, H.; Dong, K. The greenhouse effect of the agriculture–economic growth–renewable energy nexus: Evidence from G20 countries. Sci. Total Environ. 2019, 671, 722–731. [Google Scholar] [CrossRef]
- Li, T.; Baležentis, T.; Makutėnienė, D.; Streimikiene, D.; Kriščiukaitienė, I. Energy-related CO2 emission in European Union agriculture: Driving forces and possibilities for reduction. Appl. Energy 2016, 180, 682–694. [Google Scholar] [CrossRef]
- Graczyk, M.; Kułyk, P.; Kaźmierczak-Piwko, L.; Augustowski, Ł. Ecological innovations in agricultural production as a pro-development factor of the economy. Multidiscip. Asp. Prod. Eng. 2018, 1, 603–612. [Google Scholar] [CrossRef]
- Rosa, L.; Gabrielli, P. Achieving net-zero emissions in agriculture: A review. Environ. Res. Lett. 2023, 18, 063002. [Google Scholar] [CrossRef]
- Yan, Q.; Yin, J.; Baležentis, T.; Makutėnienė, D.; Štreimikienė, D. Energy-related GHG emission in agriculture of the European countries: An application of the Generalized Divisia Index. J. Clean. Prod. 2017, 164, 686–694. [Google Scholar] [CrossRef]
- Peng, B.; Streimikiene, D.; Agnusdei, G.P.; Balezentis, T. Is sustainable energy development ensured in the EU agriculture? Structural shifts and the energy-related greenhouse gas emission intensity. J. Clean. Prod. 2024, 445, 141325. [Google Scholar] [CrossRef]
- Sokal, K.; Kachel, M. Impact of agriculture on greenhouse gas emissions—A review. Energies 2025, 18, 2272. [Google Scholar] [CrossRef]
- Carozzi, M.; Martin, R.; Klumpp, K.; Massad, R.S. Effects of climate change in European croplands and grasslands: Productivity, greenhouse gas balance and soil carbon storage. Biogeosciences 2022, 19, 3021–3050. [Google Scholar] [CrossRef]
- Zafeiriou, E.; Mallidis, I.; Galanopoulos, K.; Arabatzis, G. Greenhouse gas emissions and economic performance in EU agriculture: An empirical study in a non-linear framework. Sustainability 2018, 10, 3837. [Google Scholar] [CrossRef]
- Latif, K.; Raza, M.Y.; Adil, S.; Kouser, R. Nexus between economy, agriculture, population, renewable energy and CO2 emissions: Evidence from Asia-Pacific countries. J. Bus. Soc. Rev. Emerg. Econ. 2020, 6, 261–276. [Google Scholar] [CrossRef]
- Yurtkuran, S. The effect of agriculture, renewable energy production, and globalization on CO2 emissions in Turkey: A bootstrap ARDL approach. Renew. Energy 2021, 171, 1236–1245. [Google Scholar] [CrossRef]
- Akther, T.; Selim, M.M.I.; Hossain, M.S.; Kibria, M.G. Synergistic role of agriculture production, fertilizer use, tourism, and renewable energy on CO2 dynamic analysis emissions in South Asia: A static and dynamic analysis. Energy Nexus 2024, 14, 100287. [Google Scholar] [CrossRef]
- Abdi, A.H.; Sheikh, S.N.; Elmi, S.M. Pathways to sustainable development in Somalia: Evaluating the impact of agriculture, renewable energy, and urbanisation on ecological footprints and CO2 emissions. Int. J. Sustain. Energy 2024, 43, 2411832. [Google Scholar] [CrossRef]
- Pata, U.K. Linking renewable energy, globalization, agriculture, CO2 emissions and ecological footprint in BRIC countries: A sustainability perspective. Renew. Energy 2021, 173, 197–208. [Google Scholar] [CrossRef]
- Majewski, S.; Mentel, G.; Dylewski, M.; Salahodjaev, R. Renewable energy, agriculture and CO2 emissions: Empirical evidence from the middle-income countries. Front. Energy Res. 2022, 10, 921166. [Google Scholar] [CrossRef]
- Hassan, A.Y.; Mohamed, M.A.; Ahmed, M.A.; Mohamed, M.A. Toward environmental sustainability: The nexus between agriculture, renewable energy, and economic growth in mitigating CO2 emissions in Somalia. Int. J. Energy Econ. Policy 2024, 14, 127–135. [Google Scholar] [CrossRef]
- Florea, N.M.; Bădîrcea, R.M.; Pîrvu, R.C.; Manta, A.G.; Doran, M.D.; Jianu, E. The impact of agriculture and renewable energy on climate change in Central and East European countries. Agric. Econ. 2020, 66, 444–457. [Google Scholar] [CrossRef]
- Silva, S.; Soares, I.; Pinho, C. The impact of renewable energy sources on economic growth and CO2 emissions—A SVAR approach. Eur. Res. Stud. 2012, XV, 133–144. [Google Scholar] [CrossRef]
- Kułyk, P.; Augustowski, Ł. Conditions of the occurrence of the Environmental Kuznets Curve in agricultural production of Central and Eastern European countries. Energies 2020, 13, 5478. [Google Scholar] [CrossRef]
- Wang, J.; Jiang, C.; Li, M.; Zhang, S.; Zhang, X. Renewable energy, agriculture, and carbon dioxide emissions nexus: Implications for sustainable development in sub-Saharan African countries. Sustain. Environ. Res. 2023, 33, 31. [Google Scholar] [CrossRef]
- Farhani, S. Renewable energy consumption, economic growth and CO2 emissions: Evidence from selected MENA countries. Energy Econ. Lett. 2013, 1, 24–41. [Google Scholar]
- Jebli, M.; Youssef, S. Renewable energy consumption and agriculture: Evidence for cointegration and Granger causality for Tunisian economy. Int. J. Sustain. Dev. World Ecol. 2016, 24, 149–158. [Google Scholar] [CrossRef]
- Chen, Y.; Lubabu, M.M. Investigating the interrelationship among renewable energy consumption, green finance, agriculture, green technology, industry, and urbanization on CO2 emissions: Evidence from BRICS-M-A countries. Renew. Energy 2025, 256, 124052. [Google Scholar] [CrossRef]
- Aluwani, T. Agricultural economic growth, renewable energy supply and CO2 emissions nexus. Economies 2023, 11, 85. [Google Scholar] [CrossRef]

| Variable | Variable Name | Description | Unit | Source | 
|---|---|---|---|---|
| CO2 emission | CO2 emission | Greenhouse gas emissions by agriculture. | Thousand tonnes | Eurostat | 
| RE | Renewable energy | Renewable energy consumption by agriculture | Thousand tonnes of oil equivalent | Eurostat | 
| OP | Openness | Openness of the economy measured by the Grubel–Lloyd index. | million of ECU/EURO | Eurostat | 
| FI | Factor income (Chain-linked volumes (2015)) | Measures the remuneration of all factors of production regardless of whether they are owned or borrowed/rented and represents all the value generated by a unit engaged in an agricultural production activity. | million euro | Eurostat | 
| LP | Labor productivity | Labor productivity in agriculture calculated as the value added in agriculture to labor force in agriculture | million euro/Total labor force | Eurostat | 
| Country | Variable | I(0) | I Diff. | ||
|---|---|---|---|---|---|
| T-Stat | p-Value | T-Stat | p-Value | ||
| Poland | CO2 | −3.386 | 0.0114 | - | - | 
| Poland | FI | −1.811 | 0.3748 | −6.372 | 0.0000 | 
| Poland | OP | −0.898 | 0.7888 | −3.948 | 0.0017 | 
| Poland | RE | −2.868 | 0.0492 | - | - | 
| Poland | LP | −0.529 | 0.8863 | −5.222 | 0.0000 | 
| Czechia | CO2 | −1.88 | −0.3415 | −3.89 | 0.0021 | 
| Czechia | FI | −1.893 | 0.3352 | −3.879 | 0.0022 | 
| Czechia | OP | −2.211 | 0.2024 | −5.765 | 0.0000 | 
| Czechia | RE | −1.035 | 0.7401 | −3.194 | 0.0203 | 
| Czechia | LP | −1.424 | 0.5708 | −4.338 | 0.004 | 
| Hungary | CO2 | −1.153 | 0.6934 | −3.653 | 0.0048 | 
| Hungary | FI | −1.861 | 0.3504 | −5.570 | 0.0000 | 
| Hungary | OP | −1.367 | 0.5981 | −4.541 | 0.0002 | 
| Hungary | RE | −0.981 | 0.7600 | −6.021 | 0.0000 | 
| Hungary | LP | −0.783 | 0.8241 | −5.687 | 0.0000 | 
| Slovakia | CO2 | −1.152 | 0.6940 | −4.607 | 0.0001 | 
| Slovakia | FI | −1.966 | 0.3015 | −4.958 | 0.0000 | 
| Slovakia | OP | −2.042 | 0.2684 | −3.415 | 0.0104 | 
| Slovakia | RE | −1.600 | 0.4835 | −4.154 | 0.0008 | 
| Slovakia | LP | −1.454 | 0.5561 | −5.252 | 0.0000 | 
| Variable | Coefficient | Std. Err. | t | p > |t| | ||
|---|---|---|---|---|---|---|
| CO2 emission | F(5, 13) | 2.06 | ||||
| L1 | −0.0592416 | 0.2836246 | −0.21 | 0.838 | Prob > F | 0.1369 | 
| FI | −0.7536137 | 0.3738006 | −2.02 | 0.065 * | R-sq | 0.4416 | 
| OP | −0.7589263 | 0.7323196 | −1.04 | 0.319 | Adj R-sq | 0.2269 | 
| RE | 0.4835829 | 0.2994055 | 1.62 | 0.130 | ||
| LP | 0.303178 | 0.2141912 | 1.42 | 0.180 | ||
| const | 10.84934 | 4.437334 | 2.45 | 0.029 ** | ||
| Variable | Coefficient | Std. Err. | t | p > |t| | ||
|---|---|---|---|---|---|---|
| CO2 emission | F(7, 11) | 8.59 | ||||
| L1 | 0.2079111 | 0.2286387 | 0.91 | 0.383 | Prob > F | 0.0010 | 
| FI | 0.4733999 | 0.4987974 | 0.95 | 0.363 | R-sq | 0.8453 | 
| L1 | 2.024484 | 0.7066955 | 2.86 | 0.015 ** | Adj R-sq | 0.7469 | 
| OP | 1.519463 | 1.444356 | 1.05 | 0.315 | ||
| RE | −0.136458 | 0.092139 | −1.48 | 0.167 | ||
| LP | 0.3411636 | 0.3637617 | 0.94 | 0.368 | ||
| L1 | −1.123848 | 0.3803664 | −2.95 | 0.013 ** | ||
| const | −11.39983 | 4.471094 | −2.55 | 0.027 ** | 
| Variable | Coefficient | Std. Err. | t | p > |t| | ||
|---|---|---|---|---|---|---|
| CO2 emission | F(6, 12) | 10.53 | ||||
| L1 | 0.7882761 | 0.2802783 | 2.81 | 0.016 ** | Prob > F | 0.0003 | 
| FI | 0.1597288 | 0.4759663 | 0.34 | 0.743 | R-sq | 0.8404 | 
| OP | −1.59434 | 1.452889 | −1.10 | 0.294 | Adj R-sq | 0.7606 | 
| RE | 0.0614932 | 0.2450448 | 0.25 | 0.806 | ||
| L1 | 0.3599044 | 0.2353443 | 1.53 | 0.152 | ||
| LP | −0.3522758 | 0.3595091 | −0.98 | 0.346 | ||
| const | −1.336955 | 2.924411 | −0.46 | 0.656 | 
| Variable | Coefficient | Std. Err. | t | p > |t| | ||
|---|---|---|---|---|---|---|
| CO2 emission | F(6, 12) | 17.68 | ||||
| L1 | 0.4638607 | 0.1941306 | 2.39 | 0.034 ** | Prob > F | 0.0000 | 
| FI | −0.350018 | 0.474688 | −0.74 | 0.475 | R-sq | 0.8984 | 
| OP | −1.473752 | 0.9784794 | −1.51 | 0.158 | Adj R-sq | 0.8476 | 
| L1 | 1.77198 | 0.936989 | 1.89 | 0.083 * | ||
| RE | 0.135299 | 0.0712454 | 1.90 | 0.082 * | ||
| LP | 0.2500207 | 0.1950518 | 1.28 | 0.224 | ||
| const | 3.613934 | 2.877902 | 1.26 | 0.233 | 
| Countries | 5% | p-Value | ||||
|---|---|---|---|---|---|---|
| F and t Stat | I(0) | I(1) | I(0) | I(1) | Decision | |
| F = 3.724 | 3.878 | 5.515 | 0.057 | 0.160 | no rejection | |
| Poland | t = −3.735 | −3.013 | −4220 | 0.014 | 0.096 | |
| Czechia | F = 3.935 | 3.973 | 5.753 | 0.051 | 0.147 | no rejection | 
| t = −3.464 | −3.002 | −4.233 | 0.024 | 0.131 | ||
| Hungary | F = 1.770 | 3.926 | 5.634 | 0.321 | 0.592 | |
| t = −0.755 | −3.008 | −4.226 | 0.719 | 0.898 | no rejection | |
| Slovakia | F = 1.684 | 3.926 | 5.63 | 0.374 | 0.623 | |
| t = −2.762 | −3.008 | −4.23 | 0.075 | 0.289 | no rejection | |
| Poland | Czechia | Hungary | Slovakia | |
|---|---|---|---|---|
| chi2(1) | 2.75 | 2.69 | 2.93 | 2.34 | 
| Prob > chi2 | 0.0972 | 0.0853 | 0.0871 | 0.126 | 
| Lags (p) | chi2 | df | Prob > chi2 | |
|---|---|---|---|---|
| Poland | 1 | 3.701 | 1 | 0.0544 | 
| Czechia | 1 | 0.006 | 1 | 0.9407 | 
| Hungary | 1 | 0.056 | 1 | 0.8124 | 
| Slovakia | 1 | 0.037 | 1 | 0.8474 | 
| Poland | Czechia | Hungary | Slovakia | ||||||
|---|---|---|---|---|---|---|---|---|---|
| Equation | Excluded | chi2 | Prob > chi2 | chi2 | Prob > chi2 | chi2 | Prob > chi2 | chi2 | Prob > chi2 | 
| CO2 | FI | 0.29361 | 0.588 | 1.9679 | 0.161 | 3.3057 | 0.069 | 0.56398 | 0.754 | 
| CO2 | OP | 0.00258 | 0.957 | 0.30537 | 0.581 | 0.06335 | 0.801 | 8.5558 | 0.014 | 
| CO2 | RE | 1.5111 | 0.219 | 0.64539 | 0.422 | 2.3343 | 0.127 | 1.6582 | 0.436 | 
| CO2 | LP | 0.88208 | 0.348 | 1.2101 | 0.271 | 1.4722 | 0.225 | 0.34663 | 0.841 | 
| FI | CO2 | 0.08542 | 0.770 | 0.00768 | 0.930 | 9.2871 | 0.002 | 2.1979 | 0.333 | 
| FI | OP | 2.1989 | 0.138 | 1.9041 | 0.168 | 0.01523 | 0.902 | 8.9585 | 0.011 | 
| FI | RE | 4.3382 | 0.037 | 2.198 | 0.138 | 2.6939 | 0.101 | 12.907 | 0.002 | 
| FI | LP | 0.0033 | 0.954 | 0.95598 | 0.328 | 5.1268 | 0.024 | 3.5982 | 0.165 | 
| OP | CO2 | 0.08415 | 0.772 | 0.63273 | 0.426 | 0.3645 | 0.546 | 1.9312 | 0.381 | 
| OP | FI | 6.9885 | 0.008 | 0.59913 | 0.439 | 1.5158 | 0.218 | 35.625 | 0.000 | 
| OP | RE | 1.4443 | 0.229 | 0.46038 | 0.497 | 0.03921 | 0.843 | 0.37878 | 0.827 | 
| OP | LP | 4.868 | 0.027 | 3.0376 | 0.081 | 1.611 | 0.204 | 27.059 | 0.00 | 
| RE | CO2 | 0.90226 | 0.342 | 0.03534 | 0.851 | 3.2466 | 0.072 | 20.154 | 0.000 | 
| RE | FI | 4.6731 | 0.031 | 0.1805 | 0.671 | 3.9963 | 0.046 | 32.383 | 0.000 | 
| RE | OP | 5.5449 | 0.019 | 0.00079 | 0.978 | 2.4275 | 0.119 | 33.989 | 0.000 | 
| RE | LP | 0.35184 | 0.553 | 4.0058 | 0.045 | 4.2334 | 0.04 | 12.807 | 0.002 | 
| LP | CO2 | 0.13828 | 0.71 | 0.01375 | 0.907 | 8.8174 | 0.003 | 10.686 | 0.005 | 
| LP | FI | 1.1459 | 0.284 | 0.79588 | 0.372 | 0.23854 | 0.625 | 7.4369 | 0.024 | 
| LP | OP | 4.6612 | 0.031 | 0.41112 | 0.521 | 1.5591 | 0.212 | 9.0444 | 0.011 | 
| LP | RE | 0.18632 | 0.666 | 3.0966 | 0.078 | 1.9687 | 0.161 | 12.791 | 0.002 | 
| Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. | 
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Augustowski, Ł.; Kułyk, P. Heterogeneous Relationships Between CO2 Emissions and Renewable Energy in Agriculture in the Visegrad Group Countries. Energies 2025, 18, 5673. https://doi.org/10.3390/en18215673
Augustowski Ł, Kułyk P. Heterogeneous Relationships Between CO2 Emissions and Renewable Energy in Agriculture in the Visegrad Group Countries. Energies. 2025; 18(21):5673. https://doi.org/10.3390/en18215673
Chicago/Turabian StyleAugustowski, Łukasz, and Piotr Kułyk. 2025. "Heterogeneous Relationships Between CO2 Emissions and Renewable Energy in Agriculture in the Visegrad Group Countries" Energies 18, no. 21: 5673. https://doi.org/10.3390/en18215673
APA StyleAugustowski, Ł., & Kułyk, P. (2025). Heterogeneous Relationships Between CO2 Emissions and Renewable Energy in Agriculture in the Visegrad Group Countries. Energies, 18(21), 5673. https://doi.org/10.3390/en18215673
 
        


 
       