Collaborative Estimation of Lithium Battery State of Charge Based on the BiLSTM-AUKF Fusion Model
Abstract
1. Introduction
2. Problem Model
3. Collaborative Estimation of Battery SOC Based on BiLSTM-AUKF Fusion Model
4. PSO-Based Parameter Identification for Battery ECM
5. BO-BiLSTM-Based SOC Prediction
5.1. LSTM Cell Structure
5.2. BiLSTM Network
5.3. Bayesian Optimization
6. UKF with Sage-Husa Adaptive Strategy
7. Model Validation and Analysis
7.1. Datasets and Metrics
7.2. OCV-SOC Curve Fitting and PSO-Based Parameter Identification
7.3. Accuracy Validation of SOC Estimation Based on BiLSTM-AUKF
7.4. Generalization Capability Validation for BiLSTM-AUKF-Based SOC Estimation
8. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hannan, M.A.; Lipu, M.S.H.; Hussain, A.; Mohamed, A. A review of lithium-ion battery state of charge estimation and management system in electric vehicle applications: Challenges and recommendations. Renew. Sustain. Energy Rev. 2017, 78, 834–854. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, X.; Li, K.; Zhao, G.; Chen, Z. Perspectives and challenges for future lithium-ion battery control and management. eTransportation 2023, 18, 100260. [Google Scholar] [CrossRef]
- Zhao, X.; Qian, X.; Xuan, D.; Jung, S. State of charge estimation of lithium-ion battery based on multi-input extreme learning machine using online model parameter identification. J. Energy Storage 2022, 56, 105796. [Google Scholar] [CrossRef]
- He, H.; Zhang, X.; Xiong, R.; Xu, Y.; Guo, H. Online model-based estimation of state-of-charge and open-circuit voltage of lithium-ion batteries in electric vehicles. Energy 2012, 39, 310–318. [Google Scholar] [CrossRef]
- Pillai, P.; Sundaresan, S.; Kumar, P.; Pattipati, K.R.; Balasingam, B. Open-Circuit Voltage Models for Battery Management Systems: A Review. Energies 2022, 15, 6803. [Google Scholar] [CrossRef]
- Zhang, X.; Duan, L.; Gong, Q.; Wang, Y.; Song, H. State of charge estimation for lithium-ion battery based on adaptive extended Kalman filter with improved residual covariance matrix estimator. J. Power Sources 2024, 589, 233758. [Google Scholar] [CrossRef]
- Shrivastava, P.; Soon, T.K.; Bin Idris, M.Y.I.; Mekhilef, S.; Adnan, S.B.R.S. Comprehensive co-estimation of lithium-ion battery state of charge, state of energy, state of power, maximum available capacity, and maximum available energy. J. Energy Storage 2022, 56, 106049. [Google Scholar] [CrossRef]
- Luan, Z.; Qin, Y.; Hu, B.; Zhao, W.; Wang, C. Estimation of state of charge for hybrid unmanned aerial vehicle Li-ion power battery for considering rapid temperature change. J. Energy Storage 2023, 59, 106479. [Google Scholar] [CrossRef]
- Wang, L.; Han, J.; Liu, C.; Li, G. State of charge estimation of lithium-ion based on VFFRLS-noise adaptive CKF algorithm. Ind. Eng. Chem. Res. 2022, 61, 22. [Google Scholar] [CrossRef]
- Li, S.; Li, Y.; Zhao, D.; Zhang, C. Adaptive state of charge estimation for lithium-ion batteries based on implementable fractional-order technology. J. Energy Storage 2020, 32, 101838. [Google Scholar] [CrossRef]
- Wu, C.; Hu, W.; Meng, J.; Xu, X.; Huang, X.; Cai, L. State-of-charge estimation of lithium-ion batteries based on MCC-AEKF in non-Gaussian noise environment. Energy 2023, 274, 127316. [Google Scholar] [CrossRef]
- Zhao, H.; Liao, C.; Zhang, C.; Wang, L.; Wang, L. State-of-charge estimation of lithium-ion battery: Joint long short-term memory network and adaptive extended Kalman filter online estimation algorithm. J. Power Sources 2024, 604, 234451. [Google Scholar] [CrossRef]
- Wu, S.; Pan, W.; Zhu, M. A collaborative estimation scheme for lithium-ion battery state of charge and state of health based on electrochemical model. J. Electrochem. Soc. 2022, 169, 090516. [Google Scholar] [CrossRef]
- Shen, D.; Ding, J.; Hao, T. Elman neural network and thevenin equivalent circuit model based multi-measurement Kalman filter for SOC estimation. Ionics 2024, 30, 833–845. [Google Scholar] [CrossRef]
- Dar, T.H.; Singh, S. Advanced integration of bidirectional long short-term memory neural networks and innovative extended Kalman filter for state of charge estimation of lithium-ion battery. J. Power Sources 2025, 628, 235893. [Google Scholar] [CrossRef]
- Monirul, I.M.; Qiu, L.; Ruby, R. Accurate SOC estimation of ternary lithium-ion batteries by HPPC test-based extended Kalman filter. J. Energy Storage 2024, 92, 112304. [Google Scholar] [CrossRef]
- Wang, M.; Wang, G.; Xiao, Z.; Sun, Y.; Zheng, Y. State of charge estimation of LiFePO4 in various temperature scenarios. Batteries 2023, 9, 43. [Google Scholar] [CrossRef]
- Li, H.; Fu, L.; Long, X.; Liu, L.; Zeng, Z. A hybrid deep learning model for lithium-ion batteries state of charge estimation based on quantile regression and attention. Energy 2024, 294, 130834. [Google Scholar] [CrossRef]
- Zhang, C.; Wang, S.; Yu, C.; Xie, Y.; Fernandez, C. Novel improved particle swarm optimization- extreme learning machine algorithm for state of charge estimation of lithium-ion batteries. Ind. Eng. Chem. Res. 2022, 6, 46. [Google Scholar] [CrossRef]
- Ma, L.; Zhang, T. Deep learning-based battery state of charge estimation: Enhancing estimation performance with unlabelled training samples. J. Energy Chem. 2023, 80, 48–57. [Google Scholar] [CrossRef]
- Che, Y.; Xu, L.; Teodorescu, R.; Hu, X.; Onori, S. Enhanced SOC estimation for LFP batteries: A synergistic approach using coulomb counting reset, machine learning, and relaxation. ACS Energy Lett. 2025, 63, 2. [Google Scholar] [CrossRef]
- Hao, X.; Wang, S.; Fan, Y.; Xie, Y.; Fernandez, C. An improved forgetting factor recursive least square and unscented particle filtering algorithm for accurate lithium-ion battery state of charge estimation. J. Energy Storage 2023, 59, 106478. [Google Scholar] [CrossRef]
- Wang, C.; Li, Q.; Tang, A.; Zhang, Z. A comparative study of state of charge estimation methods of ultracapacitors for electric vehicles considering temperature characteristics. J. Energy Storage 2023, 63, 106908. [Google Scholar] [CrossRef]
- El Fallah, S.; Kharbach, J.; Hammouch, Z.; Rezzouk, A.; Jamil, M.O. State of charge estimation of an electric vehicle’s battery using deep neural Networks: Simulation and experimental results. J. Energy Storage 2023, 62, 106904. [Google Scholar] [CrossRef]
- Liu, X.; Li, Q.; Wang, L.; Lin, M.; Wu, J. Data-driven state of charge estimation for power battery with improved extended Kalman filter. IEEE Trans. Instrum. Meas. 2023, 72, 1500910. [Google Scholar] [CrossRef]
- Wadi, A.; Abdel-Hafez, M.F.; Hussein, A.; Alkhawaja, F. Alleviating dynamic model uncertainty effects for improved battery SOC estimation of EVs in highly dynamic environments. IEEE Trans. Veh. Technol. 2021, 70, 6554–6566. [Google Scholar] [CrossRef]
- Zhang, X.; Hou, J.; Wang, Z.; Jiang, Y. Study of SOC estimation by the ampere-hour integral method with capacity correction based on LSTM. Batteries 2022, 8, 170. [Google Scholar] [CrossRef]
- Yang, F.; Zhang, S.; Li, W.; Miao, Q. State-of-charge estimation of lithium-ion batteries using LSTM and UKF. Energy 2020, 201, 117664. [Google Scholar] [CrossRef]
- Xu, K.; He, T.; Yang, P.; Meng, X.; Zhu, C.; Jin, X. A new online SOC estimation method using broad learning system and adaptive unscented Kalman filter algorithm. Energy 2024, 309, 132920. [Google Scholar] [CrossRef]
- Tian, J.; Xiong, R.; Lu, J.; Chen, C.; Shen, W. Battery state-of-charge estimation amid dynamic usage with physics-informed deep learning. Energy Storage Mater. 2022, 50, 718–729. [Google Scholar] [CrossRef]
- Takyi-Aninakwa, P.; Wang, S.; Liu, G.; Bage, A.N.; Masahudu, F.; Guerrero, J.M. An enhanced lithium-ion battery state-of-charge estimation method using long short-term memory with an adaptive state update filter incorporating battery parameters. Eng. Appl. Artif. Intell. 2024, 132, 107946. [Google Scholar] [CrossRef]
- Chen, Z.; Zhao, H.; Shu, X.; Zhang, Y.; Shen, J.; Liu, Y. Synthetic state of charge estimation for lithium-ion batteries based on long short-term memory network modeling and adaptive H-Infinity filter. Energy 2021, 228, 120630. [Google Scholar] [CrossRef]
- Wang, Q.; Ye, M.; Wei, M.; Lian, G.; Li, Y. Deep convolutional neural network based closed-loop SOC estimation for lithium-ion batteries in hierarchical scenarios. Energy 2023, 263, 125718. [Google Scholar] [CrossRef]
- Chen, J.; Zhang, Y.; Li, W.; Cheng, W.; Zhu, Q. State of charge estimation for lithium-ion batteries using gated recurrent unit recurrent neural net-work and adaptive Kalman filter. J. Energy Storage 2022, 55, 105396. [Google Scholar] [CrossRef]
- Wei, M.; Ye, M.; Zhang, C.; Lian, G.; Xia, B.; Wang, Q. Robust state of charge estimation of LiFePO4 batteries based on Sage-Husa adaptive Kalman filter and dynamic neural network. Electrochim. Acta 2024, 477, 143778. [Google Scholar] [CrossRef]
- Yang, Y.; Xu, Y.; Nie, Y.; Li, J.; Liu, S.; Zhao, L.; Yu, Q.; Zhang, C. Deep transfer learning enables battery state of charge and state of health estimation. Energy 2024, 294, 130779. [Google Scholar] [CrossRef]
- Tian, Y.; Lai, R.; Li, X.; Xiang, L.; Tian, J. A combined method for state-of-charge estimation for lithium-ion batteries using a long short-term memory network and an adaptive cubature Kalman filter. Appl. Energy 2020, 265, 114789. [Google Scholar] [CrossRef]














| Temperature | R0 (Ω) | R1 (Ω) | C1 (F) | R2 (Ω) | C2 (F) |
|---|---|---|---|---|---|
| 20 °C | 0.17206 | 0.014629 | 651.4273 | 0.0012667 | 9683.0963 |
| Working Conditions | Estimation Method | MaxError/% | MAE/% | RMSE/% |
|---|---|---|---|---|
| DST | GRU | 7.0895 | 1.5494 | 1.9514 |
| LSTM | 4.9188 | 1.4984 | 1.6779 | |
| BiLSTM | 3.9136 | 0.73297 | 0.94334 | |
| BiLSTM-UKF | 2.7522 | 0.60915 | 0.78313 | |
| BiLSTM-AUKF | 1.1446 | 0.44287 | 0.53123 |
| Working Conditions | Estimation Method | MaxError/% | MAE/% | RMSE/% |
|---|---|---|---|---|
| FUDS | GRU | 7.8898 | 1.601 | 2.1161 |
| LSTM | 5.7338 | 1.5431 | 1.7605 | |
| BiLSTM | 3.557 | 0.74094 | 0.93266 | |
| BiLSTM-UKF | 2.532 | 0.58893 | 0.75801 | |
| BiLSTM-AUKF | 1.265 | 0.52662 | 0.62845 |
| Working Conditions | Estimation Method | MaxError/% | MAE/% | RMSE/% |
|---|---|---|---|---|
| US06 | GRU | 8.6252 | 1.2165 | 1.8535 |
| LSTM | 6.4148 | 1.0723 | 1.4226 | |
| BiLSTM | 3.0888 | 0.58034 | 0.78363 | |
| BiLSTM-UKF | 1.7188 | 0.43867 | 0.54656 | |
| BiLSTM-AUKF | 1.3768 | 0.37033 | 0.47677 |
| Algorithm | Training Set | Epoch Time (s) | Testing Set | Inference Time per Time Step (s) |
|---|---|---|---|---|
| GRU | DST + FUDS | 67.33 | US06 | 0.0087387 |
| DST + US06 | 70.10 | FUDS | 0.008614 | |
| US06 + FUDS | 68.67 | DST | 0.0085396 | |
| LSTM | DST + FUDS | 71.35 | US06 | 0.0090138 |
| DST + US06 | 73.40 | FUDS | 0.0089999 | |
| US06 + FUDS | 73.02 | DST | 0.008971 | |
| BiLSTM | DST + FUDS | 74.45 | US06 | 0.013268 |
| DST + US06 | 76.67 | FUDS | 0.013047 | |
| US06 + FUDS | 76.49 | DST | 0.013134 | |
| BiLSTM-UKF | DST + FUDS | 74.45 | US06 | 0.013296473 |
| DST + US06 | 76.67 | FUDS | 0.013074086 | |
| US06 + FUDS | 76.49 | DST | 0.013159713 | |
| BiLSTM-AUKF | DST + FUDS | 74.45 | US06 | 0.013297232 |
| DST + US06 | 76.67 | FUDS | 0.013075712 | |
| US06 + FUDS | 76.49 | DST | 0.013164777 |
| Working Condition | Estimation Method | MaxError/% | MAE/% | RMSE/% |
|---|---|---|---|---|
| DST | LSTM | 4.6087 | 1.467 | 1.6347 |
| BiLSTM | 3.3173 | 0.71732 | 0.89197 | |
| BiLSTM-UKF | 2.6382 | 0.70204 | 0.86481 | |
| BiLSTM-AUKF | 1.6001 | 0.51654 | 0.61679 | |
| FUDS | LSTM | 6.2205 | 1.4044 | 1.6845 |
| BiLSTM | 3.315 | 0.64464 | 0.85691 | |
| LSTM-UKF | 2.9059 | 0.61586 | 0.80715 | |
| BiLSTM-AUKF | 2.1648 | 0.4234 | 0.54408 | |
| US06 | LSTM | 4.8938 | 1.0087 | 1.3199 |
| BiLSTM | 2.3827 | 0.52417 | 0.69309 | |
| LSTM-UKF | 2.6392 | 0.48736 | 0.6562 | |
| BiLSTM-AUKF | 1.6945 | 0.31124 | 0.39664 |
| Working Condition | Estimation Method | MaxError/% | MAE/% | RMSE/% |
|---|---|---|---|---|
| DST | LSTM | 4.9595 | 1.6323 | 1.8089 |
| BiLSTM | 3.4098 | 0.79409 | 0.97419 | |
| BiLSTM-UKF | 2.6918 | 0.77723 | 0.94338 | |
| BiLSTM-AUKF | 1.9329 | 0.60588 | 0.72084 | |
| FUDS | LSTM | 4.4645 | 1.4965 | 1.6572 |
| BiLSTM | 3.4287 | 0.70729 | 0.88551 | |
| LSTM-UKF | 2.7774 | 0.69009 | 0.8514 | |
| BiLSTM-AUKF | 1.4638 | 0.57714 | 0.68095 | |
| US06 | LSTM | 6.1901 | 1.1609 | 1.5187 |
| BiLSTM | 2.9115 | 0.55783 | 0.76841 | |
| LSTM-UKF | 1.768 | 0.41938 | 0.52105 | |
| BiLSTM-AUKF | 1.3377 | 0.33496 | 0.43993 |
| Working Condition | Estimation Method | MaxError/% | MAE/% | RMSE/% |
|---|---|---|---|---|
| DST | LSTM | 5.7929 | 1.4962 | 1.7191 |
| BiLSTM | 3.5519 | 0.71453 | 0.92059 | |
| BiLSTM-UKF | 2.4396 | 0.54714 | 0.7102 | |
| BiLSTM-AUKF | 0.94416 | 0.40777 | 0.47844 | |
| FUDS | LSTM | 6.0939 | 1.5251 | 1.7302 |
| BiLSTM | 3.5385 | 0.71447 | 0.91028 | |
| LSTM-UKF | 2.5037 | 0.57598 | 0.71939 | |
| BiLSTM-AUKF | 1.1728 | 0.47813 | 0.56799 | |
| US06 | LSTM | 6.0055 | 1.1943 | 1.5234 |
| BiLSTM | 2.7287 | 0.57078 | 0.76258 | |
| LSTM-UKF | 1.6306 | 0.46982 | 0.56751 | |
| BiLSTM-AUKF | 1.1043 | 0.35783 | 0.45392 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, R.; Liu, L.; Zhang, H.; Qian, Q.; Xiao, L.; Qiu, Q.; Tan, C.; Yang, F. Collaborative Estimation of Lithium Battery State of Charge Based on the BiLSTM-AUKF Fusion Model. Energies 2025, 18, 5624. https://doi.org/10.3390/en18215624
Wang R, Liu L, Zhang H, Qian Q, Xiao L, Qiu Q, Tan C, Yang F. Collaborative Estimation of Lithium Battery State of Charge Based on the BiLSTM-AUKF Fusion Model. Energies. 2025; 18(21):5624. https://doi.org/10.3390/en18215624
Chicago/Turabian StyleWang, Rui, Lele Liu, Honghou Zhang, Qifeng Qian, Lingchao Xiao, Qiansheng Qiu, Chao Tan, and Fujian Yang. 2025. "Collaborative Estimation of Lithium Battery State of Charge Based on the BiLSTM-AUKF Fusion Model" Energies 18, no. 21: 5624. https://doi.org/10.3390/en18215624
APA StyleWang, R., Liu, L., Zhang, H., Qian, Q., Xiao, L., Qiu, Q., Tan, C., & Yang, F. (2025). Collaborative Estimation of Lithium Battery State of Charge Based on the BiLSTM-AUKF Fusion Model. Energies, 18(21), 5624. https://doi.org/10.3390/en18215624

