Effect of AC Pre-Charging of Epoxy Insulator on Flashover Properties in Eco-Friendly Binary Gas Mixtures
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample and Experiment Platform
2.2. Procedure
3. Results
3.1. Effect of Metal Particle Position on Flashover Voltage
3.2. Effect of Pre-Charging on Flashover Voltage
3.3. Effect of Surface Charge on Flashover Paths
4. Discussion
5. Conclusions
- Without pre-charging, the metal particle will decrease the flashover voltage when attached to the HV electrode and the middle area of the insulator. The attachment to the HV electrode of the insulator has a more pronounced effect on the flashover voltage than the middle area, and the attachment to the concave surface is more dangerous than the convex surface.
- After a 5 min procedure of pre-charging, the flashover voltage of the sample, adhered with a metal particle, rises to nearly the same level as the instance of no metal particle adhered.
- Carbonized burnt traces are left on the concave surface of the sample during the flashover, and the traces are distributed randomly when the metal particle is on the convex surface. When the metal particle is on the concave surface, the flashover occurs through the metal particles, but after pre-charging, the flashover arcs are driven away from the metal particle.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Okubo, H.; Beroual, A. Recent trend and future perspectives in electrical insulation techniques in relation to sulfur hexafluoride (SF6) substitutes for high voltage electric power equipment. IEEE Electr. Insul. Mag. 2011, 27, 34–42. [Google Scholar] [CrossRef]
- Eriksson, A.; Pettersson, K.G.; Krenicky, A.; Baker, R.; Ochoa, J.R.; Leibold, A. Experience with gas insulated substations in the USA. IEEE Trans. Power Deliv. 1995, 10, 210–218. [Google Scholar] [CrossRef]
- Riechert, U.; Holaus, W. Ultra high-voltage gas-insulated switchgear—A technology milestone. Eur. Trans. Electr. Power 2012, 22, 60–82. [Google Scholar] [CrossRef]
- Zhang, X.; Li, G.; Huang, R.; Xiang, Z.; Zhang, Y.; Yao, S.; Wang, X. Statistical analysis of defects and maintenance advice for GIS in different operating years above 110 kV. High-Volt. Electr. Appl. 2016, 52, 184–188+194. [Google Scholar] [CrossRef]
- Peng, P.; Ren, P.; Li, Q. Calculation method of thermal decomposition kinetic parameters of basin-type insulators in GIS. High Volt. Eng. 2020, 46, 3622–3629. [Google Scholar]
- Li, C.; Lin, C.; Yang, Y.; Zhang, B.; Liu, W.; Li, Q.; Hu, J.; He, S.; Liu, X.; He, J. Novel HVDC spacers by adaptively controlling surface charges—Part ii: Experiment. IEEE Trans. Dielectr. Electr. Insul. 2018, 25, 1248–1258. [Google Scholar] [CrossRef]
- Xie, J.; Chalmers, I.D. The influence of surface charge upon flash-over of particle-contaminated insulators in under impulse-voltage conditions. J. Phys. D Appl. Phys. 1997, 30, 1055. [Google Scholar] [CrossRef]
- Winter, A.; Kindersberger, J. Surface charge accumulation on insulating plates in SF/sub 6/ and the effect on DC and AC breakdown voltage of electrode arrangements. In Proceedings of the Annual Report Conference on Electrical Insulation and Dielectric Phenomena, Cancun, Mexico, 20–24 October 2002; pp. 757–761. [Google Scholar]
- Yanqin, L.; Guangning, W.; Guoqiang, G.; Jianyi, X.; Yongqiang, K.; Chaoqun, S. Surface charge accumulation behavior and its influence on surface flashover performance of Al2O3-filled epoxy resin insulators under DC voltages. Plasma Sci. Technol. 2019, 21, 055501. [Google Scholar]
- Xie, Q.; Liang, S.; Fu, K.; Liu, L.; Huang, H.; Lü, F. Distribution of polymer surface charge under DC voltag and its influence on surface flashover characteristics. IEEE Trans. Dielectr. Electr. Insul. 2018, 25, 2157–2168. [Google Scholar] [CrossRef]
- Kieffel, Y.; Biquez, F.; Vigouroux, D.; Ponchon, P.; Schlernitzauer, A.; Magous, R.; Cros, G.; Owens, J.G. Characteristics of g3—An alternative to SF6. CIRED 2017, 2017, 54–57. [Google Scholar] [CrossRef]
- Li, Z.; Ding, W.; Liu, Y.; Li, Y.; Zheng, Z.; Liu, W.; Gao, K. Surface flashover characteristics of epoxy insulator in C4F7N/CO2 mixtures in a uniform field under AC voltage. IEEE Trans. Dielectr. Electr. Insul. 2019, 26, 1065–1072. [Google Scholar] [CrossRef]
- Li, Z.; Zheng, Z.; Liu, Y.; Ding, W.; Li, X. Surface flashover characteristics of the 252 kV conical insulator in C4F7N/CO2 gas mixtures under AC voltage. Trans. China Electrotech. Soc. 2020, 35, 62–69. [Google Scholar]
- Gao, Y.; Wang, H.; Yuan, X.; Zhao, H.; Li, Z. Surface Charge Accumulation on a Real Size Epoxy Insulator with Bouncing Metal Particle Under DC Voltage. IEEE Trans. Plasma Sci. 2021, 49, 2166–2175. [Google Scholar] [CrossRef]
- Morcos, M.M.; Zhang, S.; Srivastava, K.D.; Gubanski, S.M. Dynamics of metallic particle contaminants in GIS with dielectric-coated electrodes. IEEE Trans. Power Deliv. 2000, 15, 455–460. [Google Scholar] [CrossRef]
- Li, S.; Gao, Y.; Lu, D.; Huang, P.; Du, B. Phase Dependence of Surface Charge Measurement on Epoxy Insulator in C4F7N/CO2 under AC Voltage. Polymers 2024, 16, 2585. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.; Xu, H.; Zhang, X.; Liang, Y.; Shao, Y.; Wang, C.; Tu, Y.; Xu, Y. Towards the surface flashover in DC GIL/GIS: The electric field distribution and the surface charge accumulation. Phys. Scr. 2022, 97, 072001. [Google Scholar] [CrossRef]
- Li, Z.; Liu, J.; Ohki, Y.; Chen, G.; Li, S. Surface flashover in 50 years: II. Material modification, structure optimisation, and characteristics enhancement. High Volt. 2025, 10, 243–278. [Google Scholar] [CrossRef]
- Mustata, F.; Tudorachi, N. Thermal behavior of epoxy resin cured with aromatic dicarboxylic acids. J. Therm. Anal. Calorim. 2016, 125, 97–110. [Google Scholar] [CrossRef]
- Zhong, L.; Hu, Y.; Qu, Z.; Tang, N.; Wang, F.; Du, J.; Li, L.; Chen, S.; Sun, Q. Solid Product Analysis on the Epoxy Resin Surface After Flashovers in C4F7N-Based Gas Mixtures Under Negative DC Voltage. IEEE Trans. Dielectr. Electr. Insul. 2024, 31, 246–253. [Google Scholar] [CrossRef]











Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guan, J.; Han, G.; Shang, Q.; Qi, X.; Wang, Z.; Gao, Y. Effect of AC Pre-Charging of Epoxy Insulator on Flashover Properties in Eco-Friendly Binary Gas Mixtures. Energies 2025, 18, 5612. https://doi.org/10.3390/en18215612
Guan J, Han G, Shang Q, Qi X, Wang Z, Gao Y. Effect of AC Pre-Charging of Epoxy Insulator on Flashover Properties in Eco-Friendly Binary Gas Mixtures. Energies. 2025; 18(21):5612. https://doi.org/10.3390/en18215612
Chicago/Turabian StyleGuan, Jian, Guohui Han, Qifeng Shang, Xiaohu Qi, Zhiying Wang, and Yu Gao. 2025. "Effect of AC Pre-Charging of Epoxy Insulator on Flashover Properties in Eco-Friendly Binary Gas Mixtures" Energies 18, no. 21: 5612. https://doi.org/10.3390/en18215612
APA StyleGuan, J., Han, G., Shang, Q., Qi, X., Wang, Z., & Gao, Y. (2025). Effect of AC Pre-Charging of Epoxy Insulator on Flashover Properties in Eco-Friendly Binary Gas Mixtures. Energies, 18(21), 5612. https://doi.org/10.3390/en18215612
