Determination of Voltage Margin Decision Boundaries via Logistic Regression for Distribution System Operations
Abstract
1. Introduction
- An Interpretable Yet High-Performance Model: We introduce an interpretable model that combines the physically meaningful VMI with a simple LR, avoiding black-box complexity. VMI is leveraged as a powerful single predictor, justified by its ability to synthesize system-wide effects and its validated statistical significance (p < 0.001). Benchmarking against a random forest (RF) classifier confirms that this transparent approach achieves high reliability without sacrificing predictive power.
- Derivation of Analytical and Generalizable Decision Boundaries: We leverage the LR model’s closed-form nature to analytically derive absolute VMI decision boundaries from its probability thresholds. This methodology, validated via 5-fold cross-validation on detailed simulation data from Jeju Island, yields specific, actionable criteria: a performance-oriented boundary of 0.7893 and a safety-oriented boundary of 0.8101. Crucially, the LR derivation procedure can be applied unchanged to any system with node-level voltage measurements and known regulation limits.
- Enhanced Decision Support for Grid Operations: The resulting VMI boundaries provide DSOs and VPP operators with clear, data-driven criteria for critical tasks. The performance-oriented boundary is suited for routine operational planning, while the safety-oriented boundary provides a robust, risk-averse criterion for high-stakes decisions like DER interconnection approval and grid reinforcement. This framework replaces operational ambiguity with transparent, statistically grounded criteria, enhancing decision-making objectivity.
2. Related Research and Theoretical Background
2.1. Voltage Margin Index (VMI)
2.2. Limitations of VMI
2.3. Logistic Regression Overview
3. Research Methodology
3.1. Data Acquisition and Pre-Processing
3.1.1. Data Collection and VMI Computation
3.1.2. Voltage Violation Labeling
3.1.3. Data Set Assembly and Validation
3.2. Logistic Regression Modeling
3.2.1. Training and Validation Split
3.2.2. Model Training and Statistical Inference
3.3. Threshold Determination Procedure
3.3.1. Performance-Oriented Probability Threshold
3.3.2. Safety-Oriented Probability Threshold
3.3.3. Analytical Inversion to VMI
3.3.4. Applicability
3.4. Benchmark Model: Random Forest
4. Case Study and Data Generation
4.1. Jeju Distribution System Model
4.2. Simulation and Data Set Creation
5. Results and Discussion
5.1. Data Set Composition and Partitioning
5.2. Statistical Validation and Interpretation
5.3. Model Performance and Decision Boundary Derivation
5.3.1. Cross-Validated Threshold Selection
5.3.2. Final Model Performance on Test Set
5.3.3. Visualization and Practical Implication of Decision Boundaries
5.4. Benchmarking with Random Forest
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sun, H.; Guo, Q.; Qi, J.; Ajjarapu, V.; Bravo, R.; Chow, J.; Li, Z.; Moghe, R.; Nasr-Azadani, E.; Tamrakar, U.; et al. Review of challenges and research opportunities for voltage control in smart grids. IEEE Trans. Power Syst. 2019, 34, 2790–2801. [Google Scholar] [CrossRef]
- Goh, H.H.; Chua, Q.S.; Lee, S.W.; Kok, B.C.; Goh, K.C.; Teo, K.T.K. Evaluation for voltage stability indices in power system using artificial neural network. Procedia Eng. 2015, 118, 1127–1136. [Google Scholar] [CrossRef]
- Junior, W.; Coimbra, A.P.; Wainer, G.A.; Neto, J.C.; Cararo, J.A.G.; Reis, M.R.C.; Santos, P.V.; Calixto, W.P. Analysis and adequacy methodology for voltage violations in distribution power grid. Energies 2021, 14, 4373. [Google Scholar] [CrossRef]
- Pandey, A.R.; Verma, K. Determining locational hosting capacity of DERs in distribution system using machine learning. In Proceedings of the 2024 IEEE Region 10 Symposium (TENSYMP), New Delhi, India, 27–29 September 2024; pp. 1–6. [Google Scholar] [CrossRef]
- Zhang, N.; Jia, H.; Hou, Q.; Zhang, Z.; Xia, T.; Cai, X.; Wang, J. Data-driven security and stability rule in high renewable penetrated power system operation. Proc. IEEE 2023, 111, 788–805. [Google Scholar] [CrossRef]
- Qammar, N.; Arshad, A.; Rehman, A.U. Assessing LV grid PV hosting: A machine learning perspective. In Proceedings of the 2025 International Conference on Emerging Power Technologies (ICEPT), Topi, Pakistan, 10–11 April 2025; pp. 1–6. [Google Scholar] [CrossRef]
- Singh, A.; Singh, P.; Agrawal, N.; Gupta, P. Estimating the stability of smart grids using optimised artificial neural network. In Proceedings of the 2023 International Conference on Recent Advances in Electrical, Electronics & Digital Healthcare Technologies (REEDCON), New Delhi, India, 1–3 May 2023; pp. 380–384. [Google Scholar] [CrossRef]
- Zhu, L.; Lu, C.; Luo, Y. Time series data-driven batch assessment of power system short-term voltage security. IEEE Trans. Ind. Inform. 2020, 16, 7306–7317. [Google Scholar] [CrossRef]
- Geth, F.C.; Akkari, S.; Bletterie, B.; Kadam, S.; Leemput, N.; Papaefthymiou, G. On the Classification of Low Voltage Feeders for Network Planning and Hosting Capacity Studies. Energies 2018, 11, 651. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, N.; Wang, Z.; Qiu, Z.; Wang, K.; Li, J. Transient Stability Assessment of Power Systems Built upon Attention-Based Spatial–Temporal Graph Convolutional Networks. Energies 2025, 18, 3824. [Google Scholar] [CrossRef]
- Tang, J.; Liu, J.; Wu, J.; Jin, G.; Kang, H.; Zhang, Z.; Huang, N. RAC-GAN-Based Scenario Generation for Newly Built Wind Farm. Energies 2023, 16, 2447. [Google Scholar] [CrossRef]
- Lakshmi, S. Multi-objective optimization approach for EV hosting capacity maximization of distribution networks with renewable generations. In Proceedings of the 2025 IEEE 1st International Conference on Smart and Sustainable Developments in Electrical Engineering (SSDEE), Dhanbad, India, 28 February–2 March 2025; pp. 1–6. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, W.; Wu, L.; Liu, H. Applied Research on Distributed Generation Optimal Allocation Based on Improved Estimation of Distribution Algorithm. Energies 2018, 11, 2363. [Google Scholar] [CrossRef]
- Prasad, M.; Rather, Z.H.; Razzaghi, R.; Doolla, S. A new approach to determine feasible operating region of unbalanced distribution networks with distributed photovoltaics. IEEE Trans. Power Deliv. 2025, 40, 1493–1504. [Google Scholar] [CrossRef]
- Yang, Y.; Huang, Q.; Li, P. Online prediction and correction control of static voltage stability index based on broad learning system. Expert Syst. Appl. 2022, 199, 117184. [Google Scholar] [CrossRef]
- Yang, Y.; Long, J.; Yang, L.; Mo, S.; Wu, X. Correction control model of L-index based on VSC-OPF and BLS method. Sustainability 2024, 16, 3621. [Google Scholar] [CrossRef]
- Bizzarri, F.; Brambilla, A.; Gruosso, G.; Maffezzoni, P. Piece-Wise Linear (PWL) Probabilistic Analysis of Power Grid with High Penetration PV Integration. Energies 2022, 15, 4752. [Google Scholar] [CrossRef]
- Abujubbeh, M.; Dahale, S.; Natarajan, B. Voltage violation prediction in unobservable distribution systems. In Proceedings of the 2022 IEEE Power & Energy Society General Meeting (PESGM), Denver, CO, USA, 17–21 July 2022; pp. 1–5. [Google Scholar] [CrossRef]
- Shahoud, S.; Khalloof, H.; Khalouf, R.; Dupmeier, C.; Cakmak, H.K.; Forderer, K.; Hagenmeyer, V. Fast grid state estimation for power networks: An ensemble machine learning approach. In Proceedings of the 2022 IEEE 10th International Conference on Smart Energy Grid Engineering (SEGE), Oshawa, ON, Canada, 10–12 August 2022; pp. 12–18. [Google Scholar] [CrossRef]
- Yan, J.; Wang, B.; Wu, Z.; Ding, Z. Decentralized voltage prediction in multi-area distribution systems: A privacy-preserving collaborative framework. IEEE Access 2025, 13, 92305–92318. [Google Scholar] [CrossRef]
- Shazdeh, S.; Golpîra, H.; Bevrani, H. An adaptive data-driven method based on fuzzy logic for determining power system voltage status. J. Mod. Power Syst. Clean Energy 2024, 12, 707–718. [Google Scholar] [CrossRef]
- Ye, K.; Zhao, J.; Zhang, H.; Zhang, Y. Data-driven probabilistic voltage risk assessment of miniWECC system with uncertain PVs and wind generations using realistic data. IEEE Trans. Power Syst. 2022, 37, 4121–4124. [Google Scholar] [CrossRef]
- Hu, W.; Yang, F.; Shen, Y.; Yang, Z.; Chen, H.; Lei, Y. Dynamic risk assessment of voltage violation in distribution networks with distributed generation. Entropy 2023, 25, 1662. [Google Scholar] [CrossRef]
- Zaidi, A.; Al Luhayb, A.S.M. Two statistical approaches to justify the use of the logistic function in binary logistic regression. Math. Probl. Eng. 2023, 2023, 5525675. [Google Scholar] [CrossRef]
- Nam, J.-H.; Park, S.-J.; Cho, D.-I.; Cho, Y.-J.; Moon, W.-S. Assessing the suitability of distributed energy resources in distribution systems based on the voltage margin: A case study of Jeju, South Korea. IEEE Access 2025, 13, 36263–36272. [Google Scholar] [CrossRef]
- Hosmer, D.W., Jr.; Lemeshow, S. Applied Logistic Regression, 2nd ed.; Wiley: New York, NY, USA, 2000. [Google Scholar]
- Peng, C.-Y.J.; Lee, K.L.; Ingersoll, G.M. An introduction to logistic regression analysis and reporting. J. Educ. Res. 2002, 96, 3–14. [Google Scholar] [CrossRef]
- Scikit-Learn Developers. What’s New in Scikit-Learn Version 1.6.1; Scikit-Learn User Guide, Version 1.6.1. Available online: https://scikit-learn.org/stable/whats_new/v1.6.html (accessed on 7 March 2025).
- Arlot, S.; Celisse, A. A survey of cross-validation procedures for model selection. Stat. Surv. 2010, 4, 40–79. [Google Scholar] [CrossRef]
- Seabold, S.; Perktold, J. Statsmodels: Econometric and statistical modeling with Python. In Proceedings of the 9th Python in Science Conference, Austin, TX, USA, 28 June–3 July 2010; pp. 92–96. [Google Scholar]
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B. Scikit-learn: Machine learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar]
- King, G.; Zeng, L. Logistic regression in rare events data. Political Anal. 2001, 9, 137–163. [Google Scholar] [CrossRef]
- Heinze, G.; Schemper, M. A solution to the problem of separation in logistic regression. Stat. Med. 2002, 21, 2409–2419. [Google Scholar] [CrossRef]
- Fan, R.-E.; Chang, K.-W.; Hsieh, C.-J.; Wang, X.-R.; Lin, C.-J. LIBLINEAR: A library for large linear classification. J. Mach. Learn. Res. 2008, 9, 1871–1874. [Google Scholar]
- Saito, T.; Rehmsmeier, M. The precision–recall plot is more informative than the ROC plot when evaluating binary classifiers on imbalanced datasets. PLoS ONE 2015, 10, e0118432. [Google Scholar] [CrossRef]
- Powers, D.M.W. Evaluation: From precision, recall and F-measure to ROC, informedness, markedness & correlation. Int. J. Mach. Learn. Technol. 2011, 2, 37–63. [Google Scholar]
- Hastie, T.; Tibshirani, R.; Friedman, J. The Elements of Statistical Learning: Data Mining, Inference, and Prediction, 2nd ed.; Springer: New York, NY, USA, 2009; Chapter 10. [Google Scholar]
- Lim, H.; Kim, H.; Sim, J.; Cho, S. An analysis study on the proposal for increasing hosting capacity in distribution feeders. Trans. Korean Inst. Electr. Eng. 2020, 69, 516–522. [Google Scholar] [CrossRef]
- Dugan, R.C.; Montenegro, D. The Open Distribution System Simulator (OpenDSS) Reference Guide; Electric Power Research Institute: Washington, DC, USA, 2020. [Google Scholar]
- Lee, J.-S.; Nam, Y.-H.; Yoon, S.-J.; Kim, C.-S.; Ryu, K.-S.; Kim, D.-J.; Kim, B. A study on the operation characteristic and grid model for demonstration of mixed virtual power plant. In Proceedings of the Fall Conference, Power Technology Division, Korean Institute of Electrical Engineers, Busan, Republic of Korea, 29–30 November 2023. [Google Scholar]
- KPX. Hourly Generation of PV and WT Generator in Jeju. Available online: https://www.data.go.kr (accessed on 10 October 2023).
- H0-Distribution-Standard-0015, 17th rev.; Technical Standards for Interconnection of Distributed Energy Resources to Distribution Systems. KEPCO: Daejeon, Republic of Korea, 2024.
- Firth, D. Bias reduction of maximum likelihood estimates. Biometrika 1993, 80, 27–38. [Google Scholar] [CrossRef]






| Area | D/L (Line) | DER Type | DER Capacity (MW) | Total Length (km) |
|---|---|---|---|---|
| A | 4 | PV | 48.0 | 60.0 |
| B | 5 | – | – | 35.0 |
| C | 5 | PV, WT | 36.8 | 92.5 |
| D | 3 | PV | 8.6 | 47.5 |
| E | 3 | PV | 3.9 | 37.5 |
| F | 6 | PV | 31.5 | 102.5 |
| Split | Total Samples | # Negative (0) | # Positive (1) |
|---|---|---|---|
| Train/Validation | 7054 | 6168 (87.4%) | 886 (12.6%) |
| Test | 1762 | 1542 (87.5%) | 220 (12.5%) |
| Overall | 8816 | 7710 (87.5%) | 1106 (12.5%) |
| Parameter | Estimate | Std. Error | p-Value | Odds Ratio |
|---|---|---|---|---|
| Intercept | 46.4803 | 0.6159 | <0.001 | – |
| VMI | −59.0387 | 0.7662 | <0.001 | 2.29 × 10−26 |
| Metric | Value |
|---|---|
| θopt | 0.7891 |
| θsafe | 0.6880 |
| VMIDB,opt | 0.7893 |
| VMIDB,safe | 0.8101 |
| Threshold | Accuracy | Precision | Recall | F1-Score |
|---|---|---|---|---|
| θopt | 0.9994 | 1.0000 | 0.9955 | 0.9977 |
| θsafe | 0.9745 | 0.8302 | 1.0000 | 0.9072 |
| Threshold | Accuracy | Precision | Recall | F1-Score |
|---|---|---|---|---|
| θopt | 0.9972 | 0.9778 | 1.0000 | 0.9888 |
| θsafe | 0.9966 | 0.9735 | 1.0000 | 0.9865 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nam, J.-H.; Cho, D.-I.; Cho, Y.-J.; Moon, W.-S. Determination of Voltage Margin Decision Boundaries via Logistic Regression for Distribution System Operations. Energies 2025, 18, 5590. https://doi.org/10.3390/en18215590
Nam J-H, Cho D-I, Cho Y-J, Moon W-S. Determination of Voltage Margin Decision Boundaries via Logistic Regression for Distribution System Operations. Energies. 2025; 18(21):5590. https://doi.org/10.3390/en18215590
Chicago/Turabian StyleNam, Jun-Hyuk, Dong-Il Cho, Yun-Jin Cho, and Won-Sik Moon. 2025. "Determination of Voltage Margin Decision Boundaries via Logistic Regression for Distribution System Operations" Energies 18, no. 21: 5590. https://doi.org/10.3390/en18215590
APA StyleNam, J.-H., Cho, D.-I., Cho, Y.-J., & Moon, W.-S. (2025). Determination of Voltage Margin Decision Boundaries via Logistic Regression for Distribution System Operations. Energies, 18(21), 5590. https://doi.org/10.3390/en18215590

