Modeling Gas Producibility and Hydrogen Potential—An Eastern Mediterranean Case Study
Abstract
1. Introduction
2. Sustainable Natural Gas Utilization
3. Mathematical Formulation
4. Model Evaluation on a Test Case
5. Results and Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Masson-Delmotte, V.; Zhai, P.; Pörtner, H.-O.; Roberts, D.; Skea, J.; Shukla, P.R.; Pirani, A.; Moufouma-Okia, W.; Péan, C.; Pidcock, R.; et al. Global Warming of 1.5 °C. An IPCC Special Report on the Impacts of Global Warming of 1.5 °C above Pre-Industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change, Sustainable Development, and Efforts to Eradicate Poverty. 2018. Available online: https://www.ipcc.ch/sr15/download/ (accessed on 9 September 2025).
- Hausfather, Z. Bounding the climate viability of natural gas as a bridge fuel to displace coal. Energy Policy 2015, 86, 286–294. [Google Scholar] [CrossRef]
- Venizelou, V.; Poullikkas, A. The potential of green hydrogen as an alternative to natural gas power generation. Renew. Sustain. Energy Rev. 2025, 224, 116028. [Google Scholar] [CrossRef]
- Weissman, S.; Constantine, S.; Hernandez, P.; Gallagher, C. Natural Gas as a Bridge Fuel: Measuring the Bridge. March 2016. Available online: https://energycenter.org/sites/default/files/docs/nav/policy/research-and-reports/Natural_Gas_Bridge_Fuel.pdf (accessed on 9 September 2025).
- Gillessen, B.; Heinrichs, H.; Hake, J.-F.; Allelein, H.-J. Natural gas as a bridge to sustainability: Infrastructure expansion regarding energy security and system transition. Appl. Energy 2019, 251, 113377. [Google Scholar] [CrossRef]
- Acquah-Andoh, E. Energy Transition and Natural Gas: Reviewing the Role of Natural Gas in the Energy Transition—Lessons from the UK and EU. Int. J. Bus. Technol. Stud. Res. 2025, 7, 14. [Google Scholar]
- Venizelou, V.; Poullikkas, A. The effect of carbon price towards green hydrogen power generation. Renew. Sustain. Energy Rev. 2025, 211, 115254. [Google Scholar]
- Koukakis, N. ExxonMobil Makes Biggest Natural Gas Discovery in Two Years Off the Coast of Cyprus. February 2019. Available online: https://www.cnbc.com/2019/02/28/exxonmobil-makes-big-natural-gas-discovery-off-the-coast-of-cyprus.html?fbclid=IwAR2F31bp1de_7-NfnrhRy-3UFqfImirN1Ow2Pm-FEFdhZRifAfT193-6500 (accessed on 9 September 2025).
- Colelli, L.; Bassano, C.; Verdone, N.; Segneri, V.; Vilardi, G. Power-to-gas: Process analysis and control strategies for dynamic catalytic methanation system. Energy Convers. Manag. 2024, 305, 118257. [Google Scholar]
- Hazou, E. Drilling for Cyprus Gas, a Timeline. June 2016. Available online: https://cyprus-mail.com/divided-island/special-reports/natural-gas/drilling-for-cyprus-gas-a-timeline (accessed on 9 September 2025).
- Kambas, M. Cyprus Could Produce First Natural Gas as soon as 2026, Minister Says. February 2024. Available online: https://www.reuters.com/business/energy/cyprus-could-produce-first-natural-gas-soon-2026-minister-says-2024-02-14/ (accessed on 9 September 2025).
- Godwin, B. Cyprus—A European Energy Savior? January 2025. Available online: https://cepa.org/article/cyprus-a-european-energy-savior/ (accessed on 9 September 2025).
- International Gas Union (IGU). The East Mediterranean Gas Forum (EMGF). The Role of Gas in Eastern Mediterranean Economies and the Path to the Energy Transition. April 2025. Available online: https://emgf.org/assets/Docs/IGU_EMGF_Report_A4_SinglePages_PROD.pdf (accessed on 9 September 2025).
- Erdogdu, E. Natural gas demand in Turkey. Appl. Energy 2010, 87, 211–219. [Google Scholar] [CrossRef]
- Wang, J.; Feng, L.; Zhao, L.; Snowden, S.; Wang, X. A comparison of two typical multicyclic models used to forecast the world’s conventional oil production. Energy Policy 2011, 39, 7616–7621. [Google Scholar] [CrossRef]
- Wang, J.; Feng, L. Curve-fitting models for fossil fuel production forecasting: Key influence factors. J. Nat. Gas Sci. Eng. 2016, 32, 138–149. [Google Scholar] [CrossRef]
- Wang, J.; Bentley, Y. Modelling world natural gas production. Energy Rep. 2020, 6, 1363–1372. [Google Scholar] [CrossRef]
- Ediger, V.S.; Berk, I. Future availability of natural gas: Can it support sustainable energy transition? Resour. Policy 2023, 85, 103824. [Google Scholar] [CrossRef]
- BP Energy Outlook 2023. Available online: https://www.bp.com/content/dam/bp/business-sites/en/global/corporate/pdfs/energy-economics/energy-outlook/bp-energy-outlook-2023.pdf (accessed on 9 September 2025).
- GASVESSEL. Natural Gas vs. Coal—A Positive Impact on the Environment. 2025. Available online: https://www.gasvessel.eu/news/natural-gas-vs-coal-impact-on-the-environment (accessed on 9 September 2025).
- BP Statistical Review of World Energy 2022. Available online: https://www.bp.com/content/dam/bp/business-sites/en/global/corporate/pdfs/energy-economics/statistical-review/bp-stats-review-2022-full-report.pdf (accessed on 9 September 2025).
- BP Energy Outlook 2024. Available online: https://www.bp.com/content/dam/bp/business-sites/en/global/corporate/pdfs/energy-economics/energy-outlook/bp-energy-outlook-2024.pdf (accessed on 9 September 2025).
- International Energy Agency (IEA). Global Energy Review 2025. Available online: https://www.iea.org/reports/global-energy-review-2025 (accessed on 9 September 2025).
- Zhao, S.; Lu, J.; Yan, J.; Wu, H.; Guan, C. Energy transition in china: It is necessary to increase natural gas utilization. Energy Rep. 2023, 10, 2439–2447. [Google Scholar] [CrossRef]
- Huang, R.; Zhang, S.; Wang, P. Key areas and pathways for carbon emissions reduction in Beijing for the “dual carbon” targets. Energy Policy 2022, 164, 112873. [Google Scholar] [CrossRef]
- International Energy Agency. United States: Natural Gas. 2025. Available online: https://www.iea.org/countries/united-states/natural-gas (accessed on 9 September 2025).
- International Energy Agency. Canada: Natural Gas. 2025. Available online: https://www.iea.org/countries/canada/natural-gas (accessed on 9 September 2025).
- Himona, E.; Poullikkas, A. Comparative Review of Natural Gas Vehicles During the Energy Transition. Energies 2025, 18, 3512. [Google Scholar] [CrossRef]
- European Environment Agency. Greenhouse Gas Emissions from Transport. October 2024. Available online: https://www.eea.europa.eu/en/analysis/indicators/greenhouse-gas-emissions-from-transport (accessed on 9 September 2025).
- European Parliament. CO2 Emissions from Cars: Facts and Figures (Infographics). December 2024. Available online: https://www.europarl.europa.eu/topics/en/article/20190313STO31218/co2-emissions-from-cars-facts-and-figures-infographics (accessed on 9 September 2025).
- Poullikkas, A. Sustainable options for electric vehicle technologies. Renew. Sustain. Energy Rev. 2015, 41, 1277–1287. [Google Scholar] [CrossRef]
- Mohr, S.; Evans, G. Long term forecasting of natural gas production. Energy Policy 2011, 39, 5550–5560. [Google Scholar] [CrossRef]
- Ji, Q.; Fan, Y.; Troilo, M.; Ripple, R.D.; Feng, L. China’s natural gas demand projections and supply capacity analysis in 2030. Energy J. 2018, 39, 53–70. [Google Scholar] [CrossRef]
- Malzi, J. Economic, environment and demographic elasticities of natural gas demand: A review. RevistaMultidisciplinar 2024, 6, e202417. [Google Scholar] [CrossRef]
- Mohammed, H.; Okalla, C.E. Modelling Annual Natural Gas Demand Forecasting Using Non-Linear Autoregressive with Exogenous Input (NARX) Neural Networks. Improv. Oil Gas Recovery 2024, 8, 1–16. [Google Scholar]
- International Energy Agency. World Energy Outlook 2023. Available online: https://www.iea.org/reports/world-energy-outlook-2023 (accessed on 9 September 2025).
- International Energy Agency. Global Hydrogen Review 2024. Available online: https://www.iea.org/reports/global-hydrogen-review-2024 (accessed on 9 September 2025).
- Makarov, A.A.; Makarov, A.A. Laws of power industry development: Elusory essence. Therm. Eng. 2010, 57, 1085–1092. [Google Scholar] [CrossRef]
- Mac Kinnon, M.A.; Brouwer, J.; Samuelsen, S. The role of natural gas and its infrastructure in mitigating greenhouse gas emissions, improving regional air quality, and renewable resource integration. Prog. Energy Combust. Sci. 2018, 64, 62–92. [Google Scholar] [CrossRef]
- Mohammad, N.; Ishak, W.W.M.; Mustapa, S.I.; Ayodele, B.V. Natural gas as a key alternative energy source in sustainable renewable energy transition: A mini review. Front. Energy Res. 2021, 9, 625023. [Google Scholar] [CrossRef]
- Gonzalez-Salazar, M.A.; Kirsten, T.; Prchlik, L. Review of the operational flexibility and emissions of gas- and coal-fired power plants in a future with growing renewables. Renew. Sustain. Energy Rev. 2018, 82, 1497–1513. [Google Scholar] [CrossRef]
- Huang, Y.W.; Kittner, N.; Kammen, D.M. ASEAN grid flexibility: Preparedness for grid integration of renewable energy. Energy Policy 2019, 128, 711–726. [Google Scholar] [CrossRef]
- Union of Concerned Scientists. Massachusetts’s Electricity Future: Reducing Reliance on Natural Gas through Renewable Energy. April 2016. Available online: https://www.ucs.org/resources/massachusettss-electricity-future (accessed on 9 September 2025).
- Kühn, M.; Streibel, M.; Nakaten, N.; Kempka, T. Integrated Underground Gas Storage of CO2 and CH4 to Decarbonise the “Power-to-gas-to-gas-to-power” Technology. Energy Procedia 2014, 59, 9–15. [Google Scholar] [CrossRef]
- Heras, J.; Martín, M. Multiscale analysis for power-to-gas-to-power facilities based on energy storage. Comput. Chem. Eng. 2021, 114, 107147. [Google Scholar] [CrossRef]
- Li, J.; Li, G.; Ma, S.; Liang, Z.; Li, Y.; Zeng, W. Modeling and Simulation of Hydrogen Energy Storage System for Power-to-gas and Gas-to-power Systems. J. Mod. Power Syst. Clean Energy 2023, 11, 885–895. [Google Scholar] [CrossRef]
- Wang, L.; Alirahmi, S.M.; Yu, H. Development and analysis of a novel power-to-gas-to-power system driven by the allam cycle for simultaneous electricity and water production. Energy Convers. Manag. 2024, 319, 118934. [Google Scholar] [CrossRef]
- Wulf, C.; Linßen, J.; Zapp, P. Review of Power-to-Gas Projects in Europe. Energy Procedia 2018, 155, 367–378. [Google Scholar] [CrossRef]
- Sterner, M.; Specht, M. Power-to-Gas and Power-to-X—The History and Results of Developing a New Storage Concept. Energies 2021, 14, 6594. [Google Scholar] [CrossRef]
- Liang, T.; Chai, L.; Tan, J.; Jing, Y.; Lv, L. Dynamic optimization of an integrated energy system with carbon capture and power-to-gas interconnection: A deep reinforcement learning-based scheduling strategy. Appl. Energy 2024, 367, 123390. [Google Scholar] [CrossRef]
- Portillo-Tarragona, P.; Llera-Sastresa, E.; Scarpellini, S.; Benito-Bentué, D. A case study of financing zero-emission power-to-gas technologies in Spain. Util. Policy 2025, 95, 101965. [Google Scholar] [CrossRef]
- Koutalidis, H.; Pelekis, S.; Skepetari, E.; Ntanos, C.; Karakolis, E.; Michalitsi-Psarrou, A.; Blika, A.; Askounis, D. Renewable hydrogen blending into urban natural gas grids with power-to-gas: A techno-economic assessment for Greece. Int. J. Hydrogen Energy 2025, 139, 380–395. [Google Scholar] [CrossRef]
- Zou, S.; Zong, X.; Chen, Q.; Zhang, W.; Zhou, H. Optimization Scheduling of Integrated Energy Systems Considering Power Flow Constraints. Energies 2025, 18, 2442. [Google Scholar] [CrossRef]
- Li, R.; Su, M. The Role of Natural Gas and Renewable Energy in Curbing Carbon Emission: Case Study of the United States. Sustainability 2017, 9, 600. [Google Scholar] [CrossRef]
- Howarth, R.W.; Santoro, R.; Ingraffea, A. Methane and the greenhouse-gas footprint of natural gas from shale formations. Clim. Chang. 2011, 106, 679–690. [Google Scholar] [CrossRef]
- Zhang, X.; Myhrvold, N.P.; Hausfather, Z.; Caldeira, K. Climate benefits of natural gas as a bridge fuel and potential delay of near-zero energy systems. Appl. Energy 2016, 167, 317–322. [Google Scholar] [CrossRef]
- Nandakumar, N.; Annaswamy, A.M. Impact of increased renewables on natural gas markets in eastern United States. J. Mod. Power Syst. Clean Energy 2017, 5, 424–438. [Google Scholar] [CrossRef]
- ISO New England Inc. New England 2030 Power System Study. February 2010. Available online: https://www.iso-ne.com/static-assets/documents/committees/comm_wkgrps/prtcpnts_comm/pac/reports/2010/economicstudyreportfinal_022610.pdf (accessed on 9 September 2025).
- Adebayo, T.S.; Alola, A.A. Drivers of natural gas and renewable energy utilization in the USA: How about household energy efficiency-energy expenditure and retail electricity prices? Energy 2023, 283, 129022. [Google Scholar] [CrossRef]
- Cronshaw, I. World Energy Outlook 2014 projections to 2040: Natural gas and coal trade, and the role of China. Aust. J. Agric. Resour. Econ. 2015, 59, 571–585. [Google Scholar] [CrossRef]
- Khan, M.N.; Cloete, S.; Amini, S. Efficient Production of Clean Power and Hydrogen Through Synergistic Integration of Chemical Looping Combustion and Reforming. Energies 2020, 13, 3443. [Google Scholar] [CrossRef]
- Nikolaidis, P.; Poullikkas, A. A comparative overview of hydrogen production processes. Renew. Sustain. Energy Rev. 2017, 67, 597–611. [Google Scholar] [CrossRef]
- Ghoneim, S.; El-Salamony, R.; El-Temtamy, S. Review on Innovative Catalytic Reforming of Natural Gas to Syngas. World J. Eng. Technol. 2016, 4, 116–139. [Google Scholar] [CrossRef]
- Boretti, A.; Banik, B.K. Advances in Hydrogen Production from Natural Gas Reforming. Adv. Energy Sustain. Res. 2021, 2, 2100097. [Google Scholar] [CrossRef]
- Thomas, C.A.; Carmody, W.H. Synthetic Resins from Petroleum Hydrocarbons. Ind. Eng. Chem. 1932, 24, 1125–1128. [Google Scholar] [CrossRef]
- Moghaddam, A.L.; Hejazi, S.; Fattahi, M.; Kibria, M.G.; Thomson, M.J.; AlEisa, R.; Khan, M.A. Methane pyrolysis for hydrogen production: Navigating the path to a net zero future. Energy Environ. Sci. 2025, 18, 2747–2790. [Google Scholar] [CrossRef]
- Kadam, R.S.; Sutar, P.R.; Yadav, G.D. Energy and environmental assessment of industrial-scale hydrogen production: Comparison of steam methane reforming, electrolysis, and Cu–Cl cycles. Int. J. Hydrogen Energy 2025, 106, 994–1005. [Google Scholar] [CrossRef]
- The Hydrogen Newsletter. GH2 Facts. 2024. Available online: https://www.hydrogennewsletter.com/gh2-facts/ (accessed on 13 June 2025).
- The Hydrogen Newsletter. How Much CO2 is Produced from Steam Methane Reforming? 2024. Available online: https://www.hydrogennewsletter.com/how-much-co2-is-produced-from-steam-methane-reforming/ (accessed on 13 June 2025).
- Pimpale, S. Hydrogen Production Methods: Carbon Emission Comparison and Future Advancements. Int. J. Sci. Res. Eng. Manag. 2023, 7, 1–7. [Google Scholar] [CrossRef]
- Mullen, D.; Herraiz, L.; Gibbins, J.; Lucquiaud, M. On the cost of zero carbon hydrogen: A techno-economic analysis of steam methane reforming with carbon capture and storage. Int. J. Greenh. Gas Control. 2023, 126, 103904. [Google Scholar] [CrossRef]
- Su, B.; Wang, Y.; Xu, Z.; Han, W.; Jin, H.; Wang, H. Novel ways for hydrogen production based on methane steam and dry reforming integrated with carbon capture. Energy Convers. Manag. 2022, 270, 116199. [Google Scholar] [CrossRef]
- Khan, M.H.A.; Daiyan, R.; Neal, P.; Haque, N.; MacGill, I.; Amal, R. A framework for assessing economics of blue hydrogen production from steam methane reforming using carbon capture storage & utilisation. Int. J. Hydrogen Energy 2021, 46, 22685–22706. [Google Scholar]
- Sharma, I.; Friedrich, D.; Golden, T.; Brandani, S. Exploring the opportunities for carbon capture in modular, small-scale steam methane reforming: An energetic perspective. Int. J. Hydrogen Energy 2019, 44, 14732–14743. [Google Scholar] [CrossRef]
- Soltani, R.; Rosen, M.A.; Dincer, I. Assessment of CO2 capture options from various points in steam methane reforming for hydrogen production. Int. J. Hydrogen Energy 2014, 39, 20266–20275. [Google Scholar] [CrossRef]
- Roy, R.; Antonini, G.; Hayibo, K.S.; Rahman, M.M.; Khan, S.; Tian, W.; Boutilier, M.S.H.; Zhang, W.; Zheng, Y.; Bassi, A.; et al. Comparative techno-environmental analysis of grey, blue, green/yellow and pale-blue hydrogen production. Int. J. Hydrogen Energy 2025, 116, 200–210. [Google Scholar] [CrossRef]
- Alvarez, R.A.; Pacala, S.W.; Winebrake, J.J.; Chameides, W.L.; Hamburg, S.P. Greater focus needed on methane leakage from natural gas infrastructure. Proc. Natl. Acad. Sci. USA 2012, 109, 6435–6440. [Google Scholar] [CrossRef] [PubMed]
- Howarth, R.W. A bridge to nowhere: Methane emissions and the greenhouse gas footprint of natural gas. Energy Sci. Eng. 2014, 2, 47–60. [Google Scholar] [CrossRef]
- Howarth, R.W.; Jacobson, M.Z. How green is blue hydrogen? Energy Sci. Eng. 2021, 9, 1676–1687. [Google Scholar] [CrossRef]
- Garcia, G.M.; Oliva, H.S. Technical, economic, and CO2 emissions assessment of green hydrogen production from solar/wind energy: The case of Chile. Energy 2023, 278, 127981. [Google Scholar] [CrossRef]
- Darko, E. Short Guide Summarising the Oil and Gas Industry Lifecycle for a Non-Technical Audience; EPS-PEAKS Guide. October 2014; Overseas Development Institute (ODI): London, UK, 2014. [Google Scholar]
- BP Statistical Review of World Energy (2004 Data). 2024. Available online: http://mazamascience.com/OilExport/BP_2004.xls (accessed on 9 September 2025).
- BP Statistical Review of World Energy 2015. 2015. Available online: https://www.bp.com/en/global/corporate/energy-economics/webcast-and-on-demand.html (accessed on 9 September 2025).
- BP Statistical Review of World Energy 2018. 2018. Available online: https://www.bp.com/content/dam/bp/business-sites/en/global/corporate/pdfs/energy-economics/statistical-review/bp-stats-review-2018-full-report.pdf (accessed on 9 September 2025).
- Energy Institute. KPMG and Kearney. Statistical Review of World Energy 2024, 73rd ed.; Energy Institute: London, UK, 2024; Available online: https://www.energyinst.org/statistical-review (accessed on 9 September 2025).
- Zhang, N.; Wang, J.; Xue, M.; Wang, Q.; Wu, Y.; Cao, Q.; Sun, P. Research on the security of natural gas supply and demand in China under the dual carbon target. Sci. Prog. 2024, 107. [Google Scholar] [CrossRef]
- Xie, M.; Wei, X.; Chen, C.; Sun, C. China’s natural gas production peak and energy return on investment (EROI): From the perspective of energy security. Energy Policy 2022, 164, 112913. [Google Scholar] [CrossRef]
- Lao, T.; Sun, Y. Predicting the production and consumption of natural gas in China by using a new grey forecasting method. Math. Comput. Simul. 2022, 202, 295–315. [Google Scholar] [CrossRef]
- Li, L. Development of natural gas industry in China: Review and prospect. Nat. Gas Ind. 2022, 9, 187–196. [Google Scholar] [CrossRef]
- Chengzao, J.; Yongfeng, Z.; Xia, Z. Prospects of and challenges to natural gas industry development in China. Nat. Gas Ind. 2014, 1, 1–13. [Google Scholar] [CrossRef]
- Li, J.; She, Y.; Gao, Y.; Li, M.; Yang, G.; Shi, Y. Natural gas industry in china: Development situation and prospect. Nat. Gas Ind. 2020, 7, 604–613. [Google Scholar] [CrossRef]
- Zou, C.; Lin, M.; Ma, F.; Liu, H.; Yang, Z.; Zhang, G.; Yang, Y.; Guan, C.; Liang, Y.; Wang, Y.; et al. Development, challenges and strategies of natural gas industry under carbon neutral target in China. Pet. Explor. Dev. 2024, 51, 476–497. [Google Scholar] [CrossRef]
- U.S. Energy Information Administration. Eastern Mediterranean Analysis. November 2022. Available online: https://www.eia.gov/international/analysis/regions-of-interest/Eastern_Mediterranean (accessed on 9 September 2025).
- Onyango, D. EastMed Gas Pipeline Project Timeline Uncertain as Stakeholders Review Feasibility. April 2024. Available online: https://www.pipeline-journal.net/news/eastmed-gas-pipeline-project-timeline-uncertain-stakeholders-review-feasibility (accessed on 9 September 2025).
- TotalEnergies. TotalEnergies and ENI sign an agreement with Cyprus and Egypt for the export of Cyprus Block 6 gas through Egypt. February 2025. Available online: https://totalenergies.com/news/press-releases/totalenergies-and-eni-sign-agreement-cyprus-and-egypt-export-cyprus-block-6-gas (accessed on 9 September 2025).
- Sorrell, S.; Miller, R.; Bentley, R.; Speirs, J. Oil futures: A comparison of global supply forecasts. Energy Policy 2010, 38, 4990–5003. [Google Scholar] [CrossRef]
- Middle East Economic Survey (MEES). Cyprus Gas Ambitions: From Dreams to Reality in 2023. January 2023. Available online: https://www.mees.com/2023/1/27/oil-gas/cyprus-gas-ambitions-from-dreams-to-reality-in-2023/f0154a20-9e43-11ed-b50a-fbcb54be70bc (accessed on 9 September 2025).
- Charalambous, A. USA: Cyprus has right to develop resources within its EEZ, Cronos-1 discovery welcomed. August 2022. Available online: https://in-cyprus.philenews.com/local/us-welcome-significant-gas-discovery-at-crono-1-well-offshore-cyprus/ (accessed on 9 September 2025).
- Global Energy Monitor. Main Page. 2025. Available online: https://www.gem.wiki/Main_Page (accessed on 9 September 2025).
- Offshore Technology. Egypt Natural Gas Production: Data and Insights. July 2024. Available online: https://www.offshore-technology.com/data-insights/egypt-natural-gas-production/ (accessed on 9 September 2025).
- Phileleftheros. East Mediterranean: $500 Billion Gas for EU. July 2024. Available online: https://www.philenews.com/oikonomia/kosmos-ikonomia/article/1607089/anatoliki-mesogios-aerio-500-dis-dol-gia-ee/ (accessed on 9 September 2025).
- Nakhle, C. Israel’s Gas Exports in Times of War. November 2023. Available online: https://www.gisreportsonline.com/r/israeli-gas-exports/ (accessed on 9 September 2025).
- European Commission. Renewable Energy Targets. October 2023. Available online: https://energy.ec.europa.eu/topics/renewable-energy/renewable-energy-directive-targets-and-rules/renewable-energy-targets_en#the-2030-targets (accessed on 9 September 2025).
- Eurostat. Electricity from Renewable Sources Reaches 47% in 2024. March 2025. Available online: https://ec.europa.eu/eurostat/web/products-eurostat-news/w/ddn-20250319-1 (accessed on 9 September 2025).
- Espitalier-Noël, M.; Fonseca, J.; Fraile, D.; Muron, M.; Pawelec, G.; Santos, S.; Staudenmaye, O. Clean Hydrogen Monitor. 2024. Available online: https://hydrogeneurope.eu/wp-content/uploads/2024/11/Clean_Hydrogen_Monitor_11-2024_V2_DIGITAL_draft3-1.pdf (accessed on 9 September 2025).
- Carbon Solutions. CalculatorTALxAbout. Available online: https://www.carbonsolutions.com/clients/CalculatorTALxAbout.html (accessed on 13 June 2025).
- U.S. Environmental Protection Agency (EPA). Greenhouse Gas Emission Factors Hub. March 2023. Available online: https://www.epa.gov/climateleadership/ghg-emission-factors-hub (accessed on 12 October 2025).
- U.S. Energy Information Administration (EIA). CO2 Emissions: Volume and Mass. Available online: https://www.eia.gov/environment/emissions/co2_vol_mass.php (accessed on 12 October 2025).
- International Energy Agency (IEA). World Energy Outlook 2019. IEA, 2019. Available online: https://www.iea.org/reports/world-energy-outlook-2019 (accessed on 13 June 2025).
- Jean, E. Carbon Taxes in Europe, 2024. Tax Foundation, 2024. Available online: https://taxfoundation.org/data/all/eu/carbon-taxes-europe-2024/ (accessed on 13 June 2025).
- Al-Qadri, A.A.; Ahmed, U.; Jameel, A.G.A.; Zahid, U.; Usman, M.; Ahmad, N. Simulation and Modelling of Hydrogen Production from Waste Plastics: Technoeconomic Analysis. Polymers 2022, 14, 2056. [Google Scholar] [CrossRef]
- Al-Qadri, A.A.; Ahmed, U.; Ahmad, N.; Jameel, A.G.A.; Zahid, U.; Naqvi, S.R. A review of hydrogen generation through gasification and pyrolysis of waste plastic and tires: Opportunities and challenges. Int. J. Hydrogen Energy 2024, 77, 1185–1204. [Google Scholar] [CrossRef]
- Ahmed, U. Techno-economic analysis of dual methanol and hydrogen production using energy mix systems with CO2 capture. Energy Convers. Manag. 2021, 228, 113663. [Google Scholar] [CrossRef]
- Ahmed, U.; Zahid, U.; Onaizi, S.A.; Jameel, A.G.A.; Ahmad, N.; Ahmad, N.; AlMohamadi, H. Co-production of hydrogen and methanol using fuel mix systems: Technical and economic assessment. Appl. Sci. 2021, 11, 6577. [Google Scholar] [CrossRef]
- Ahmed, U.; Hussain, M.A.; Bilal, M.; Zeb, H.; Ahmad, N.; Ahmad, N.; Usman, M. Production of hydrogen from low rank coal using process integration framework between syngas production processes: Techno-economic analysis. Chem. Eng. Process. Process. Intensif. 2021, 169, 108639. [Google Scholar] [CrossRef]
- European Clean Hydrogen Alliance. Cost of Hydrogen Production. 2023. Available online: https://observatory.clean-hydrogen.europa.eu/hydrogen-landscape/production-trade-and-cost/cost-hydrogen-production (accessed on 13 June 2025).
- Stargate Hydrogen. What is Grey Hydrogen? Production Method, Carbon Footprint and More. 2024. Available online: https://stargatehydrogen.com/blog/grey-hydrogen/ (accessed on 13 June 2025).
- Trading Economics. Natural Gas. Available online: https://tradingeconomics.com/commodity/natural-gas (accessed on 13 June 2025).
- U.S. Energy Information Administration (EIA). Henry Hub Natural Gas Spot Price. 2025. Available online: https://www.eia.gov/dnav/ng/ng_pri_sum_dcu_nus_m.htm (accessed on 13 June 2025).
- H2IQ. How Much Does Hydrogen Cost? 2024. Available online: https://h2iq.org/how-much-does-hydrogen-cost/ (accessed on 13 June 2025).
- CEIC Data. Israel Natural Gas: Consumption. 2024. Available online: https://www.ceicdata.com/en/indicator/israel/natural-gas-consumption (accessed on 5 August 2025).
- Enerdata. Egypt Energy Information. 2024. Available online: https://www.enerdata.net/estore/energy-market/egypt/ (accessed on 5 August 2025).
- Enerdata. Israel Energy Information. 2025. Available online: https://www.enerdata.net/estore/energy-market/israel/ (accessed on 5 August 2025).
- Enerdata. Israel’s Gas Exports to Egypt and Jordan Increased by over 13% in 2024. 2025. Available online: https://www.enerdata.net/publications/daily-energy-news/israels-gas-exports-egypt-and-jordan-increased-over-13-2024.html (accessed on 5 August 2025).
- Anand, C.; Chandraja, B.; Nithiya, P.; Akshaya, M.; Tamizhdurai, P.; Shoba, G.; Subramani, A.; Kumaran, R.; Yadav, K.K.; Gacem, A.; et al. Green hydrogen for a sustainable future: A review of production methods, innovations, and applications. Int. J. Hydrogen Energy 2025, 111, 319–341. [Google Scholar] [CrossRef]
- Panchenko, V.; Daus, Y.; Kovalev, A.; Yudaev, I.; Litti, Y. Prospects for the production of green hydrogen: Review of countries with high potential. Int. J. Hydrogen Energy 2023, 48, 4551–4571. [Google Scholar] [CrossRef]
- Squadrito, G.; Maggio, G.; Nicita, A. The green hydrogen revolution. Renew. Energy 2023, 216, 119041. [Google Scholar] [CrossRef]
- Zhou, Y.; Li, R.; Lv, Z.; Liu, J.; Zhou, H.; Xu, C. Green hydrogen: A promising way to the carbon-free society. Chin. J. Chem. Eng. 2022, 43, 2–13. [Google Scholar] [CrossRef]
- Fernández-Arias, P.; Antón-Sancho, A.; Lampropoulos, G.; Vergara, D. Emerging trends and challenges in pink hydrogen research. Energies 2024, 17, 2291. [Google Scholar] [CrossRef]
- Incer-Valverde, J.; Korayem, A.; Tsatsaronis, G.; Morosuk, T. “Colors” of hydrogen: Definitions and carbon intensity. Energy Convers. Manag. 2023, 291, 117294. [Google Scholar] [CrossRef]
- Venizelou, V.; Poullikkas, A. Comprehensive overview of recent research and industrial advancements in nuclear hydrogen production. Energies 2024, 17, 2836. [Google Scholar] [CrossRef]
- Nevodini, D. The Role of Small Modular Reactors in Decarbonizing Hydrogen Production. Electro-Thermal integration and Economic Insights. Ph.D. Thesis, University of Padua, Padua, Italy, 2025. [Google Scholar]
- Tassone, F.; Lorenzi, S.; Ricotti, M.E.; Locatelli, G. The economics of hydrogen production: The case of a GEN-IV reactor coupled with a high-temperature electrolysis plant. Energy 2025, 335, 138222. [Google Scholar] [CrossRef]
Year | Discovery | Country | Estimated URR (bcm) | Maximum Annual Production (bcm/year) |
---|---|---|---|---|
2010 | Leviathan | Israel | 623 | 22 |
2011 | Aphrodite | Cyprus | 128 | 5.7 |
2011 | Tanin | Israel | 25 | 4.6 |
2013 | Tamar | Israel | 305 | 16.5 |
2013 | Karish | Israel | 72 | 5.6 |
2015 | Zohr | Egypt | 850 | 32.4 |
2015 | Nooros | Egypt | 113 | 10.8 |
2018 | Calypso | Cyprus | 28–56 | 7.8 |
2019 | Glaucus | Cyprus | 85–114 | 7.8 |
2022 | Zeus | Cyprus | 56–85 | 5.5 |
2022 | Cronos | Cyprus | 71 | 5.6 |
Total: 2399 | Average: 11.3 |
Parameter | Unit | Value | Scenario | Ref. |
---|---|---|---|---|
Technical parameters | ||||
Time period, t | years | 2026–2050 | all | – |
Peak production year, | year | 2035 | all | – |
Natural gas-to-, | / | 0.18 | all | – |
Share of renewable sources, | % | 20%, linear to 60% | all | [103] |
Share of hydrogen, | % | 0%, linear to 25% | all | – |
Natural gas emission factor, | /MMBtu | 0.053 | all | [106,107,108] |
Hydrogen intensity, | / | 0.01 | all | [67,68,69] |
Economic parameters | ||||
Extraction cost of natural gas, | USD/MMBtu | 3 | all | [109] |
Carbon tax, | USD/ | 50 | all | [110] |
Reforming cost of natural gas-to-, | USD/ | 1.20 | all | [23,111,112,113,114,115,116,117] |
Domestic selling price of natural gas, | USD/MMBtu | 8 | all | [118,119] |
Export selling price of natural gas, | USD/MMBtu | 6 | all | [118,119] |
Hydrogen selling price, | USD/ | 1.50, 5.50 | all | [7,120] |
Scenario-specific parameters | ||||
URR | bcm | 2399 | ME1, ME2 | see Table 1 |
411 | CY1, CY2 | see Table 1 | ||
Peak production, | bcm | 100 | ME1, ME2 | – |
10 | CY1, CY2 | – | ||
Domestic demand, | bcm/year | 73 | ME1, ME2 | [121,122,123,124] |
1 | CY1, CY2 | – | ||
Export capacity, | bcm/year | 50 | ME1, ME2 | – |
5 | CY1, CY2 | – |
Year | Production (bcm) | Domestic Usage (bcm) | Exports (bcm) | Remaining Reserves (bcm) | Production (million kg) | Emissions (million tonnes) |
---|---|---|---|---|---|---|
Scenarios ME1, ME2 | ||||||
2026 | 66.70 | 56.66 | 9.37 | 2271.65 | 120.06 | 123.69 |
2027 | 72.61 | 54.94 | 16.22 | 2199.03 | 261.41 | 134.62 |
2028 | 78.27 | 53.25 | 22.67 | 2120.76 | 422.66 | 145.06 |
2029 | 83.53 | 51.58 | 28.61 | 2037.24 | 601.39 | 154.76 |
2030 | 88.25 | 49.93 | 33.91 | 1948.99 | 794.25 | 163.46 |
2031 | 92.31 | 48.31 | 38.46 | 1856.68 | 996.97 | 170.93 |
2032 | 95.60 | 46.71 | 42.20 | 1761.08 | 1204.56 | 176.97 |
2033 | 98.02 | 45.13 | 45.05 | 1663.06 | 1411.49 | 181.40 |
2034 | 99.50 | 43.58 | 46.97 | 1563.55 | 1611.92 | 184.08 |
2035 | 100.00 | 42.05 | 47.95 | 1463.55 | 1800.00 | 184.95 |
2036 | 99.50 | 40.54 | 48.01 | 1364.05 | 1970.12 | 183.97 |
2037 | 98.02 | 39.06 | 47.20 | 1266.03 | 2117.23 | 181.18 |
2038 | 95.60 | 37.60 | 45.57 | 1170.43 | 2237.03 | 176.65 |
2039 | 92.31 | 36.16 | 43.23 | 1078.12 | 2326.25 | 170.53 |
2040 | 88.25 | 34.75 | 40.26 | 989.87 | 2382.74 | 162.98 |
2041 | 83.53 | 33.36 | 36.80 | 906.35 | 2405.58 | 154.21 |
2042 | 78.27 | 31.99 | 32.97 | 828.08 | 2395.08 | 144.46 |
2043 | 72.61 | 30.65 | 28.90 | 755.46 | 2352.72 | 133.98 |
2044 | 66.70 | 29.33 | 24.70 | 688.76 | 2281.06 | 123.03 |
2045 | 60.65 | 28.03 | 20.49 | 628.11 | 2183.51 | 111.84 |
2046 | 54.61 | 26.76 | 16.38 | 573.50 | 2064.16 | 100.67 |
2047 | 48.68 | 25.51 | 12.46 | 524.83 | 1927.54 | 89.70 |
2048 | 42.96 | 24.28 | 8.79 | 481.87 | 1778.37 | 79.14 |
2049 | 37.53 | 23.08 | 5.44 | 444.34 | 1621.34 | 69.12 |
2050 | 32.47 | 21.90 | 2.45 | 411.87 | 1460.94 | 59.78 |
Scenarios CY1, CY2 | ||||||
2026 | 6.67 | 0.78 | 5.00 | 398.26 | 12.01 | 10.83 |
2027 | 7.26 | 0.75 | 5.00 | 391.00 | 26.14 | 10.93 |
2028 | 7.83 | 0.73 | 5.00 | 383.18 | 42.27 | 11.05 |
2029 | 8.35 | 0.71 | 5.00 | 374.82 | 60.14 | 11.19 |
2030 | 8.82 | 0.68 | 5.00 | 366.00 | 79.42 | 11.34 |
2031 | 9.23 | 0.66 | 5.00 | 356.77 | 99.70 | 11.50 |
2032 | 9.56 | 0.64 | 5.00 | 347.21 | 120.46 | 11.67 |
2033 | 9.80 | 0.62 | 5.00 | 337.41 | 141.15 | 11.83 |
2034 | 9.95 | 0.60 | 5.00 | 327.46 | 161.19 | 11.99 |
2035 | 10.00 | 0.58 | 5.00 | 317.46 | 180.00 | 12.14 |
2036 | 9.95 | 0.56 | 5.00 | 307.51 | 197.01 | 12.28 |
2037 | 9.80 | 0.54 | 5.00 | 297.70 | 211.72 | 12.38 |
2038 | 9.56 | 0.52 | 5.00 | 288.14 | 223.70 | 12.47 |
2039 | 9.23 | 0.50 | 5.00 | 278.91 | 232.63 | 12.52 |
2040 | 8.82 | 0.48 | 5.00 | 270.09 | 238.27 | 12.54 |
2041 | 8.35 | 0.46 | 5.00 | 261.73 | 240.56 | 12.53 |
2042 | 7.83 | 0.44 | 5.00 | 253.91 | 239.51 | 12.48 |
2043 | 7.26 | 0.42 | 5.00 | 246.65 | 235.27 | 12.41 |
2044 | 6.67 | 0.40 | 5.00 | 239.98 | 228.11 | 12.30 |
2045 | 6.07 | 0.38 | 4.47 | 233.91 | 218.35 | 11.18 |
2046 | 5.46 | 0.37 | 3.95 | 228.45 | 206.42 | 10.07 |
2047 | 4.87 | 0.35 | 3.45 | 223.58 | 192.75 | 8.97 |
2048 | 4.30 | 0.33 | 2.97 | 219.29 | 177.84 | 7.91 |
2049 | 3.75 | 0.32 | 2.54 | 215.53 | 162.13 | 6.91 |
2050 | 3.25 | 0.30 | 2.13 | 212.29 | 146.09 | 5.98 |
Scenario | Total Revenue (USD Billion) |
---|---|
ME1 | 84.37 |
ME2 | 247.29 |
CY1 | 1.79 |
CY2 | 18.08 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Himona, E.; Poullikkas, A. Modeling Gas Producibility and Hydrogen Potential—An Eastern Mediterranean Case Study. Energies 2025, 18, 5490. https://doi.org/10.3390/en18205490
Himona E, Poullikkas A. Modeling Gas Producibility and Hydrogen Potential—An Eastern Mediterranean Case Study. Energies. 2025; 18(20):5490. https://doi.org/10.3390/en18205490
Chicago/Turabian StyleHimona, Eleni, and Andreas Poullikkas. 2025. "Modeling Gas Producibility and Hydrogen Potential—An Eastern Mediterranean Case Study" Energies 18, no. 20: 5490. https://doi.org/10.3390/en18205490
APA StyleHimona, E., & Poullikkas, A. (2025). Modeling Gas Producibility and Hydrogen Potential—An Eastern Mediterranean Case Study. Energies, 18(20), 5490. https://doi.org/10.3390/en18205490