Trajectory Optimization for Airborne Wind Energy Systems Based on a Multi-Strategy Improved Salp Swarm Algorithm
Abstract
1. Introduction
2. Airborne Wind Energy System Modeling
2.1. Tethered Aircraft Modeling
2.2. Ground Equipment Modeling
3. Aircraft Trajectory Optimization for Airborne Wind Energy Systems
3.1. Problem Description
- (1)
- Dynamic balance constraint for angle of attack: Based on stall boundary conditions and the valid range of the aerodynamic model, impose an upper threshold on the angle of attack to maintain a balance between lift enhancement and attached flow stability [19].
- (2)
- Sideslip angle suppression constraint: Apply bidirectional amplitude limits on sideslip angle to mitigate nonlinear aerodynamic coupling effects and lateral–longitudinal dynamic interference.
- (3)
- Airspeed envelope constraint: Define upper and lower bounds for airspeed according to aerodynamic characteristics to ensure stable flight [20].
- (4)
- Flight altitude protection constraint: Introduce a dynamic compensation mechanism for minimum flight altitude to provide safety redundancy for obstacle avoidance [21].
- (5)
- Tether tension safety constraint: Establish a dynamic threshold for tether tension based on material strength to control fatigue damage and prevent slackening.
- (6)
- Aircraft attitude angle constraint: Define operational limits for roll and pitch angles to avoid spatial interference between the tether and aircraft while simplifying control architecture [22].
- (7)
- Winch actuation constraint: Restrict feasible ranges of tether retraction speed and acceleration according to ground mechanism capabilities.
- (8)
- Angular velocity constraint: Limit angular velocity within the aircraft’s flight envelope.
- (9)
- Periodic stability constraint: Determine the cycle time T by analyzing the duration of each cycle in experimental tests.
- (10)
- Tether length constraint: Constrain tether length within the storage capacity of the ground winch mechanism.
- (1)
- Time domain transformation
- (2)
- Control variable discretization
- (3)
- State variable parameterization
- (4)
- Transformation of performance indicators
- (5)
- Discretization of path constraints
3.2. Salp Swarm Algorithm (SSA)
3.3. Multi-Strategy Improved Salp Swarm Algorithm (MISSA)
3.3.1. Population Initialization Using Baker Chaotic Mapping
3.3.2. Food Source Position Update with t-Distribution Perturbation
3.3.3. Follower Position Update with Adaptive Inertia Weight
4. Simulation Results
4.1. Power Generation Comparison
4.2. Optimized Trajectories
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
Nomenclature | ||
Symbol | Description | Unit |
m | Mass | kg |
f | Force | N |
v | Velocity | m/s |
h | Height | m |
Period of trajectory | s | |
Rnb | Rotation matrix from body frame to navigation frame | – |
pn | Aircraft center of mass position | m |
vn | Aircraft center of mass velocity | m/s |
ωb | Aircraft body angular velocity | rad/s |
J | Inertia matrix | kg·m2 |
b | Wingspan | m |
Mean aerodynamic chord length | m | |
S | Wing area | m2 |
Tether drag coefficient | – | |
dt | Tether diameter | m |
gD | Gravitational acceleration | m/s2 |
Reference altitude | m | |
Wind speed at reference altitude | m/s | |
Wind shear exponent | – | |
δ | Control surface deflection angle | deg |
l | Tether length | m |
Tether length rate of change | m/s | |
E | Power generation | W |
Tether length acceleration | m/s2 | |
Greek Letters | ||
Symbol | Description | Unit |
Pitch angle | rad | |
Roll angle | rad | |
Yaw angle | rad | |
α | Angle of attack | rad |
β | Sideslip angle | rad |
ρ | Air density | kg/m3 |
Superscripts | ||
Symbol | Description | |
n | Vector expressed in the navigation (ground) frame | |
b | Vector expressed in the body frame |
References
- Qin, Y. Analysis of new energy wind power technology and its development trend. Sci. Technol. Innov. Appl. 2022, 12, 162–165. [Google Scholar]
- Niu, Z.; Shang, Y. Analysis of wind power-related technologies in the new era. Sci. Technol. Innov. Appl. 2022, 12, 185–188. [Google Scholar]
- Shen, W. Research on Modeling and Control of Airborne Wind Energy Systems. Master’s Thesis, Hunan University of Science and Technology, Xiangtan, China, 2020. [Google Scholar]
- Han, S.; Liu, S. Key technologies, current status and development trend of airborne wind power generation. Distrib. Energy 2024, 9, 1–9. [Google Scholar]
- Lian, Y.; Xie, Y.; Zheng, J.; Chen, W.; Li, D.; Chen, S.; Zhang, J.; Wu, X.; Shi, J.; Yim, S.C. Dynamic stiffness of full-scale damaged polyester mooring ropes. Ocean Eng. 2025, 323, 120643. [Google Scholar] [CrossRef]
- Bechtle, P.; Schelbergen, M.; Schmehl, R.; Zillmann, U.; Watson, S. Airborne wind energy resource analysis. Renew. Energy 2019, 141, 1103–1116. [Google Scholar] [CrossRef]
- Pang, Y.; Yang, Y.; Du, Z. Research progress and challenges of optimal control for airborne wind power systems. J. Dyn. Control 2024, 6, 1–10. [Google Scholar]
- Aull, M.; Cohen, K. A nonlinear inverse model for airborne wind energy system analysis, control, and design optimization. Wind Energy 2021, 24, 133–148. [Google Scholar] [CrossRef]
- Spiller, D.; Ansalone, L.; Curti, F. Particle swarm optimization for time-optimal spacecraft reorientation with keep-out cones. J. Guid. Control Dyn. 2016, 39, 312–325. [Google Scholar] [CrossRef]
- Kumar, G.N.; Penchalaiah, D.; Sarkar, A.; Talole, S. Hypersonic boost glide vehicle trajectory optimization using genetic algorithm. IFAC-Pap. 2018, 51, 118–123. [Google Scholar] [CrossRef]
- Chen, M.; Wu, Y. Event-triggered cooperative optimal control of clustered UAVs with input delay. J. Nanjing Univ. Aeronaut. Astronaut. 2022, 54, 958–968. [Google Scholar]
- Han, S. Dynamic Modeling and Control of Airborne Kite Power Devices. Master’s Thesis, Dalian University of Technology, Dalian, China, 2019. [Google Scholar]
- Vermillion, C.; Cobb, M.; Fagiano, L.; Leuthold, R.; Diehl, M.; Smith, R.S.; Wood, T.A.; Rapp, S.; Schmehl, R.; Olinger, D.; et al. Electricity in the air: Insights from two decades of advanced control research and experimental flight testing of airborne wind energy systems. Annu. Rev. Control 2021, 52, 330–357. [Google Scholar] [CrossRef]
- Loyd, M.L. Crosswind kite power (for large-scale wind power production). J. Energy 1980, 4, 106–111. [Google Scholar] [CrossRef]
- He, H.; Niu, X.; Li, X.; Cai, Y.; Li, L.; Ye, X.; Wang, J. Characteristics of Wind Profiles for Airborne Wind Energy Systems. Energies 2025, 18, 2373. [Google Scholar] [CrossRef]
- Stevens, B.L.; Lewis, F.L.; Johnson, E.N. Aircraft Control and Simulation: Dynamics, Controls Design, and Autonomous Systems, 3rd ed.; John Wiley & Sons: Hoboken, NJ, USA, 2015. [Google Scholar]
- Canale, M.; Fagiano, L.; Milanese, M. Power kites for wind energy generation. IEEE Control Syst. Mag. 2007, 27, 25–38. [Google Scholar] [CrossRef]
- De Schutter, J.; Leuthold, R.; Bronnenmeyer, T.; Malz, E.; Gros, S.; Diehl, M. AWEbox: An Optimal Control Framework for Single- and Multi-Aircraft Airborne Wind Energy Systems. Energies 2023, 16, 1900. [Google Scholar] [CrossRef]
- Etkin, B. Dynamics of Atmospheric Flight; Courier Corporation: North Chelmsford, MA, USA, 2012. [Google Scholar]
- Licitra, G.; Sieberling, S.; Engelen, S.; Williams, P.; Ruiterkamp, R.; Diehl, M. Optimal control for minimizing power consumption during holding patterns for airborne wind energy pumping system. In Proceedings of the 2016 European Control Conference (ECC), Aalborg, Denmark, 29 June–1 July 2016; pp. 1574–1579. [Google Scholar]
- Licitra, G.; Koenemann, J.; Horn, G.; Williams, P.; Ruiterkamp, R.; Diehl, M. Viability assessment of a rigid wing airborne wind energy pumping system. In Proceedings of the 2017 21st International Conference on Process Control (PC), Štrbské Pleso, Slovakia, 6–9 June 2017; pp. 452–458. [Google Scholar]
- Ruiterkamp, R.; Sieberling, S. Description and preliminary test results of a six degrees of freedom rigid wing pumping system. In Airborne Wind Energy; Ahrens, U., Diehl, M., Schmehl, R., Eds.; Springer: Berlin/Heidelberg, Germany, 2013; pp. 443–458. [Google Scholar]
- Cui, N.; Guo, D.; Li, K.; Wei, C. Review of numerical methods for aircraft trajectory optimization. Tact. Miss. Technol. 2020, 5, 37–51. [Google Scholar]
- Mirjalili, S.; Gandomi, A.H.; Mirjalili, S.Z.; Saremi, S.; Faris, H.; Mirjalili, S.M. Salp Swarm Algorithm: A bio-inspired optimizer for engineering design problems. Adv. Eng. Softw. 2017, 114, 163–191. [Google Scholar] [CrossRef]
- Liu, Q.; He, X.; Wang, Y. Adaptive salp swarm algorithm based on Baker map. Comput. Technol. Autom. 2023, 3, 72–78. [Google Scholar]
Variable Name | Symbol | Minimum | Maximum |
---|---|---|---|
Angle of attack | −6 deg | 13 deg | |
Sideslip angle | −20 deg | 20 deg | |
Airspeed | 13 m/s | 32 m/s | |
Height | 100 m | — | |
Tethering force | 50 N | 1800 N | |
Rolling angle | −50 deg | 50 deg | |
Pitch angle | −40 deg | 40 deg | |
Tether length | 100 m | 700 m | |
tether speed | −15 m/s | 20 m/s | |
Tether acceleration | −3 m/s2 | 3 m/s2 | |
Fuselage angular velocity | −50 deg/s | 50 deg/s | |
Aileron deflection angle | −20 deg | 20 deg | |
Deflection angle of elevator | −30 deg | 30 deg | |
Rudder deflection angle | −30 deg | 30 deg | |
Servo motor speed | −0.6 rad/s | 0.6 rad/s | |
Period of trajectory | 20 s | 60 s |
Variable Name | Symbol | Number |
---|---|---|
The mass of aircraft AP2 | 36.8 kg | |
Moment of inertia around the x-axis | 25 kg·m2 | |
Moment of inertia around the y-axis | 32 kg·m2 | |
Moment of inertia around the z-axis | 56 kg·m2 | |
xz coupling moment of inertia | 0.47 kg·m2 | |
Wingspan | 55 m | |
Chord length | 0.55 m | |
Tether line density | 0.0046 kg/m3 | |
Drag coefficient | 1.2 | |
Tether diameter | 0.002 m | |
Gravity | 9.81 m/s2 | |
Air density | 1.225 kg/m3 | |
Reference altitude | 100 m | |
Wind speed at reference altitude | 10 m/s | |
Wing area | 3 m2 | |
Wind shear exponent | 0.15 |
Algorithm | Period Time | Average Power Output |
---|---|---|
SQP | 26.811 s | 3.76678 kW |
SSA | 33.7293 s | 4.47901 kW |
MISSA | 35.6575 s | 4.6856 kW |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lv, Y.; Pang, Y.; Sun, Z.; Zou, C.; Yang, Y. Trajectory Optimization for Airborne Wind Energy Systems Based on a Multi-Strategy Improved Salp Swarm Algorithm. Energies 2025, 18, 5459. https://doi.org/10.3390/en18205459
Lv Y, Pang Y, Sun Z, Zou C, Yang Y. Trajectory Optimization for Airborne Wind Energy Systems Based on a Multi-Strategy Improved Salp Swarm Algorithm. Energies. 2025; 18(20):5459. https://doi.org/10.3390/en18205459
Chicago/Turabian StyleLv, Yanjun, Yan Pang, Zifeng Sun, Chenghao Zou, and Yupeng Yang. 2025. "Trajectory Optimization for Airborne Wind Energy Systems Based on a Multi-Strategy Improved Salp Swarm Algorithm" Energies 18, no. 20: 5459. https://doi.org/10.3390/en18205459
APA StyleLv, Y., Pang, Y., Sun, Z., Zou, C., & Yang, Y. (2025). Trajectory Optimization for Airborne Wind Energy Systems Based on a Multi-Strategy Improved Salp Swarm Algorithm. Energies, 18(20), 5459. https://doi.org/10.3390/en18205459