Evaluation of Co-Pelletization of Corn Stover and Plastic Waste as an Alternative Fuel Source for Cement Production
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Experimental Procedure
2.2.1. Feedstock Size Reduction
2.2.2. Feedstock Conditioning
2.2.3. Co-Pelletization
2.2.4. Property Characterization
2.3. Techno-Economic Analysis (TEA) Methodology
2.3.1. System Overview
2.3.2. Unit Operations Considered for Modeling
Feedstock Acquisition and Handling
Feedstock Preparation
Co-Pelletization
Pellet Transportation
2.3.3. Modeling Overview
| Values | ||||
|---|---|---|---|---|
| System Process Parameters | Baseline | Std. Deviation | Minimum | Maximum | 
| Pellet parameters | ||||
| 1 Pellet lower heating value (MJ/kg) | 21.2 | 0.2 | - | - | 
| 1 Plastic–stover pellet bulk density (kg/m3) | 503.7 | 46.5 | - | - | 
| 1 Pellet C content (%) | 46.3 | 0.03 | - | - | 
| 1 Fixed carbon (%), dry basis | 10 | - | - | - | 
| 1 Moisture (%) | 7 | - | 3 | 9 | 
| Feedstock parameters | ||||
| Stover moisture content (%) [31] | 20 | - | 10 | 30 | 
| Dry matter loss (%) [31] | 6.5 | 1.5 | - | - | 
| Plastic baling factors | ||||
| Separating plastic waste (kWh/t waste)  [60,70]  | 9.1 | - | 4.7 | 13.8 | 
| Baling plastic energy (kWh/t) [71] | 29.9 | - | - | - | 
| Plastic bale weight (kg/bale) [72] | 1300 | - | 1200 | 1400 | 
| 2 Plastic baling wire (kg/bale) | 0.18 | - | - | - | 
| Refuse truck capacity [56] | 13.6 | - | - | - | 
| Class 8 truck capacity (t/truck) [73] | 20.9 | - | - | - | 
| Class 8 truck fuel consumption (km/L) [57,74]  | 2.25 | - | 2.1 | 3.4 | 
| Fuel and power requirements | ||||
| Squeeze loader diesel consumption (L/h) [31] | 20.8 | 5.7 | - | - | 
| Plastic primary shredder (kW) [62] | 167.5 | - | 149 | 186 | 
| Stover primary shredder (kW) [62] | 597 | |||
| Stover hammermill (kW) [63] | 186 | - | - | - | 
| Plastic pulverizer (kW) [64] | 125 | - | 90 | 160 | 
| Mixer (kW) [65] | 18.6 | - | - | - | 
| Pellet mill (kW) [66] | 532 | - | 470 | 585 | 
| Cooler (kW) [67] | 3.4 | - | - | - | 
| Transport parameters | ||||
| Rail car volume (m3) [75] | 138.8 | - | 130.3 | 147.2 | 
| Wood pellet bulk density (kg/m3) [44] | 42 | - | 38 | 46 | 
| Train fuel consumption (L/t km) [76] | 0.005 | - | - | - | 
2.3.4. Economic and Financial Considerations
| Parameters | Baseline | Minimum | Maximum | 
|---|---|---|---|
| Financial Analysis year  | |||
| 2024 | |||
| Project life (years) | 15 | ||
| Discount rate (%) | 7 | ||
| Annual operational time (h) | 7884 | ||
| Installation factor [78] | 3.1 | ||
| Income tax rate (%) | 35 | ||
| Maintenance (%) | 0.1–0.4 | ||
| Start-up cost (%) | 5 | ||
| Operating costs | |||
| Raw materials | |||
| Stover (USD/dry t stover) [31] | 121.9 | 98.9 | 152.3 | 
| Tipping fee credit (USD t/plastic) [21] | 47 | - | - | 
| Utilities | |||
| Electricity (USD/kWh) [79] | 0.075 | 0.065 | 0.084 | 
| Diesel (USD/L) [80] | 0.41 | 0.27 | 0.41 | 
| Labor | |||
| Operators per shift | 3 | ||
| Operator hourly rate (USD/h) | 18.3 | ||
| Supervisors per shift | 1 | ||
| Supervisor, annual salary (USD/y) | 67,100 | ||
| Benefits (%) | 15 | 
2.3.5. Inventory for GHG Emissions
| Values * | |||
|---|---|---|---|
| Parameters | Baseline | Minimum | Maximum | 
| Nitrogen removed with stover (kg-N/t) [31] | 7.7 (0.3) | - | - | 
| Stover emissions avoided [87] | |||
| N to N2O-N (kg/kg) | 0.01 | 0.003 | 0.03 | 
| N to NH3-N (stover) (kg/kg) | 0.2 | 0.05 | 0.5 | 
| NH3-N to NO-N (kg/kg) | 0.01 | 0.002 | 0.05 | 
| N to NO3-N (kg/kg) | 0.3 | 0.1 | 0.8 | 
| NO3-N to N2O-N (kg/kg) | 0.0075 | 0.0005 | 0.025 | 
| Stover supply chain | |||
| Stover supply chain (kg CO2e/dry t) [4] | 95.2 | 80.1 | 114.7 | 
| Utilities | |||
| Electricity (kg CO2/kWh) [86] | 0.5 | 0.3 | 0.8 | 
| Diesel (kg CO2/L) [89] | 74.0 | - | - | 
| Coal mining (kg CO2/t coal) [85] | 128.0 | - | - | 
| Coal combustion emissions (kg CO2/t coal) [86]  | 2303.9 | - | - | 
| Plastic baling wire (kg CO2e/kg plastic) [90] | 4.4 | - | - | 
| Mobile combustion emissions [89] | |||
| Locomotive (g CH4/L) | 0.21 | - | - | 
| Locomotive (g N2O/L) | 0.07 | - | - | 
| Medium- and heavy-duty vehicles (g CH4/km)  | 0.006 | - | - | 
| Medium- and heavy-duty vehicles (g N2O/km)  | 0.03 | - | - | 
| Industrial/Commercial equipment (g CH4/L)  | 0.06 | - | - | 
| Industrial/Commercial equipment (g N2O/L)  | 0.1 | - | - | 
| Clinker production | |||
| Annual average U.S. clinker capacity (million t/y) [91]  | 1.1 | - | - | 
| Clinker heating value (MJ/t) [84] | 4000 | 3200 | 7600 | 
| Heating value, coal (MJ/kg) [86] | 23.36 | - | - | 
3. Results
3.1. Co-Pelletization Results
| Values * | |||||||
| Diameter (mm) | 0% | 5% | 10% | 15% | 20% | 25% | |
| Bulk density (kg/m3) | 6 | 638 (52.2)  | 600.3  (33.4)  | 613.5 (19.7)  | 541.4 (21.1)  | 528.1  (33.5)  | 523.7  (54.2)  | 
| 8 | 633.4 (34)  | 550.9 (79.8)  | 551.1 (22.9)  | 493.3 (17.9)  | 475.8  (20.7)  | 417.1  (67.6)  | |
| Unit density (kg/m3) | 6 | 1090 (0.964)  | 1096.7 (71.3)  | 1135.7 (51.5)  | 1011.0  (37.3))  | 1015.0  (33.7)  | 1015.0  (27.2)  | 
| 8 | 1093 (15.3)  | 1033.3  (140)  | 963.3 (56.9)  | 870.0 (60.8)  | 840  (26.5)  | 838.7 (68.2) | |
| Durability (%) | 6 | 99.04  (0.39)  | 98.40  (0.97)  | 98.24 (0.67)  | 97.25 (0.91)  | 97.36 (0.70)  | 95.27  (1.48)  | 
| 8 | 98.15  (0.40)  | 95.64 (2.52)  | 96.19 (0.69)  | 96.66  (1.40)  | 91.10  (0.54)  | 90.86  (0.30)  | |
| LHV, Proximate, and Ultimate Analyses ** | |||||||
| Moisture content (%) | 6 | 5.91 | 4.39 | 4.88 | 5.74 | 5.17 | 5.01 | 
| 8 | 5.25 | 5.20 | 5.30 | 5.09 | 4.76 | 4.76 | |
| LHV (MJ/kg) | 6 | 16.61 (0.29)  | 15.89 (0.39)  | 17.32 (0.27)  | 18.56 (0.19)  | 19.39 (0.057)  | 21.23 (0.21)  | 
| 8 | 15.50 (0.071)  | 15.62 (0.01)  | 17.41 (0.27)  | 18.93 (0.035)  | 20.35 (0.31)  | 20.34 (0.15)  | |
| N (%) | 6 | 0.64 (0.0)  | 0.545 (0.06)  | 0.45 (0.12)  | 0.5  (0.03)  | 0.51 (0.02)  | 0.49 (0.03)  | 
| 8 | 0.57 (0.02)  | 0.64 (0.01)  | 0.67  (0.04)  | 0.71  (0.2)  | 0.57 (0.03)  | 0.62 (0.06)  | |
| C (%) | 6 | 39.93 (0.08)  | 42.37 (0.59)  | 41.05 (3.46)  | 44.06 (0.29)  | 45.47 (0.93)  | 46.33 (3.10)  | 
| 8 | 44.96  (0.07)  | 43.71  (0.44)  | 43.19 (0.47)  | 46.06 (1.33)  | 47.75  (0.88)  | 49.95  (2.14)  | |
| H (%) | 6 | 5.77 (0.02)  | 6.47 (0.17)  | 5.94 (1.06)  | 6.83  (0.22)  | 6.93 (0.37)  | 7.04  (0.87)  | 
| 8 | 6.13 (0.44)  | 6.32 (0.18)  | 6.55 (0.29)  | 6.88 (0.04)  | 7.23 (0.02)  | 7.65 (0.54)  | |
| S (%) | 6 | 0.17 (0.0)  | 0.11 (0.0)  | 0.10 (0.04)  | 
                0.0925 (0.0)  | 0.06 (0.05)  | 0.08 (0.01)  | 
| 8 | 0.32 (0.05)  | 0.21 (0.02)  | 0.09 (0.01)  | 0.20 (0.02)  | 0.15 (0.01)  | 0.20 (0.01)  | |
| O (%) | 6 | 53.49  (0.07)  | 50.51 (0.36)  | 52.46 (4.31)  | 48.52 (0.48)  | 46.91 (1.45)  | 46.07  (4.01)  | 
| 8 | 48.032  (0.44)  | 49.12 (0.26)  | 49.51 (0.70)  | 46.15 (1.34)  | 44.3 (0.82)  | 41.58  (2.64)  | |
| Ash content (%) | 6 | 12.05 | 14.80 | 18.01 | 15.20 | 9.50 | 14.69 | 
| 8 | 14.66 | 17.47 | 15.91 | 17.22 | 15.81 | 17.12 | |
| Volatile combustible matter (%) | 6 | 75.83 | 75.66 | 74.52 | 75.68 | 74.58 | 75.84 | 
| 8 | 72.03 | 67.42 | 68.52 | 75.83 | 76.58 | 75.63 | |
| Fixed carbon (%) | 6 | 6.21 | 5.15 | 2.59 | 3.38 | 10.85 | 4.46 | 
| 8 | 8.06 | 9.91 | 10.27 | 1.86 | 2.85 | 2.49 | |
3.2. Modeling Results
3.2.1. Materials Requirements
3.2.2. Utilities and Fuel Requirements
3.2.3. Operating Expenses
3.2.4. Financial Results
3.2.5. Sensitivity Analysis
3.2.6. GHGe Analysis
3.2.7. GHGe Sensitivity Analysis
4. Discussion
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
| AFR | Alternative fuel resource | 
| CO2e | Carbon dioxide equivalent | 
| CR | Central range | 
| GHGe | Greenhouse gas emissions | 
| GWP | Global warming potential | 
| HDPE | High density polyethylene | 
| IRR | Internal rate of return | 
| LCA | Life cycle assessment | 
| LHV | Lower heating value | 
| LLDPE | Linear low-density polyethylene | 
| LSHT | Low speed-high torque | 
| MRF | Material recovery facility | 
| MSP | Minimum selling price | 
| MSW | Municipal solid waste | 
| PET | Polythylene terephthalate | 
| SRF | Solid recovered fuel | 
| TEA | Techno-economic analysis | 
| TCI | Total capital investment | 
| TDP | Total delivered price | 
| WtE | Waste-to-energy | 
References
- United States Environmental Protection Agency. Advancing Sustainable Materials Management: 2018 Fact Sheet; United States Environmental Protection Agency: Washington, DC, USA, 2020. [Google Scholar]
 - United States Department of Agriculture. ‘News Release’. 10 January 2025. Available online: https://www.nass.usda.gov/Newsroom/printable/2025/2025_Jan_10_Crop_Production_News_Release.pdf (accessed on 3 August 2025).
 - Jeschke, M.R.; Heggenstaller, A. Sustainable Corn Stover Harvest for Biofuel Production. Crop Insights 2012, 22, 1–6. [Google Scholar]
 - Shah, A.; Darr, M. Modeling and Analysis greenhouse gas emissions analysis of the corn stover feedstock supply system for cellulosic biorefineries. Biofuels Bioprod. Bioref. 2017, 11, 648–664. [Google Scholar] [CrossRef]
 - Lamers, P.U.S. Pellet Industry Overview; Idaho National Laboratory: Idaho Falls, ID, USA, 2017. [Google Scholar]
 - Dale, V.H.; Kline, K.L.; Parish, E.S.; Cowie, A.L.; Emory, R.; Malmsheimer, R.W.; Slade, R.; Smith, C.T., Jr.; Wigley, T.B.; Bentsen, N.S.; et al. Status and Prospects for Renewable Energy Using Wood Pellets from the Southeastern United States; Wiley: Hoboken, NJ, USA, 2017; pp. 1296–1305. [Google Scholar] [CrossRef]
 - Jacobson, M.; Ciolkosz, D.; Evans, A.M.; Perschel, R.T.; Langholtz, M.; Canham, C.D.; Herr, J.R.; Carlson, J.E.; Wang, J.; Hartley, D.; et al. Wood-Based Energy in the Northern Forests; Jacobson, M., Ciolkosz, D., Eds.; Springer Science + Business Media: New York, NY, USA, 2013. [Google Scholar] [CrossRef]
 - Jackson, J.; Turner, M.; Mark, T.; Montross, M. Densification of biomass using a pilot scale flat ring roller pellet mill. Fuel Process. Technol. 2016, 148, 43–49. [Google Scholar] [CrossRef]
 - García, R.; Gil, M.V.; Rubiera, F.; Pevida, C. Pelletization of wood and alternative residual biomass blends for producing industrial quality pellets. Fuel 2019, 251, 739–753. [Google Scholar] [CrossRef]
 - Setter, C.; Borges, F.A.; Cardoso, C.R.; Mendes, R.F.; Oliveira, T.J.P. Industrial Crops & Products Energy quality of pellets produced from coffee residue: Characterization of the products obtained via slow pyrolysis. Ind. Crops Prod. 2020, 154, 112731. [Google Scholar] [CrossRef]
 - Tumuluru, J.S. Chapter 2: Binding Mechanism, Densification Systems, Process Variables, and Quality Attributes. In Biomass Densification; Springer: Cham, Switzerland, 2020; pp. 23–61. [Google Scholar]
 - Demirbas, A. Combustion characteristics of different biomass fuels. Prog. Energy Combust. Sci. 2004, 30, 219–230. [Google Scholar] [CrossRef]
 - Lizotte, P.; Savoie, P.; De Champlain, A. Ash Content and Calorific Energy of Corn Stover Components in Eastern Canada. Energies 2015, 8, 4827–4838. [Google Scholar] [CrossRef]
 - Zannikos, F.; Kalligeros, S.; Anastopoulos, G.; Lois, E. Converting Biomass and Waste Plastic to Solid Fuel Briquettes. J. Renew. Energy 2013, 2013, 360368. [Google Scholar] [CrossRef]
 - Auprakul, U.; Promwungkwa, A. Densified Fuels from Mixed Plastic Wastes and Corn Stover Densified Fuels from Mixed Plastic Wastes and Corn Stover. Adv. Mater. Res. 2014, 931–932, 1117–1121. [Google Scholar] [CrossRef]
 - Emadi, B.; Iroba, K.L.; Tabil, L.G. Effect of polymer plastic binder on mechanical, storage and combustion characteristics of torrefied and pelletized herbaceous biomass. Appl. Energy 2017, 198, 312–319. [Google Scholar] [CrossRef]
 - Rezaei, H.; Panah, F.Y.; Jim Lim, C.; Sokhansanj, S. Pelletization properties of refuse-derived fuel—Effects of particle size and moisture content. Fuel Process. Technol. 2020, 205, 106437. [Google Scholar] [CrossRef]
 - Ziegler, D.; Schimpf, W.; Dubach, B.; Degre, J.-P.; Mutz, D. Guidelines on Co-processing Waste Materials in Cement Production. GTZ-Holcim Public Priv. Partnersh. 2006, 20, 1–46. Available online: https://optoce.no/wp-content/uploads/2019/03/Holcim-GTZ-guideline_coprocem_v06-06.pdf (accessed on 8 December 2020).
 - Geocycle USA. Available online: https://www.geocycle.com/usa?address=United States (accessed on 8 July 2021).
 - American Cement Association. U.S. Cement Industry Hits Energy Efficiency Milestones. Available online: https://www.cement.org/2024/10/24/u-s-cement-industry-hits-energy-efficiency-milestones/ (accessed on 3 August 2025).
 - Bourtsalas, A.C.T.; Zhang, J.; Castaldi, M.J.; Themelis, N.J. Use of non-recycled plastics and paper as alternative fuel in cement production. J. Clean. Prod. 2018, 181, 8–16. [Google Scholar] [CrossRef]
 - Hossain, M.U.; Sun Poon, C.; Lo, I.M.C.; Cheng, J.C.P. Comparative LCA on using waste materials in the cement industry: A Hong Kong case study. Resour. Conserv. Recycl. 2017, 120, 199–208. [Google Scholar] [CrossRef]
 - Hossain, U.; Sun Poon, C.; Kwong Wong, M.Y.; Khine, A. Techno-environmental feasibility of wood waste derived fuel for cement production. J. Clean. Prod. 2019, 230, 663–671. [Google Scholar] [CrossRef]
 - Fyffe, J.R.; Breckel, A.C.; Townsend, A.K.; Webber, M.E. Use of MRF residue as alternative fuel in cement production. Waste Manag. 2016, 47, 276–284. [Google Scholar] [CrossRef]
 - Miller, S.A.; Horvath, A.; Monteiro, P.J.M. Readily implementable techniques can cut annual CO2 emissions from the production of concrete by over 20%. Environ. Res. Lett. 2016, 11, 074029. [Google Scholar] [CrossRef]
 - Ecology Center. Why It Matters Who Runs Your MRF. Available online: https://www.ecocenter.org/why-it-matters-who-runs-your-mrf (accessed on 22 August 2025).
 - Environmental Research and Education Foundation. Analyzing Municipal Solid Waste Landfill Tipping Fees. Available online: https://erefdn.org/analyzing-municipal-solid-waste-landfill-tipping-fees/ (accessed on 3 August 2025).
 - Fyffe, J.R.; Breckel, A.C.; Townsend, A.K.; Webber, M.E. Residue-Derived Solid Recovered Fuel for Use in Cement Kilns; University of Texas at Austin: Austin, TX, USA, 2012. [Google Scholar]
 - Sokhansanj, S.; Mani, S.; Tagore, S.; Turhollow, A.F. Techno-economic analysis of using corn stover to supply heat and power to a corn ethanol plant—Part 1: Cost of feedstock supply logistics. Biomass Bioenergy 2010, 34, 75–81. [Google Scholar] [CrossRef]
 - Mani, S.; Sokhansanj, S.; Tagore, S.; Turhollow, A.F. Techno-economic analysis of using corn stover to supply heat and power to a corn ethanol plant—Part 2: Cost of heat and power generation systems. Biomass Bioenergy 2010, 34, 356–364. [Google Scholar] [CrossRef]
 - Shah, A.; Darr, M. A techno-economic analysis of the corn stover feedstock supply system for cellulosic biorefineries. Biofuels Bioprod. Bioref 2016, 10, 542–559. [Google Scholar] [CrossRef]
 - Tumuluru, J.S.; Cafferty, K.G.; Kenney, K.L. Techno-economic Analysis of Conventional, High Moisture Pelletization and Briquetting Process. In Proceedings of the 2014 ASABE—CSBE/SCGAB Annual International Meeting Paper, Montreal, QC, Canada, 13–16 July 2014; pp. 1–13. Available online: https://elibrary.asabe.org/abstract.asp?aid=45007 (accessed on 9 February 2021).
 - Kocsis, Z.; Csanády, A. Chapter 3: The Practice of Pellet Making. In Theory and Practice of Wood Pellet Production; Springer: Cham, Switzerland, 2019; pp. 77–109. Available online: https://link.springer.com/chapter/10.1007/978-3-030-26179-5_3 (accessed on 8 October 2025).
 - Tumuluru, J.S. High moisture corn stover pelleting in a flat die pellet mill fitted with a 6 mm die: Physical properties and specific energy consumption. Energy Sci. Eng. 2015, 3, 327–341. [Google Scholar] [CrossRef]
 - Mani, S.; Sokhansanj, S.; Bi, X.; Turhollow, A. Economics of producing fuel pellets from biomass. Appl. Eng. Agric. 2006, 22, 421–426. [Google Scholar] [CrossRef]
 - Stelte, W.; Holm, J.K.; Sanadi, A.R.; Barsberg, S.; Ahrenfeldt, J.; Henriksen, U.B. A study of bonding and failure mechanisms in fuel pellets from different biomass resources. Biomass Bioenergy 2010, 35, 910–918. [Google Scholar] [CrossRef]
 - Stelte, W.; Sanadi, A.R.; Shang, L.; Holm, J.K.; Ahrenfeldt, J.; Henriksen, U.B. Recent developments in biomass pelletization—A review. BioResources 2012, 7, 4451–4490. [Google Scholar] [CrossRef]
 - Shaw, M. Feedstock and Process Variables Influencing Biomass Densification. Master’s Thesis, University of Saskatchewan, Saskatoon, Saskatchewan, 2008. [Google Scholar]
 - Kaliyan, N.; Morey, R.V. Natural binders and solid bridge type binding mechanisms in briquettes and pellets made from corn stover and switchgrass. Bioresour. Technol. 2010, 101, 1082–1090. [Google Scholar] [CrossRef] [PubMed]
 - Nielsen, N.P.K.; Gardner, D.J. Importance of temperature, moisture content, and species for the conversion process of wood residues into fuel pellets. Wood Fiber Sci. 2009, 41, 414–425. [Google Scholar]
 - Tumuluru, J.S. Effect of pellet die diameter on density and durability of pellets made from high moisture woody and herbaceous biomass. Carbon Resour. Convers. 2018, 1, 44–54. [Google Scholar] [CrossRef]
 - Tumuluru, J.S. Pelleting of pine and switchgrass blends: Effect of process variables and blend ratio on the pellet quality and energy consumption. Energies 2019, 12, 1198. [Google Scholar] [CrossRef]
 - Lavergne, S.; Larsson, S.H.; Da Silva Perez, D.; Marchand, M.; Campargue, M.; Dupont, C. Effect of process parameters and biomass composition on flat-die pellet production from underexploited forest and agricultural biomass. Fuel 2021, 302, 121076. [Google Scholar] [CrossRef]
 - PFI. Pellet Fuels Institute Standard Specification for Residential/Commercial Densified Fuel Pellet Fuels Institute Standard Specification for Residential/Commercial Densified Fuel; PFI: Seattle, WA, USA, 2011; pp. 1–10. Available online: https://www.pelletheat.org/assets/docs/pfi-standard-specification-november-2011.pdf (accessed on 12 March 2021).
 - Lehtikangas, P. Quality properties of pelletised sawdust, logging residues and bark. Biomass Bioenergy 2001, 20, 351–360. [Google Scholar] [CrossRef]
 - ISO 556:1980; Coke (Greater than 20 mm in Size)—Determination of Mechanical Strength. ISO: Geneva, Switzerland, 1980.
 - Gil, M.V.; Oulego, P.; Casal, M.D.; Pevida, C.; Pis, J.J.; Rubiera, F. Mechanical durability and combustion characteristics of pellets from biomass blends. Bioresour. Technol. 2010, 101, 8859–8867. [Google Scholar] [CrossRef]
 - Reza, M.T.; Lynam, J.G.; Vasquez, V.R.; Coronella, C.J. Pelletization of biochar from hydrothermally carbonized wood. Environ. Prog. Sustain. Energy 2012, 31, 676–680. [Google Scholar] [CrossRef]
 - Hoekman, S.K.; Broch, A.; Warren, A.; Felix, L.; Irvine, J. Laboratory pelletization of hydrochar from woody biomass. Biofuels 2014, 5, 651–666. [Google Scholar] [CrossRef]
 - ASAE S269.5 OCT2012 R2016; Densified Products for Bulk Handling—Definitions and Methods. ASABE: St. Joseph, MI, USA, 2016.
 - ASTM standard D2015; Standard Test Method for Gross Caloric Value of Coal and Coke by the Adiabatic Bomb Calorimeter. ASTM International: Conshohocken, PA, USA, 1998.
 - United States Department of Agriculture. Corn for All Purposes 2024 Planted Acres by County for Selected States; United States Department of Agriculture: Washington, DC, USA, 2024. [Google Scholar]
 - The Recycling Partnership. Map of Comingled Residential MRFs in the US. Available online: https://recyclingpartnership.org/residential-mrfs/ (accessed on 19 September 2025).
 - Lamers, P.; Roni, M.S.; Tumuluru, J.S.; Jacobson, J.J.; Cafferty, K.G.; Hansen, J.K.; Kenney, K.; Teymouri, F.; Bals, B. Techno-economic analysis of decentralized biomass processing depots. Bioresour. Technol. 2015, 194, 205–213. [Google Scholar] [CrossRef]
 - Staub, C. Israeli Business Says It Wants the Material MRFs Reject. Available online: https://resource-recycling.com/recycling/2019/10/15/israeli-business-says-it-wants-the-material-mrfs-reject/ (accessed on 8 August 2021).
 - Route Ready Trucks. What You Should Know About the 4 Major Types of Garbage Trucks. 2019. Available online: https://routereadytrucks.com/blogs/know-4-major-types-garbage-trucks/ (accessed on 8 September 2021).
 - United States Department of Energy. Average Fuel Economy by Major Vehicle Category. Altern. Fuels Data Cent. 2020, 2020. Available online: https://afdc.energy.gov/data/10310 (accessed on 20 August 2021).
 - Zhu, J.Y. Chapter 4: Physical Pretreatment—Woody Biomass Size Reduction—For Forest Biorefinery. In Sustainable Production of Fuels, Chemicals and Fibers from Forest Biomass. American Chemical Society; Zhu, J.Y., Zhang, X., Pan, X., Eds.; ACS Symposium Series; American Chemical Society: Washington, DC, USA, 2011; pp. 89–107. [Google Scholar]
 - Bitra, V.S.P.; Alvin, R.W.; Chevanan, N.; Miu, P.I.; Igathinathane, C.; Sokhansanj, S.; Smith, D.R. Direct mechanical energy measures of hammer mill comminution of switchgrass, wheat straw, and corn stover and analysis of their particle size distribution. Powder Technol. 2009, 193, 32–45. [Google Scholar] [CrossRef]
 - Fitzgerald, G.C.; Themelis, N.J. Technical and Economic Impacts of Pre-Shredding the MSW Feed to Moving Grate WTE Boilers. In Proceedings of the 17th Annual North American Waste-To-Energy Conference, ASME, Chantilly, VA, USA, 18–20 May 2009; pp. 1–7. [Google Scholar]
 - Mani, S.; Tabil, L.G.; Sokhansanj, S. Grinding performance and physical properties of wheat and barley straws, corn stover and switchgrass. Biomass Bioenergy 2004, 27, 339–352. [Google Scholar] [CrossRef]
 - United States Environmental Protection Agency. Fine Shredding of Municipal Solid Waste; Industrial Environmental Research Laboratory, Office of Research and Development: Research Triangle Park, NC, USA, 1976. [Google Scholar]
 - Stedman Machinery Company. Industrial Hammer Mill Grinders. Available online: https://www.stedman-machine.com/hammer-mill-grinders.html (accessed on 22 August 2025).
 - Pallmann Industries. Pulverizing of Plastics; Pallmann Industries: Clifton, NJ, USA, 2013. [Google Scholar]
 - Sudenga Industries Inc. Horizontal Mixers. Available online: https://www.sudenga.com/our-products/feed-processing/horizontal-mixer (accessed on 8 December 2021).
 - Buhler. Kubex T. Available online: https://www.buhlergroup.com/content/buhlergroup/global/en/products/kubex_t_pellet_mill.html (accessed on 8 December 2021).
 - TonDE Pellet Mill. Counterflow Wood Pellet Cooler. Available online: https://www.tondepelletmill.com/biomass-pellet-machine/counterflow-wood-pellet-cooler.html (accessed on 8 August 2021).
 - Lacoa, U.; Velarde, G.; Kay, M.; Blanco, E.; Salonim, D. Design and Development of Logistics Models for Residential and Commercial Biomass Pellets for Heat. BioResources 2018, 12, 1506–1531. [Google Scholar]
 - Qian, Y.; McDow, W. The Wood Pellet Value Chain; US Endowment of Forestry and Communities: Greenville, SC, USA, 2013; pp. 1–59. [Google Scholar]
 - Pressley, P.N.; Levis, J.W.; Damgaard, A.; Barlaz, M.A.; DeCarolis, J.F. Analysis of material recovery facilities for use in life-cycle assessment. Waste Manag. 2015, 35, 307–317. [Google Scholar] [CrossRef] [PubMed]
 - Menikpura, N.; Totoki, Y.; Sang-arun, J. The Implications of Packaging Plastic Recycling on Climate Change Mitigation and Fossil Resource Savings—A Case Study in Japan. In Proceedings of the 3R International Scientific Conference on Material Cycle and Waste Management, Kyoto, Japan, 10–12 March 2014. [Google Scholar]
 - Plastic Film Recycling. Bale Specs. Available online: https://www.plasticfilmrecycling.org/recycling-commercial-film/businesses-post-consumer-bag-film-recycling/set-up-a-collection-program/design-collection-strategy-educate/bale-specs/ (accessed on 20 August 2021).
 - United States Department of Transportation. Commercial Vehicle Size and Weight Program. Available online: https://ops.fhwa.dot.gov/freight/sw/overview/index.htm (accessed on 8 September 2021).
 - Jennifer, K. The Best Specs and Fuel Mileage for Class 8 Trucks. Available online: https://itstillruns.com/specs-mileage-class-8-trucks-7668977.html (accessed on 22 August 2025).
 - Union Pacific. Covered Hoppers. Available online: https://www.up.com/customers/all/equipment/descriptions/covered_hoppers/index.htm (accessed on 22 August 2025).
 - CSX Corporation. Fuel Efficiency. Available online: https://www.csx.com/index.cfm/about-us/the-csx-advantage/fuel-efficiency/ (accessed on 8 September 2021).
 - Shah, A.; Baral, N.R.; Manandhar, A. Technoeconomic Analysis and Life Cycle Assessment of Bioenergy Systems, Advances in Bioenergy. J. Clean. Prod. 2017, 166, 601–614. [Google Scholar] [CrossRef]
 - Lang, H.J. Simplified approach to preliminary cost estimates. Chem. Eng. 1948, 55, 112. [Google Scholar]
 - United States Energy Information Administration. Electricity Power Monthly. Available online: https://www.eia.gov/electricity/monthly/ (accessed on 6 August 2025).
 - United States Energy Information Administration. U.S. No 2 Diesel Wholesale/Resale Price by Refiners. 1 June 2022. Available online: https://www.eia.gov/dnav/pet/hist/LeafHandler.ashx?n=PET&s=EMA_EPD2D_PWG_NUS_DPG&f=M (accessed on 6 August 2025).
 - Khanal, A.; Manandhar, A.; Adhikari, S.; Shah, A. Techno-economic analysis of novolac resin production by partial substitution of petroleum-derived phenol with bio-oil phenol. Biofuels Bioprod. Bioref. 2021, 15, 1611–1620. [Google Scholar] [CrossRef]
 - Dutta, A.; Sahir, A.; Tan, E.; Humbird, D.; Snowden-Swan, L.J.; Meyer, P.; Ross, J.; Sexton, D.; Yap, R.; Lukas, J. Process Design and Economics for the Conversion of Lignocellulosic Biomass to Hydrocarbon Fuels. NREL/TP-5100-62455 and PNNL-23823’. NREL Tech. Rep. 2015. [Google Scholar]
 - Wright, M.M.; Daugaard, D.E.; Satrio, J.A.; Brown, R.C. Techno-economic analysis of biomass fast pyrolysis to transportation fuels. Technical Report NREL/TP-6A20-46586’. NREL Tech. Rep. 2010, 89, 463–469. [Google Scholar] [CrossRef]
 - Curry, K.C.; van Oss, H.G. 2017 Minerals Yearbook. CEMENT—2017. 2020. Available online: https://d9-wret.s3.us-west-2.amazonaws.com/assets/palladium/production/atoms/files/myb1-2017-cemen.pdf (accessed on 31 July 2021).
 - ANL. GREET_1_2020 Model. Available online: https://greet.es.anl.gov/ (accessed on 8 August 2021).
 - United States Environmental Protection Agency. Greenhouse Gases Equivalences Calculator—Calculations and References. Available online: https://www.epa.gov/energy/greenhouse-gas-equivalencies-calculator-calculations-and-references (accessed on 21 August 2025).
 - De Klein, C.; Novoa, R.S.A.; Ogle, S.; Smith, K.A.; Rochette, P.; Wirth, T.C.; McConkey, B.G.; Mosier, A.; Rypdal, K.; Walsh; et al. Chapter 11: N2O emissions from managed soils, and CO2 emissions from lime and urea application. In Agriculture Forestry and Other Land Use; IPCC: Geneva, Switzerland, 2006; Volume 4, pp. 1–54. [Google Scholar]
 - Wilhelm, W.W.; Johnson, J.M.F.; Karlen, D.L.; Lightle, D.T. Corn stover to sustain soil organic carbon further constrains biomass supply. Agron. J. 2007, 99, 1665–1667. [Google Scholar] [CrossRef]
 - United States Environmental Protection Agency. Direct Emissions from Mobile Combustion Sources (EPA430-K-08-004). Climate Leaders GHG Inventory Protocol, 2020.
 - Zheng, J.; Suh, S. Strategies to reduce the global carbon footprint of plastics. Nat. Clim. Change 2019, 9, 374–378. [Google Scholar] [CrossRef]
 - Datis Export Group. How Many Cement Plants Are Producing in the USA in 2020? Available online: https://datis-inc.com/blog/how-many-cement-plants-are-producing-in-the-usa-2020/ (accessed on 9 August 2021).
 - Helsel, Z.R.; Wedin, W.F. Direct combustion energy from crops and crop residues produced in Iowa. Energy Agric. 1981–1983, 1, 317–329. [Google Scholar] [CrossRef]
 - Tumuluru, J.S.; Fillerup, E. Briquetting characteristics of woody and herbaceous biomass blends: Impact on physical properties, chemical composition, and calorific value. Biofuels Bioprod. Bioref. 2020, 14, 1105–1124. [Google Scholar] [CrossRef]
 - Areeprasert, C.; Asingsamanunt, J.; Srisawat, S.; Kaharn, J.; Inseemeesak, B.; Phasee, P.; Khaobang, C.; Siwakosit, W.; Chiemchaisri, C. Municipal plastic waste composition study at transfer station of Bangkok and possibility of its energy recovery by pyrolysis. In Proceedings of the 3rd International Conference on Energy and Environment Research, ICEER 2016, Barcelona, Spain, 7–11 September 2016. [Google Scholar] [CrossRef]
 - World Bioenergy Association. Pellets—A Fast Growing Energy Carrier. Available online: https://www.worldbioenergy.org/uploads/Factsheet%20-%20Pellets.pdf (accessed on 18 September 2025).
 - Makepa, D.C.; Chihobo, C.H.; Ruziwa, W.R.; Musademba, D. A systematic review of the techno-economic assessment and biomass supply chain uncertainties of biofuels production from fast pyrolysis of lignocellulosic biomass. Fuel Commun. 2023, 14, 100086. [Google Scholar] [CrossRef]
 - United States Energy Information Administration. Coal Explained: Coal Prices and Outlook. Available online: https://www.eia.gov/energyexplained/coal/prices-and-outlook.php (accessed on 6 August 2025).
 - United States Energy Information Administration. Monthly Densified Biomass Fuel Report. Available online: https://www.eia.gov/biofuels/biomass/#table_data (accessed on 16 August 2025).
 - World Economic Forum. Cement Is a Big Problem for the Environment. Here’s How to Make It More Sustainable. Available online: https://www.weforum.org/stories/2024/09/cement-production-sustainable-concrete-co2-emissions/ (accessed on 18 September 2025).
 - Barcelo, L.; Kline, J.; Walenta, G.; Gartner, E. Cement and carbon emissions. Mater. Struct. 2013, 47, 1055–1065. [Google Scholar] [CrossRef]
 





| Co-Pelletization Operations | kWh/t Pellets | l Diesel/t Pellets | 
|---|---|---|
| Squeeze loader | - | 0.4 | 
| Corn stover size reduction—Stage 1 | 11.8 | |
| Corn stover size reduction—Stage 2 | 96.3 | |
| Plastic size reduction—Stage 1 | 3.3 | |
| Plastic size reduction—Stage 2 | 29.1 | |
| Ribbon mixer | 0.4 | |
| Pellet mill | 10.4 | |
| Cooler | 0.1 | |
| Transport, rail | - | 0.9 | 
| Total | 151.7 | 1.3 | 
| Financial Parameters | Mean | 5–95% CR | 
|---|---|---|
| Total Capital Investment | USD 25.1 M | USD 24.6–25.6 M | 
| Working Capital | USD 3.2 M | USD 2.8–3.7 M | 
| Total Annual Operating Costs Without Tipping Fee Revenue | USD 44.3 M | USD 39.2–49.7 M | 
| Total Annual Operating Expense with Tipping Fee | USD 39.9 M | USD 34.9–45.3 M | 
| MSP, USD/t pellets | USD 112.1 | USD 99.5–125.7 | 
| Baseline | 5–95% CR | ||
|---|---|---|---|
| Feedstock acquisition  | Stover | 63.8 | 57.1–73.6 | 
| Plastic | 14.8 | 12.7–15.0 | |
| Handling | Squeeze loader | 1.1 | 0.9–1.3 | 
| Size reduction | 99.9 | 95.7–103.5 | |
| Co-pelletization operations | Mixing | 0.3 | -- | 
| Pelletization | 7.4 | 6.8–7.9 | |
| Cooling | 0.05 | -- | |
| Delivery to cement plant | Rail | 2.3 | -- | 
| Combustion | 1497.3 | 1431.7–1563.3 | |
| Field emissions credit | 30.60 | 28.5–78.7 | |
| Total | 1686.8 | 1621.1–1753.1 | |
| Total, with application of credit | 1656.2 | 1542.4–1724.6 | |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.  | 
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stockham, H.; Khanal, A.; Adhikari, S.; Shah, A. Evaluation of Co-Pelletization of Corn Stover and Plastic Waste as an Alternative Fuel Source for Cement Production. Energies 2025, 18, 5393. https://doi.org/10.3390/en18205393
Stockham H, Khanal A, Adhikari S, Shah A. Evaluation of Co-Pelletization of Corn Stover and Plastic Waste as an Alternative Fuel Source for Cement Production. Energies. 2025; 18(20):5393. https://doi.org/10.3390/en18205393
Chicago/Turabian StyleStockham, Haley, Asmita Khanal, Sushil Adhikari, and Ajay Shah. 2025. "Evaluation of Co-Pelletization of Corn Stover and Plastic Waste as an Alternative Fuel Source for Cement Production" Energies 18, no. 20: 5393. https://doi.org/10.3390/en18205393
APA StyleStockham, H., Khanal, A., Adhikari, S., & Shah, A. (2025). Evaluation of Co-Pelletization of Corn Stover and Plastic Waste as an Alternative Fuel Source for Cement Production. Energies, 18(20), 5393. https://doi.org/10.3390/en18205393
        
