Biochar Production Technology as a Negative Emission Strategy: A Review
Abstract
1. Introduction
2. Biochar from Organic Waste
2.1. Biochar Characteristics
2.2. Carbon Neutrality
3. Biochar Production as a Negative Emission Technology
3.1. Pyrolysis
3.2. Gasification
3.3. Hydrothermal Carbonization (HTC)
Method | Feedstock | Product and Application | NET Strategy | Typical Operating | Char Quality | References |
---|---|---|---|---|---|---|
Simple kiln | Crop residues | Biochar as soil conditioner in agriculture | LCA, Socio-economic impact | T: 450–650 °C, Biochar Yield: 31.38%, Heating Rate 30 °C/min | HHV: 13–17 MJ kg−1 O/C: 0.14 H/Corg: 0.696 | [84,90] |
Pelletization + pyrolysis | Swine manure pellets | Biochar as an alternative energy | Soil C sequestration, Carbon Credit | T: 270–500 °C, Biochar Yield: 44.02% | HHV: 28.3 MJ kg−1 H/Corg: 0.045 | [46,91,92] |
Pyrolysis + Ammoniation | Leucaena leucocephala | N-doped Biochar as a material for capturing CO2 | Carbon Capture by modifying and refining biochar | T: 500–900 °C, Heating Rate 10 °C/min | 22.6 MJ kg−1, O/C: 0.09 H/Corg: 0.23 | [20,93] |
Slow Pyrolysis | Lignocellulosic biomass | Biochar as a solid fuel and in soil amendment, Bio-oil, Gas | Carbon Capture, LCA | T: 500 °C, Biochar Yield: 45.9%, Heating Rate 10 °C/min | HHV: 31.1 MJ kg−1, O/C: 0.92 H/Corg: 1.47 | [50,65,94,95] |
Fast Pyrolysis | Lignocellulosic waste, Wheat/corn straw | Biochar as a solid fuel and in soil amendment, Bio-oil, Syngas | Carbon Capture, Soil Amendment | T: 500–1000 °C, Biochar Yield: 26%, Heating Rate 1000 °C/min | HHV: 25.1 MJ kg−1, O/C: 0.55 H/Corg: 1.719 | [51,69,96,97] |
Microwave Pyrolysis | General biomass | Biochar as a solid fuel and in soil amendment, Bio-oil, Syngas | Techno-economic, Environmental | T: 600 °C, Biochar Yield: 31.1%, Heating Rate 163 °C/min | HHV: 13.7 MJ kg−1, O/C: 0.1 H/Corg: 0.92 | [34,55,98] |
Supercritical Water Gasification | Biomass, Palm Oil EFB | Improve the quality of pore structure of Biochar, H2, Syngas | Hydrogen production Carbon Capture | T: 500–800 °C, Product Yield: 21.71 mol/kg, Heating Rate 10 °C/min | LHV: 4506 kJ/Nm3, O/C: 0.05 H/Corg: 0.16 | [80,99,100,101] |
Hydrothermal Carbonization (HTC) | Food Waste | Hydrochar as a solid fuel and in soil amendment, | Applications as a carbon material, catalyst, as a filter aid for water purification, in fuel cells, and as an absorbent | T: 200–230 °C, Solid Yield: 49%, Heating Rate 3.25 °C/min | HHV: 22.39 MJ kg−1 O/C: 0.62 H/Corg: 0.15 | [86,96,102] |
4. Carbon Management Systems from Carbon Capture and Storage
4.1. BECCS Is an Effective Negative Emissions Strategy
4.2. Carbon Storage in Soil
4.3. Carbon Capture and Process in Various Sectors
5. The Role of Biochar in Various Sectors
5.1. Waste to Hydrogen Conversion Technology
5.2. Biochar in the Construction, Industrial, and Agricultural Sectors
6. The Challenge of Biochar as a Negative Emission Strategy
6.1. The Economic Benefits Obtained from the Role of Biochar
6.2. Effectiveness of Social Impact
6.3. Future Directions
7. Conclusions
Funding
Conflicts of Interest
References
- Wang, C.H.; Zhao, D.; Tsutsumi, A.; You, S. Sustainable energy technologies for energy saving and carbon emission reduction. Appl. Energy 2017, 194, 223–224. [Google Scholar] [CrossRef]
- Shahbaz, M.; Alherbawi, M.; Okonkwo, E.C.; Al-Ansari, T. Evaluating negative emission technologies in a circular carbon economy: A holistic evaluation of direct air capture, bioenergy carbon capture and storage and biochar. J. Clean. Prod. 2024, 466, 142800. [Google Scholar] [CrossRef]
- Ahmed, M.B.; Zhou, J.L.; Ngo, H.H.; Guo, W. Insight into biochar properties and its cost analysis. Biomass Bioenergy 2016, 84, 76–86. [Google Scholar] [CrossRef]
- Haeldermans, T.; Campion, L.; Kuppens, T.; Vanreppelen, K.; Cuypers, A.; Schreurs, S. A comparative techno-economic assessment of biochar production from different residue streams using conventional and microwave pyrolysis. Bioresour. Technol. 2020, 318, 124083. [Google Scholar] [CrossRef]
- Sahoo, K.; Bilek, E.; Bergman, R.; Mani, S. Techno-economic analysis of producing solid biofuels and biochar from forest residues using portable systems. Appl. Energy 2019, 235, 578–590. [Google Scholar] [CrossRef]
- Hilgert, P.; Stark, S.; von Cossel, M.; Lewandowski, I.; Schurr, U.; Venghaus, S. Monitoring the bioeconomy transformation potential for Germany’s largest lignite mining region: The Rheinische Revier. EFB Bioeconomy J. 2025, 5, 100074. [Google Scholar] [CrossRef]
- Zepeda, L.C.; Al-Waili, I.; Griffin, G.; Shah, K.; Bhargava, S.; Parthasarathy, R. Techno-economic assessment (TEA) and sensitivity analysis for a biochar-based slurry fuel plant. Energy Convers. Manag. 2024, 306, 118297. [Google Scholar] [CrossRef]
- Wrobel-Tobiszewska, A.; Boersma, M.; Sargison, J.; Adams, P.; Jarick, S. An economic analysis of biochar production using residues from Eucalypt plantations. Biomass Bioenergy 2015, 81, 177–182. [Google Scholar] [CrossRef]
- Zhu, H.; An, Q.; Nasir, A.S.M.; Babin, A.; Saucedo, S.L.; Vallenas, A.; Li, L.; Baldwin, S.A.; Lau, A.; Bi, X. Emerging applications of biochar: A review on techno-environmental-economic aspects. Bioresour. Technol. 2023, 388, 129745. [Google Scholar] [CrossRef]
- Han, D.; Yang, X.; Li, R.; Wu, Y. Environmental impact comparison of typical and resource-efficient biomass fast pyrolysis systems based on LCA and Aspen Plus simulation. J. Clean. Prod. 2019, 231, 254–267. [Google Scholar] [CrossRef]
- Nair, P.N.S.B.; Tan, R.R.; Foo, D.C. Extended graphical approach for the implementation of energy-consuming negative emission technologies. Renew. Sustain. Energy Rev. 2022, 158, 112082. [Google Scholar] [CrossRef]
- Prabakar, D.; Manimudi, V.T.; Sampath, S.; Mahapatra, D.M.; Rajendran, K.; Pugazhendhi, A. Advanced biohydrogen production using pretreated industrial waste: Outlook and prospects. Renew. Sustain. Energy Rev. 2018, 96, 306–324. [Google Scholar] [CrossRef]
- Jeswani, H.K.; Saharudin, D.M.; Azapagic, A. Environmental sustainability of negative emissions technologies: A review. Sustain. Prod. Consum. 2022, 33, 608–635. [Google Scholar] [CrossRef]
- Liu, J.; Liu, G.; Zhang, W.; Li, Z.; Jin, H.; Xing, F. A new approach to CO2 capture and sequestration: A novel carbon capture artificial aggregates made from biochar and municipal waste incineration bottom ash. Constr. Build. Mater. 2023, 398, 132472. [Google Scholar] [CrossRef]
- Kumar, A.; Saini, K.; Bhaskar, T. Hydochar and biochar: Production, physicochemical properties and techno-economic analysis. Bioresour. Technol. 2020, 310, 123442. [Google Scholar] [CrossRef]
- Demirbas, A. Biorefineries: Current activities and future developments. Energy Convers. Manag. 2009, 50, 2782–2801. [Google Scholar] [CrossRef]
- Wang, Q.; Zhang, X.; Cui, D.; Bai, J.; Wang, Z.; Xu, F.; Wang, Z. Advances in supercritical water gasification of lignocellulosic biomass for hydrogen production. J. Anal. Appl. Pyrolysis 2023, 170, 105934. [Google Scholar] [CrossRef]
- Mahmood, F.; Ali, M.; Khan, M.; Mbeugang, C.F.M.; Isa, Y.M.; Kozlov, A.; Penzik, M.; Xie, X.; Yang, H.; Zhang, S.; et al. A review of biochar production and its employment in synthesizing carbon-based materials for supercapacitors. Ind. Crops Prod. 2025, 227, 120830. [Google Scholar]
- Waqas, M.; Aburiazaiza, A.S.; Miandad, R.; Rehan, M.; Barakat, M.A.; Nizami, A.S. Development of biochar as fuel and catalyst in energy recovery technologies. J. Clean. Prod. 2018, 188, 477–488. [Google Scholar] [CrossRef]
- Hsu, C.J.; Kuo, I.L.; Hsi, H.C.; Lam, S.S.; Huang, Y.P.; Ting, Y.C. Single-step pyrolytic synthesis of ultra-microporous ammonialized biochar for carbon dioxide capture. J. Environ. Manag. 2025, 381, 125197. [Google Scholar] [CrossRef]
- Razzak, S.A. Municipal solid and plastic waste derived high-performance biochar production: A comprehensive review. J. Anal. Appl. Pyrolysis 2024, 181, 106622. [Google Scholar] [CrossRef]
- Chen, W.H.; Teng, C.H.; Chein, R.Y.; Nguyen, T.B.; Dong, C.D.; Kwon, E.E. Co-production of hydrogen and biochar from methanol autothermal reforming combining excess heat recovery. Appl. Energy 2025, 381, 125152. [Google Scholar] [CrossRef]
- İlay, R. Biochar production from various low-cost marine wastes using different production methods: Characterization of biochar and marine feedstock for agricultural purposes. Mar. Pollut. Bull. 2024, 205, 116623. [Google Scholar] [CrossRef]
- Taher, T.; Putra, R.; Sari, N.K.; Zurfi, A.; Rohman, A.; Kurnia, I.; Maulana, S.; Kartika, K.; Wibowo, Y.G.; Rianjanu, A.; et al. Insight into the pyrolysis behavior of the drained Sumatra peat soil and the characteristics of the resulting biochar for carbon dioxide (CO2) capture. Bioresour. Technol. Rep. 2023, 24, 101680. [Google Scholar] [CrossRef]
- Tujjohra, F.; Hoque, E.; Kader, M.A.; Rahman, M.M. Sustainable valorization of textile industry cotton waste through pyrolysis for biochar production. Clean. Chem. Eng. 2025, 11, 100161. [Google Scholar] [CrossRef]
- Colantoni, A.; Evic, N.; Lord, R.; Retschitzegger, S.; Proto, A.R.; Gallucci, F.; Monarca, D. Characterization of biochars produced from pyrolysis of pelletized agricultural residues. Renew. Sustain. Energy Rev. 2016, 64, 187–194. [Google Scholar] [CrossRef]
- Sfakiotakis, S.; Vamvuka, D. Thermal decomposition behavior, characterization and evaluation of pyrolysis products of agricultural wastes. J. Energy Inst. 2018, 91, 951–961. [Google Scholar] [CrossRef]
- Klasson, K.T. Biochar characterization and a method for estimating biochar quality from proximate analysis results. Biomass Bioenergy 2017, 96, 50–58. [Google Scholar] [CrossRef]
- Raček, J.; Chorazy, T.; Miino, M.C.; Vršanská, M.; Brtnický, M.; Mravcová, L.; Kučerík, J.; Hlavínek, P. Biochar production from the pyrolysis of food waste: Characterization and implications for its use. Sustain. Chem. Pharm. 2024, 37, 101387. [Google Scholar] [CrossRef]
- Mohit, A.; Remya, N. Optimization of biochar production from greywater grown polyculture microalgae using microwave pyrolysis. Bioresour. Technol. 2023, 388, 129666. [Google Scholar] [CrossRef]
- Hernandez-Charpak, Y.D.; Manipati, M.M.; Diaz, C.A.; Trabold, T.A. Comparative assessment of biochar produced from waste biomass in laboratory furnace and industrial screw reactor systems. J. Anal. Appl. Pyrolysis 2024, 182, 106681. [Google Scholar] [CrossRef]
- Rambhatla, N.; Panicker, T.F.; Mishra, R.K.; Manjeshwar, S.K.; Sharma, A. Biomass pyrolysis for biochar production: Study of kinetics parameters and effect of temperature on biochar yield and its physicochemical properties. Results Eng. 2025, 25, 103679. [Google Scholar] [CrossRef]
- de Faria, A.J.G.; Rufini, M.; do Amaral Leite, A.; Ribeiro, B.T.; Silva, S.H.G.; Guilherme, L.R.G.; Melo, L.C.A. Elemental analysis of biochar-based fertilizers via portable X-ray fluorescence spectrometry. Environ. Technol. Innov. 2021, 23, 101788. [Google Scholar] [CrossRef]
- Li, M.; Li, Y.; Lu, C.; Wei, T.; Ahmed, M.; Qiu, D.; Xiong, Y.; Ren, J.; Yu, Y. Microwave pyrolysis of rapeseed straw for low sulfur content and high heating value (HHV) solid fuel production: Transformation mechanism and form of sulfur in biochar during the pyrolysis process. Energy 2025, 326, 136381. [Google Scholar] [CrossRef]
- Lee, X.J.; Lee, L.Y.; Gan, S.; Thangalazhy-Gopakumar, S.; Ng, H.K. Biochar potential evaluation of palm oil wastes through slow pyrolysis: Thermochemical characterization and pyrolytic kinetic studies. Bioresour. Technol. 2017, 236, 155–163. [Google Scholar] [CrossRef]
- de Almeida, S.G.; Tarelho, L.A.; Hauschild, T.; Costa, M.A.M.; Dussán, K.J. Biochar production from sugarcane biomass using slow pyrolysis: Characterization of the solid fraction. Chem. Eng. Process.-Process Intensif. 2022, 179, 109054. [Google Scholar] [CrossRef]
- Nhuchhen, D.R.; Afzal, M.T.; Dreise, T.; Salema, A.A. Characteristics of biochar and bio-oil produced from wood pellets pyrolysis using a bench scale fixed bed, microwave reactor. Biomass Bioenergy 2018, 119, 293–303. [Google Scholar] [CrossRef]
- Yin, M.; Bi, D.; Zhao, W.; Liu, J.; Zhao, A.; Jiang, M. Production of bio-oil and biochar by the nitrogen-rich pyrolysis of cellulose with urea: Pathway of nitrile in bio-oil and evolution of nitrogen in biochar. J. Anal. Appl. Pyrolysis 2023, 174, 106137. [Google Scholar] [CrossRef]
- Elgazar, Y.G.; Khalifeh, H.A.; Alkhedher, M.; Ramadan, M. A review of hydrogen production from food waste through gasification process. Int. J. Hydrogen Energy 2024, 67, 959–969. [Google Scholar] [CrossRef]
- Ghorbannezhad, P.; Soleymani, N.; Abbasi, M. Co-pyrolysis of municipal and horticultural wastes for enhanced biochar and bio-oil production: A response surface methodology approach. Fuel 2023, 350, 128795. [Google Scholar] [CrossRef]
- Batta, N.; Sarchami, T.; Moreira, C.M.; Rehmann, L.; Berruti, F. Assessment of the effects of biochar on biogas production during anaerobic digestion of aqueous pyrolysis condensate: A circular economy approach. J. Environ. Chem. Eng. 2023, 11, 109982. [Google Scholar] [CrossRef]
- Kanthasamy, R.; Almatrafi, E.; Ali, I.; Sait, H.H.; Zwawi, M.; Abnisa, F.; Peng, L.C.; Ayodele, B.V. Bayesian optimized multilayer perceptron neural network modelling of biochar and syngas production from pyrolysis of biomass-derived wastes. Fuel 2023, 350, 128832. [Google Scholar] [CrossRef]
- Itam, D.H.; Horsfall, I.T.; Ekiyor, T.H. Application of Biochar in Soil Remediation: A Decade of Scientometrics and Systematic Review from 2014–2024. Results Eng. 2024, 23, 102757. [Google Scholar] [CrossRef]
- Mengesha, T.T.; Ancha, V.R.; Sundar, L.S.; Pollex, A. Review on the influence of pyrolysis process parameters for biochar production with minimized polycyclic aromatic hydrocarbon content. J. Anal. Appl. Pyrolysis 2024, 182, 106699. [Google Scholar] [CrossRef]
- Papageorgiou, A.; Azzi, E.S.; Enell, A.; Sundberg, C. Biochar produced from wood waste for soil remediation in Sweden: Carbon sequestration and other environmental impacts. Sci. Total Environ. 2021, 776, 145953. [Google Scholar] [CrossRef]
- Shin, J.; Jang, E.; Park, S.; Ravindran, B.; Chang, S.W. Agro-environmental impacts, carbon sequestration and profit analysis of blended biochar pellet application in the paddy soil-water system. J. Environ. Manag. 2019, 244, 92–98. [Google Scholar] [CrossRef]
- Das, O.; Bhattacharyya, D.; Sarmah, A.K. Sustainable eco–composites obtained from waste derived biochar: A consideration in performance properties, production costs, and environmental impact. J. Clean. Prod. 2016, 129, 159–168. [Google Scholar] [CrossRef]
- Tang, Z.; Gao, J.; Zhang, Y.; Du, Q.; Feng, D.; Dong, H.; Peng, Y.; Zhang, T.; Xie, M. Ultra-microporous biochar-based carbon adsorbents by a facile chemical activation strategy for high-performance CO2 adsorption. Fuel Process. Technol. 2023, 241, 107613. [Google Scholar] [CrossRef]
- Ahmed, A.; Uddin, G.S.; Sohag, K. Biomass energy, technological progress and the environmental Kuznets curve: Evidence from selected European countries. Biomass Bioenergy 2016, 90, 202–208. [Google Scholar] [CrossRef]
- Cheng, F.; Luo, H.; Colosi, L.M. Slow pyrolysis as a platform for negative emissions technology: An integration of machine learning models, life cycle assessment, and economic analysis. Energy Convers. Manag. 2020, 223, 113258. [Google Scholar] [CrossRef]
- Maaoui, A.; Trabelsi, A.B.H.; Abdallah, A.B.; Chagtmi, R.; Lopez, G.; Cortazar, M.; Olazar, M. Assessment of pine wood biomass wastes valorization by pyrolysis with focus on fast pyrolysis biochar production. J. Energy Inst. 2023, 108, 101242. [Google Scholar] [CrossRef]
- Caldecott, B.; Lomax, G.; Workman, M. Stranded Carbon Assets and Negative Emissions Technologies; Stranded Assets Programme; University of Oxford: Oxford, UK, 2015. [Google Scholar]
- Shahbaz, M.; AlNouss, A.; Ghiat, I.; Mckay, G.; Mackey, H.; Elkhalifa, S.; Al-Ansari, T. A comprehensive review of biomass based thermochemical conversion technologies integrated with CO2 capture and utilisation within BECCS networks. Resour. Conserv. Recycl. 2021, 173, 105734. [Google Scholar] [CrossRef]
- Li, Y.; Gupta, R.; Zhang, Q.; You, S. Review of biochar production via crop residue pyrolysis: Development and perspectives. Bioresour. Technol. 2023, 369, 128423. [Google Scholar] [CrossRef] [PubMed]
- Rajpoot, L.; Tagade, A.; Deshpande, G.; Verma, K.; Geed, S.R.; Patle, D.S.; Sawarkar, A.N. An overview of pyrolysis of de-oiled cakes for the production of biochar, bio-oil, and pyro-gas: Current status, challenges, and future perspective. Bioresour. Technol. Rep. 2022, 19, 101205. [Google Scholar] [CrossRef]
- Bouaik, H.; Madihi, S.; El Harfi, M.; Khiraoui, A.; Aboulkas, A.; El Harfi, K. Pyrolysis of Macroalgal Biomass: A Comprehensive Review on Bio-Oil, Biochar, and Bioyngas Production. Sustain. Chem. One World 2025, 5, 100050. [Google Scholar] [CrossRef]
- Parascanu, M.M.; Gamero, M.P.; Sánchez, P.; Soreanu, G.; Valverde, J.L.; Sanchez-Silva, L. Life cycle assessment of olive pomace valorisation through pyrolysis. Renew. Energy 2018, 122, 589–601. [Google Scholar] [CrossRef]
- Ma, C.; Zhu, R.; Ma, Y.; Yu, Y.; Tan, C.; Yang, S.; Liu, H.; Hu, J.; Wang, H. An overview of advancements in biomass pyrolysis modeling: Applications, challenges, and future perspectives in rotary reactors. Biomass Bioenergy 2025, 193, 107568. [Google Scholar] [CrossRef]
- Muhammad, W.Z.W.; Isa, M.R.; Habib, S.H.; Seah, C.C.; Hafriz, R.S.R.M.; Shamsuddin, A.H. Assessment of biochar, bio-oil and biogas production from lemon myrtle waste via microwave assisted catalytic pyrolysis using CaO based catalyst and zeolite catalyst. Energy Convers. Manag. X 2023, 20, 100481. [Google Scholar] [CrossRef]
- Yang, Q.; Mašek, O.; Zhao, L.; Nan, H.; Yu, S.; Yin, J.; Li, Z.; Cao, X. Country-level potential of carbon sequestration and environmental benefits by utilizing crop residues for biochar implementation. Appl. Energy 2021, 282, 116275. [Google Scholar] [CrossRef]
- Maroušek, J.; Trakal, L. Techno-economic analysis reveals the untapped potential of wood biochar. Chemosphere 2022, 291, 133000. [Google Scholar] [CrossRef]
- Jayakumar, A.; Morrisset, D.; Koutsomarkos, V.; Wurzer, C.; Hadden, R.M.; Lawton, L.; Edwards, C.; Mašek, O. Systematic evaluation of pyrolysis processes and biochar quality in the operation of low-cost flame curtain pyrolysis kiln for sustainable biochar production. Curr. Res. Environ. Sustain. 2023, 5, 100213. [Google Scholar] [CrossRef]
- Younis, M.; Farag, H.A.; Alhamdan, A.; Aboelasaad, G.; El-Abedein, A.I.Z.; Kamel, R.M. Utilization of palm residues for biochar production using continuous flow pyrolysis unit. Food Chem. X 2023, 20, 100903. [Google Scholar] [CrossRef] [PubMed]
- Kavindi, G.A.G.; Tang, L.; Sasaki, Y. Assessing GHG emission reduction in biomass-derived biochar production via slow pyrolysis: A cradle-to-gate LCA approach. Resour. Conserv. Recycl. 2025, 212, 107900. [Google Scholar] [CrossRef]
- Babu, K.K.B.S.; Nataraj, M.; Tayappa, M.; Vyas, Y.; Mishra, R.K.; Acharya, B. Production of biochar from waste biomass using slow pyrolysis: Studies of the effect of pyrolysis temperature and holding time on biochar yield and properties. Mater. Sci. Energy Technol. 2024, 7, 318–334. [Google Scholar] [CrossRef]
- Farobie, O.; Amrullah, A.; Bayu, A.; Syaftika, N.; Anis, L.A.; Hartulistiyoso, E. In-depth study of bio-oil and biochar production from macroalgae Sargassum sp. via slow pyrolysis. RSC Adv. 2022, 12, 9567–9578. [Google Scholar] [CrossRef]
- Polin, J.P.; Peterson, C.A.; Whitmer, L.E.; Smith, R.G.; Brown, R.C. Process intensification of biomass fast pyrolysis through autothermal operation of a fluidized bed reactor. Appl. Energy 2019, 249, 276–285. [Google Scholar] [CrossRef]
- Luo, G.; Wang, W.; Zhao, Y.; Tao, X.; Xie, W.; Wang, K. Autothermal pyrolysis of lignocellulosic biomass: Experimental, kinetic, and thermodynamic studies. J. Anal. Appl. Pyrolysis 2023, 171, 105972. [Google Scholar] [CrossRef]
- Bieniek, A.; Sieradzka, M.; Jerzak, W.; Magdziarz, A. Fast pyrolysis of agricultural biomass in drop tube reactor for bio-oil production: Numerical calculations. J. Anal. Appl. Pyrolysis 2023, 176, 106241. [Google Scholar] [CrossRef]
- Nazari, M.; Aguilar, M.M.; Ghislain, T.; Lavoie, J.M. Microwave-assisted pyrolysis of biomass waste for production of high-quality biochar: Corn stover and hemp stem case studies. Biomass Bioenergy 2024, 187, 107302. [Google Scholar] [CrossRef]
- Hadiya, V.; Popat, K.; Vyas, S.; Varjani, S.; Vithanage, M.; Gupta, V.K.; Delgado, A.N.; Zhou, Y.; Show, P.L.; Bilal, M.; et al. Biochar production with amelioration of microwave-assisted pyrolysis: Current scenario, drawbacks and perspectives. Bioresour. Technol. 2022, 355, 127303. [Google Scholar] [CrossRef]
- Rajput, N.A.; Laghari, M.; Soothar, R.K. Enhanced phosphorus and potassium recovery through co-pyrolysis of nutrient-rich biomass feedstocks for engineered biochar production. Bioresour. Technol. Rep. 2024, 26, 101818. [Google Scholar] [CrossRef]
- Ige, A.R.; Łaska, G. Production of antioxidant additives and biochar pellets from the Co-pyrolysis of agricultural biomass: A review. Renew. Sustain. Energy Rev. 2025, 208, 115037. [Google Scholar] [CrossRef]
- Vimal, V.; Karim, A.A.; Kumar, M.; Ray, A.; Biswas, K.; Maurya, S.; Subudhi, D.; Dhal, N.K. Nutrients enriched biochar production through Co-Pyrolysis of poultry litter with banana peduncle and phosphogypsum waste. Chemosphere 2022, 300, 134512. [Google Scholar] [CrossRef]
- Giwa, A.S.; Xu, H.; Wu, J.; Li, Y.; Chang, F.; Zhang, X.; Jin, Z.; Huang, B.; Wang, K. Sustainable recycling of residues from the food waste (FW) composting plant via pyrolysis: Thermal characterization and kinetic studies. J. Clean. Prod. 2018, 180, 43–49. [Google Scholar] [CrossRef]
- Yang, J.; Tang, S.; Song, B.; Jiang, Y.; Zhu, W.; Zhou, W.; Yang, G. Optimization of integrated anaerobic digestion and pyrolysis for biogas, biochar and bio-oil production from the perspective of energy flow. Sci. Total Environ. 2023, 872, 162154. [Google Scholar] [CrossRef] [PubMed]
- Qiao, Y.; Zhang, S.; Quan, C.; Gao, N.; Johnston, C.; Wu, C. One-pot synthesis of digestate-derived biochar for carbon dioxide capture. Fuel 2020, 279, 118525. [Google Scholar] [CrossRef]
- Baba, S.; Imasato, K.; Yamamoto, A.; Ishida, T.; Ohta, M. Integrating thermoelectric devices in pyrolysis reactors for biochar and electricity co-production. Energy Convers. Manag. X 2024, 24, 100725. [Google Scholar] [CrossRef]
- Chataigner, V.; Tarlet, D.; Ricoul, F.; Bellettre, J. Experimental and theoretical study of heat and mass transfer in a continuous, vertical and coaxial pyrolysis reactor for high porosity biochar production. Fuel 2023, 351, 128848. [Google Scholar] [CrossRef]
- Ferreira-Pinto, L.; Parizi, M.P.S.; de Araújo, P.C.C.; Zanette, A.F.; Cardozo-Filho, L. Experimental basic factors in the production of H2 via supercritical water gasification. Int. J. Hydrogen Energy 2019, 44, 25365–25383. [Google Scholar] [CrossRef]
- Wang, C.; Du, M.; Feng, H.; Jin, H. Experimental investigation on biomass gasification mechanism in supercritical water for poly-generation of hydrogen-rich gas and biochar. Fuel 2022, 319, 123809. [Google Scholar] [CrossRef]
- Zhao, Y.; Feng, D.; Zhang, Z.; Sun, S.; Zhou, X.; Luan, J.; Wu, J. Experimental study of cyclone pyrolysis–Suspended combustion air gasification of biomass. Bioresour. Technol. 2017, 243, 1241–1246. [Google Scholar] [CrossRef]
- You, S.; Ok, Y.S.; Chen, S.S.; Tsang, D.C.; Kwon, E.E.; Lee, J.; Wang, C.H. A critical review on sustainable biochar system through gasification: Energy and environmental applications. Bioresour. Technol. 2017, 246, 242–253. [Google Scholar] [CrossRef]
- Owsianiak, M.; Lindhjem, H.; Cornelissen, G.; Hale, S.E.; Sørmo, E.; Sparrevik, M. Environmental and economic impacts of biochar production and agricultural use in six developing and middle-income countries. Sci. Total Environ. 2021, 755, 142455. [Google Scholar] [CrossRef]
- Al-Muraisy, S.A.; Chuayboon, S.; Soares, L.A.; Buijnsters, J.; bin Ismail, S.; Abanades, S.; van Lier, J.B.; Lindeboom, R.E. Carbon capture through solar-driven CO2 gasification of oil palm empty fruit bunch to produce syngas and biochar. Energy 2025, 323, 135805. [Google Scholar] [CrossRef]
- Yan, M.; Wang, H.; Liu, Y.; Luo, C.; Yang, Y.; Grisdanurak, N.; Kanchanatip, E.; Rahim, D.A. Innovative carbonization techniques for food waste: A comparative study of hydrothermal carbonization (HTC) and vapor-thermal carbonization (VTC). J. Anal. Appl. Pyrolysis 2024, 182, 106685. [Google Scholar] [CrossRef]
- Benavente, V.; Fullana, A.; Berge, N.D. Life cycle analysis of hydrothermal carbonization of olive mill waste: Comparison with current management approaches. J. Clean. Prod. 2017, 142, 2637–2648. [Google Scholar] [CrossRef]
- Owsianiak, M.; Fozer, D.; Chrzanowski, Ł.; Renz, M.; Nowacki, B.; Ryberg, M. Evaluation of hydrothermal carbonization of biomass residues for bioenergy: A life-cycle based comparison against incumbent technologies. EFB Bioeconomy J. 2024, 4, 100069. [Google Scholar] [CrossRef]
- Duman, G.; Akarsu, K.; Yilmazer, A.; Gundogdu, T.K.; Azbar, N.; Yanik, J. Sustainable hydrogen production options from food wastes. Int. J. Hydrogen Energy 2018, 43, 10595–10604. [Google Scholar] [CrossRef]
- Patel, M.R.; Panwar, N.L. Development, process optimization and assessment of sustainable mobile biochar kiln for agricultural use. J. Clean. Prod. 2024, 477, 143866. [Google Scholar] [CrossRef]
- Ramírez, V.; Martí-Herrero, J.; Romero, M.; Rivadeneira, D. Energy use of Jatropha oil extraction wastes: Pellets from biochar and Jatropha shell blends. J. Clean. Prod. 2019, 215, 1095–1102. [Google Scholar] [CrossRef]
- Meng, F.; Wang, D.; Zhang, M. Effect of ultrasonic vibration-assisted pelleting of biomass on biochar properties. J. Clean. Prod. 2021, 279, 123900. [Google Scholar] [CrossRef]
- Awad, M.I.; Makkawi, Y.; Hassan, N.M. Yield and energy modeling for biochar and bio-oil using pyrolysis temperature and biomass constituents. ACS Omega 2024, 9, 18654–18667. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.; Park, J.; Ryu, C.; Gang, K.S.; Yang, W.; Park, Y.-K.; Jung, J.; Hyun, S. Comparison of biochar properties from biomass residues produced by slow pyrolysis at 500 C. Bioresour. Technol. 2013, 148, 196–201. [Google Scholar] [CrossRef] [PubMed]
- Gürel, K.; Magalhães, D.; Kazanç, F. The effect of torrefaction, slow, and fast pyrolysis on the single particle combustion of agricultural biomass and lignite coal at high heating rates. Fuel 2022, 308, 122054. [Google Scholar] [CrossRef]
- Sharma, T.; Hakeem, I.G.; Gupta, A.B.; Joshi, J.; Shah, K.; Vuppaladadiyam, A.K.; Sharma, A. Parametric influence of process conditions on thermochemical techniques for biochar production: A state-of-the-art review. J. Energy Inst. 2024, 113, 101559. [Google Scholar] [CrossRef]
- Al-Rumaihi, A.; Shahbaz, M.; Mckay, G.; Mackey, H.; Al-Ansari, T. A review of pyrolysis technologies and feedstock: A blending approach for plastic and biomass towards optimum biochar yield. Renew. Sustain. Energy Rev. 2022, 167, 112715. [Google Scholar] [CrossRef]
- Suriapparao, D.V.; Kumar, D.A.; Vinu, R. Microwave co-pyrolysis of PET bottle waste and rice husk: Effect of plastic waste loading on product formation. Sustain. Energy Technol. Assess. 2022, 49, 101781. [Google Scholar] [CrossRef]
- Nanda, S.; Rana, R.; Hunter, H.N.; Fang, Z.; Dalai, A.K.; Kozinski, J.A. Hydrothermal catalytic processing of waste cooking oil for hydrogen-rich syngas production. Chem. Eng. Sci. 2019, 195, 935–945. [Google Scholar] [CrossRef]
- Wang, C.; Li, L.; Shi, J.; Jin, H. Biochar production by coconut shell gasification in supercritical water and evolution of its porous structure. J. Anal. Appl. Pyrolysis 2021, 156, 105151. [Google Scholar] [CrossRef]
- Huo, W.; Zhou, Z.; Chen, X.; Dai, Z.; Yu, G. Study on CO2 gasification reactivity and physical characteristics of biomass, petroleum coke and coal chars. Bioresour. Technol. 2014, 159, 143–149. [Google Scholar] [CrossRef]
- Yan, W.; Hoekman, S.K.; Broch, A.; Coronella, C.J. Effect of hydrothermal carbonization reaction parameters on the properties of hydrochar and pellets. Environ. Prog. Sustain. Energy 2014, 33, 676–680. [Google Scholar] [CrossRef]
- Karimi, M.; Shirzad, M.; Silva, J.A.; Rodrigues, A.E. Biomass/Biochar carbon materials for CO2 capture and sequestration by cyclic adsorption processes: A review and prospects for future directions. J. CO2 Util. 2022, 57, 101890. [Google Scholar] [CrossRef]
- Kamali, M.; Appels, L.; Kwon, E.E.; Aminabhavi, T.M.; Dewil, R. Biochar in water and wastewater treatment-a sustainability assessment. Chem. Eng. J. 2021, 420, 129946. [Google Scholar] [CrossRef]
- Prabowo, J.; Lai, L.; Chivers, B.; Burke, D.; Dinh, A.H.; Ye, L.; Wang, Y.; Wang, Y.; Wei, L.; Chen, Y. Solid carbon co-products from hydrogen production by methane pyrolysis: Current understandings and recent progress. Carbon 2024, 216, 118507. [Google Scholar] [CrossRef]
- Koçer, A.T.; Erarslan, A.; Özçimen, D. Pyrolysis of Aloe vera leaf wastes for biochar production: Kinetics and thermodynamics analysis. Ind. Crops Prod. 2023, 204, 117354. [Google Scholar] [CrossRef]
- Xie, Y.; Wang, L.; Li, H.; Westholm, L.J.; Carvalho, L.; Thorin, E.; Yu, Z.; Skreiberg, Ø. A critical review on production, modification and utilization of biochar. J. Anal. Appl. Pyrolysis 2022, 161, 105405. [Google Scholar] [CrossRef]
- Tan, S.; Liu, W.; Qing, L.; Li, Y.; Ren, X. Evaluation on the ability of carbon capture, utilization and storage of cementitious pastes incorporated with CO2-free and CO2-saturated biochar. Constr. Build. Mater. 2025, 482, 141691. [Google Scholar] [CrossRef]
- Cumicheo, C.; Mac Dowell, N.; Shah, N. Natural gas and BECCS: A comparative analysis of alternative configurations for negative emissions power generation. Int. J. Greenh. Gas Control 2019, 90, 102798. [Google Scholar] [CrossRef]
- Pour, N.; Webley, P.A.; Cook, P.J. Opportunities for application of BECCS in the Australian power sector. Appl. Energy 2018, 224, 615–635. [Google Scholar] [CrossRef]
- Liu, S.H.; Huang, Y.Y. Valorization of coffee grounds to biochar-derived adsorbents for CO2 adsorption. J. Clean. Prod. 2018, 175, 354–360. [Google Scholar] [CrossRef]
- Zhang, J.; Gu, J.; Shan, R.; Yuan, H.; Chen, Y. Advances in thermochemical valorization of biomass towards carbon neutrality. Resour. Conserv. Recycl. 2025, 212, 107905. [Google Scholar] [CrossRef]
- Mukherjee, A.; Borugadda, V.B.; Dynes, J.J.; Niu, C.; Dalai, A.K. Carbon dioxide capture from flue gas in biochar produced from spent coffee grounds: Effect of surface chemistry and porous structure. J. Environ. Chem. Eng. 2021, 9, 106049. [Google Scholar] [CrossRef]
- Sierra, I.; Iriarte-Velasco, U.; Gamero, M.; Aguayo, A.T. Upgrading of sewage sludge by demineralization and physical activation with CO2: Application for methylene blue and phenol removal. Microporous Mesoporous Mater. 2017, 250, 88–99. [Google Scholar] [CrossRef]
- Zhang, J.; Li, Q.; Zhang, J.; Liu, H.; Wang, H.; Zhang, J. Enhanced CO2 absorption in amine-based carbon capture aided by coconut shell-derived nitrogen-doped biochar. Sep. Purif. Technol. 2025, 353, 128451. [Google Scholar] [CrossRef]
- Xu, X.; Kan, Y.; Zhao, L.; Cao, X. Chemical transformation of CO2 during its capture by waste biomass derived biochars. Environ. Pollut. 2016, 213, 533–540. [Google Scholar] [CrossRef]
- Li, Y.; Liu, N.; Zhang, T.; Wang, B.; Wang, Y.; Wang, L.; Wei, J. Highly microporous nitrogen-doped carbons from anthracite for effective CO2 capture and CO2/CH4 separation. Energy 2020, 211, 118561. [Google Scholar] [CrossRef]
- Dissanayake, P.D.; Choi, S.W.; Igalavithana, A.D.; Yang, X.; Tsang, D.C.; Wang, C.-H.; Kua, H.W.; Lee, K.B.; Ok, Y.S. Sustainable gasification biochar as a high efficiency adsorbent for CO2 capture: A facile method to designer biochar fabrication. Renew. Sustain. Energy Rev. 2020, 124, 109785. [Google Scholar] [CrossRef]
- Serafin, J.; Narkiewicz, U.; Morawski, A.W.; Wróbel, R.J.; Michalkiewicz, B. Highly microporous activated carbons from biomass for CO2 capture and effective micropores at different conditions. J. CO2 Util. 2017, 18, 73–79. [Google Scholar] [CrossRef]
- Bai, B.C.; Kim, E.A.; Lee, C.W.; Lee, Y.S.; Im, J.S. Effects of surface chemical properties of activated carbon fibers modified by liquid oxidation for CO2 adsorption. Appl. Surf. Sci. 2015, 353, 158–164. [Google Scholar] [CrossRef]
- Yin, C.; Shen, Y.; Zhu, N.; Huang, Q.; Lou, Z.; Yuan, H. Anaerobic digestion of waste activated sludge with incineration bottom ash: Enhanced methane production and CO2 sequestration. Appl. Energy 2018, 215, 503–511. [Google Scholar] [CrossRef]
- Madzaki, H.; KarimGhani, W.A.W.A. Carbon dioxide adsorption on sawdust biochar. Procedia Eng. 2016, 148, 718–725. [Google Scholar] [CrossRef]
- Li, K.; Niu, X.; Zhang, D.; Guo, H.; Zhu, X.; Yin, H.; Lin, Z.; Fu, M. Renewable biochar derived from mixed sewage sludge and pine sawdust for carbon dioxide capture. Environ. Pollut. 2022, 306, 119399. [Google Scholar] [CrossRef]
- Salem, I.B.; El Gamal, M.; Sharma, M.; Hameedi, S.; Howari, F.M. Utilization of the UAE date palm leaf biochar in carbon dioxide capture and sequestration processes. J. Environ. Manag. 2021, 299, 113644. [Google Scholar] [CrossRef]
- Eom, H.; Jeon, B.; Shin, D. An experimental study on the carbon adsorption performance of biochar for producing carbon-negative turquoise hydrogen. Int. J. Hydrogen Energy 2025, 106, 1322–1331. [Google Scholar] [CrossRef]
- Rahman, M.A.A.; Robin, H.M.; Hossain, M.S.; Aziz, M.; Mourshed, M. Transforming waste into clean energy: The future of hydrogen energy generation in Bangladesh. Int. J. Hydrogen Energy 2025, 136, 275–293. [Google Scholar] [CrossRef]
- Hossain, M.S.; Wasima, F.; Shawon, M.S.I.K.; Mourshed, M.; Das, B.K. Valorization of food waste into hydrogen energy through supercritical water gasification: Generation potential and techno-econo-environmental feasibility assessment. Renew. Energy 2024, 235, 121382. [Google Scholar] [CrossRef]
- Leong, Y.K.; Chen, W.H.; Lee, D.J.; Chang, J.S. Supercritical water gasification (SCWG) as a potential tool for the valorization of phycoremediation-derived waste algal biomass for biofuel generation. J. Hazard. Mater. 2021, 418, 126278. [Google Scholar] [CrossRef]
- Mishra, R.; Shu, C.M.; Ong, H.C.; Gollakota, A.R.; Kumar, S. Progress and development of biochar as a catalyst for hydrogen production. J. Clean. Prod. 2024, 477, 143853. [Google Scholar] [CrossRef]
- Yao, D.; Hu, Q.; Wang, D.; Yang, H.; Wu, C.; Wang, X.; Chen, H. Hydrogen production from biomass gasification using biochar as a catalyst/support. Bioresour. Technol. 2016, 216, 159–164. [Google Scholar] [CrossRef]
- Al-Rahbi, A.S.; Williams, P.T. Hydrogen-rich syngas production and tar removal from biomass gasification using sacrificial tyre pyrolysis char. Appl. Energy 2017, 190, 501–509. [Google Scholar] [CrossRef]
- Kazmi, B.; Sadiq, T.; Taqvi, S.A.A.; Nasir, S.; Khan, M.M.; Naqvi, S.R.; AlMohamadi, H. Towards a sustainable future: Bio-hydrogen production from food waste for clean energy generation. Process Saf. Environ. Prot. 2024, 183, 555–567. [Google Scholar] [CrossRef]
- Sugiarto, Y.; Sunyoto, N.M.; Zhu, M.; Jones, I.; Zhang, D. Effect of biochar in enhancing hydrogen production by mesophilic anaerobic digestion of food wastes: The role of minerals. Int. J. Hydrogen Energy 2021, 46, 3695–3703. [Google Scholar] [CrossRef]
- Liu, R.; Xiao, H.; Guan, S.; Zhang, J.; Yao, D. Technology and method for applying biochar in building materials to evidently improve the carbon capture ability. J. Clean. Prod. 2020, 273, 123154. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, W.; Jin, H.; Li, Z.; Liu, G.; Xing, F.; Tang, L. Exploring the carbon capture and sequestration performance of biochar-artificial aggregate using a new method. Sci. Total Environ. 2023, 859, 160423. [Google Scholar] [CrossRef]
- Gupta, S.; Kashani, A.; Mahmood, A.H. Carbon sequestration in engineered lightweight foamed mortar–Effect on rheology, mechanical and durability properties. Constr. Build. Mater. 2022, 322, 126383. [Google Scholar] [CrossRef]
- Zhang, Y.; Maierdan, Y.; Guo, T.; Chen, B.; Fang, S.; Zhao, L. Biochar as carbon sequestration material combines with sewage sludge incineration ash to prepare lightweight concrete. Constr. Build. Mater. 2022, 343, 128116. [Google Scholar] [CrossRef]
- Gupta, S. Carbon sequestration in cementitious matrix containing pyrogenic carbon from waste biomass: A comparison of external and internal carbonation approach. J. Build. Eng. 2021, 43, 102910. [Google Scholar] [CrossRef]
- Gupta, S.; Kashani, A. Utilization of biochar from unwashed peanut shell in cementitious building materials–Effect on early age properties and environmental benefits. Fuel Process. Technol. 2021, 218, 106841. [Google Scholar] [CrossRef]
- Mishra, G.; Danoglidis, P.A.; Shah, S.P.; Konsta-Gdoutos, M.S. Carbon capture and storage potential of biochar-enriched cementitious systems. Cem. Concr. Compos. 2023, 140, 105078. [Google Scholar] [CrossRef]
- Liu, J.; Liu, G.; Zhang, W.; Li, Z.; Xing, F.; Tang, L. Application potential analysis of biochar as a carbon capture material in cementitious composites: A review. Constr. Build. Mater. 2022, 350, 128715. [Google Scholar] [CrossRef]
- Sikora, P.; Woliński, P.; Chougan, M.; Madraszewski, S.; Węgrzyński, W.; Papis, B.K.; Federowicz, K.; Ghaffar, S.H.; Stephan, D. A systematic experimental study on biochar-cementitious composites: Towards carbon sequestration. Ind. Crops Prod. 2022, 184, 115103. [Google Scholar] [CrossRef]
- Li, Z.; Shi, X. Towards sustainable industrial application of carbon-negative concrete: Synergistic carbon-capture by concrete washout water and biochar. Mater. Lett. 2023, 342, 134368. [Google Scholar] [CrossRef]
- Igalavithana, A.D.; Choi, S.W.; Shang, J.; Hanif, A.; Dissanayake, P.D.; Tsang, D.C.; Kwon, J.-H.; Lee, K.B.; Ok, Y.S. Carbon dioxide capture in biochar produced from pine sawdust and paper mill sludge: Effect of porous structure and surface chemistry. Sci. Total Environ. 2020, 739, 139845. [Google Scholar] [CrossRef] [PubMed]
- Heo, Y.J.; Park, S.J. A role of steam activation on CO2 capture and separation of narrow microporous carbons produced from cellulose fibers. Energy 2015, 91, 142–150. [Google Scholar] [CrossRef]
- Mahmoud, Y.; Njenga, M.; Sundberg, C.; de Nowina, K.R. Soils, sinks, and smallholder farmers: Examining the benefits of biochar energy transitions in Kenya. Energy Res. Soc. Sci. 2021, 75, 102033. [Google Scholar] [CrossRef]
- Zhu, X.; Labianca, C.; He, M.; Luo, Z.; Wu, C.; You, S.; Tsang, D.C. Life-cycle assessment of pyrolysis processes for sustainable production of biochar from agro-residues. Bioresour. Technol. 2022, 360, 127601. [Google Scholar] [CrossRef]
- Khan, N.; Chowdhary, P.; Gnansounou, E.; Chaturvedi, P. Biochar and environmental sustainability: Emerging trends and techno-economic perspectives. Bioresour. Technol. 2021, 332, 125102. [Google Scholar] [CrossRef]
- Khan, S.R.; Ciolkosz, D.; Vasco-Correa, J.; Zeeshan, M. A techno-economic study to evaluate the impacts of feedstock ratio on commercial scale co-pyrolysis plants of biomass and waste tire. J. Anal. Appl. Pyrolysis 2022, 167, 105699. [Google Scholar] [CrossRef]
- Soka, O.; Oyekola, O. A feasibility assessment of the production of char using the slow pyrolysis process. Heliyon 2020, 6, e04346. [Google Scholar] [CrossRef]
- Premchand, P.; Demichelis, F.; Chiaramonti, D.; Bensaid, S.; Fino, D. Biochar production from slow pyrolysis of biomass under CO2 atmosphere: A review on the effect of CO2 medium on biochar production, characterisation, and environmental applications. J. Environ. Chem. Eng. 2023, 11, 110009. [Google Scholar] [CrossRef]
- Fawzy, S.; Osman, A.I.; Mehta, N.; Moran, D.; Al-Muhtaseb, A.A.H.; Rooney, D.W. Atmospheric carbon removal via industrial biochar systems: A techno-economic-environmental study. J. Clean. Prod. 2022, 371, 133660. [Google Scholar] [CrossRef]
- Guo, R.; Qian, R.; Naseer, M.A.; Han, F.; Zhang, P.; Jia, Z.; Chen, X.; Ren, X. Integrated straw-derived biochar utilization to increase net ecosystem carbon budget and economic benefit and reduce the environmental footprint. Field Crops Res. 2024, 307, 109247. [Google Scholar] [CrossRef]
- Sessions, J.; Smith, D.; Trippe, K.M.; Fried, J.S.; Bailey, J.D.; Petitmermet, J.H.; Hollamon, W.; Phillips, C.L.; Campbell, J.D. Can biochar link forest restoration with commercial agriculture? Biomass Bioenergy 2019, 123, 175–185. [Google Scholar] [CrossRef]
- Mohammadi, A.; Cowie, A.; Mai, T.L.A.; de la Rosa, R.A.; Brandão, M.; Kristiansen, P.; Joseph, S. Quantifying the greenhouse gas reduction benefits of utilising straw biochar and enriched biochar. Energy Procedia 2016, 97, 254–261. [Google Scholar] [CrossRef]
- Xiang, L.; Liu, S.; Ye, S.; Yang, H.; Song, B.; Qin, F.; Shen, M.; Tan, C.; Zeng, G.; Tan, X. Potential hazards of biochar: The negative environmental impacts of biochar applications. J. Hazard. Mater. 2021, 420, 126611. [Google Scholar] [CrossRef]
- Pauna, T.; Lehtinen, J.; Kujala, J.; Aaltonen, K. The role of governmental stakeholder engagement in the sustainability of industrial engineering projects. Int. J. Manag. Proj. Bus. 2023, 16, 77–99. [Google Scholar] [CrossRef]
- Roethlisberger, R.P.; Ez-Zahraouy, H. Oxidative pyrolysis of pellets from lignocellulosic anaerobic digestion residues and wood chips for biochar and syngas production. Fuel 2023, 350, 128824. [Google Scholar] [CrossRef]
System | CO2 Emission (t/MWh) | Avoided CO2 Emission (t/MW h) | Cost of Avoided CO2 Emission (USD/t) (USD 2018) | Cost in USD 2025 |
---|---|---|---|---|
LFG-CCS | −1.35 | 1.35 | 70 | 89.85 |
MSW-CCS | −0.89 | 0.94 | 78 | 100.12 |
BG-CCS | −1.32 | 1.32 | 76 | 97.55 |
FR-CCS | −1.29 | 1.29 | 69 | 88.57 |
Coal-CCS | 0.11 | 0.7 | 103 | 132.21 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Matarru, A.A.; Shin, D. Biochar Production Technology as a Negative Emission Strategy: A Review. Energies 2025, 18, 4898. https://doi.org/10.3390/en18184898
Matarru AA, Shin D. Biochar Production Technology as a Negative Emission Strategy: A Review. Energies. 2025; 18(18):4898. https://doi.org/10.3390/en18184898
Chicago/Turabian StyleMatarru, Andre Amba, and Donghoon Shin. 2025. "Biochar Production Technology as a Negative Emission Strategy: A Review" Energies 18, no. 18: 4898. https://doi.org/10.3390/en18184898
APA StyleMatarru, A. A., & Shin, D. (2025). Biochar Production Technology as a Negative Emission Strategy: A Review. Energies, 18(18), 4898. https://doi.org/10.3390/en18184898