Enhancing Yazd’s Combined Cycle Power Plant Performance Through Concentrated Solar Power Integration
Abstract
1. Introduction
2. Materials and Methods
2.1. Ambient Data
2.2. CCPP Model
2.3. CSP System
- Solar radiation (Direct Normal Irradiance—DNI): existing experiences indicate that the DNI value should be between 1800 and 2000 kWh/m2/year for the project to be economically justified;
- Access to suitable land: Flat, level land with a low slope (preferably < 1–2%) is needed for the deployment of the arrays;
- No shading by surrounding obstacles;
- The area required per MW is about 5 hectares;
- Access to water resources: water is required for steam cooling systems;
- Proximity to the power grid: a short distance to transmission lines or power substations to reduce connection costs;
- Access to infrastructure: Access roads for equipment transportation and maintenance operations;
- Unfavorable weather: areas with high cloud cover, dust, high humidity, or sandstorms are not suitable.
- Requirement of large, contiguous land: Scattered or difficult land acquisition can make the project difficult.
- High initial investment cost: Although the operating cost is low, a high CAPEX is one of the main obstacles.
- Challenges in thermal storage: For continuous operation during cloudy or night times, a thermal storage system (such as molten salt) is required, which is costly.
- Requirement of regular maintenance: Mirrors need to be cleaned regularly to prevent the loss of efficiency, especially in dusty areas.
3. Results
3.1. Temperature Sensitivity Analysis
3.2. Relative Humidity Sensitivity Analysis
3.3. Direct Normal Irradiance Sensitivity Analysis
3.4. Solar Field Size
4. Discussion
5. Conclusions
- A comparative analysis between power plants in Yazd and Seville revealed that while both experienced growths in power output and efficiency, the rate and manner of these increases varied. Specifically, Yazd exhibited higher efficiency due to lower humidity, while Seville demonstrated a higher power output due to greater solar irradiance. This underscores the importance of considering the ambient conditions of the power plant before proceeding with integration.
- The analysis further identified DNI as the primary criterion for selecting a suitable location for CSP integration. However, other factors, such as ambient temperature and relative humidity, also significantly influence the impact of DNI on the power plant’s performance.
- Results show that after a specific reflector length, the point of maximum power output, efficiency, and solar energy percentage will stay constant. This maximum value is 900 m for Yazd and 800 m for the Seville power plant.
- The authors of this paper recommend using a state-of-the-art thermal storage system to analyze the power plants’ performance and how the CSP stabilizes the power plants’ output throughout the year for future work.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
CSP | Concentrated Solar Power |
GTCC | Gas Turbine Compressor Cooling |
ISCC | Integrated Solar Combined Cycle |
HRSG | Heat Recovery Steam Generator |
CCPH | Combustion Chamber Preheating |
CCPP | Combined Cycle Power Plant |
PTC | Parabolic Trough Collector |
ST | Solar Tower |
References
- Nijsse, F.J.M.M.; Mercure, J.F.; Ameli, N.; Larosa, F.; Kothari, S.; Rickman, J.; Vercoulen, P.; Pollitt, H. The momentum of the solar energy transition. Nat. Commun. 2023, 14, 6542. [Google Scholar] [CrossRef] [PubMed]
- Ferruzzi, G.; Delcea, C.; Barberi, A.; Di Dio, V.; Di Somma, M.; Catrini, P.; Guarino, S.; Rossi, F.; Parisi, M.L.; Sinicropi, A.; et al. Concentrating Solar Power: The State of the Art, Research Gaps and Future Perspectives. Energies 2023, 16, 8082. [Google Scholar] [CrossRef]
- Chen, Q.; Wang, Y. Research Status and Development Trend of Concentrating Solar Power. In Proceedings of the 2020 9th International Conference on Renewable Energy Research and Application (ICRERA), Glasgow, UK, 27–30 September 2020; pp. 390–393. [Google Scholar]
- Yousef, B.A.A.; Obaideen, K.; AlMallahi, M.N.; Alajmi, N.; Radwan, A.; Al-Shihabi, S.; Elgendi, M. On the Contribution of Concentrated Solar Power (CSP) to the Sustainable Development Goals (SDGs): A Bibliometric Analysis. Energy Strategy Rev. 2024, 52, 101356. [Google Scholar] [CrossRef]
- International Energy Agency. Net Zero by 2050—A Roadmap for the Global Energy Sector; IEA: Paris, France, 2021. [Google Scholar]
- Gilmanova, A.; Wang, Z.; Gosens, J.; Lilliestam, J. Building an Internationally Competitive Concentrating Solar Power Industry in China: Lessons from Wind Power and Photovoltaics. Energy Sources Part B Econ. Plan. Policy 2021, 16, 515–541. [Google Scholar] [CrossRef]
- Palladino, V.; Di Somma, M.; Cancro, C.; Gaggioli, W.; De Lucia, M.; D’Auria, M.; Lanchi, M.; Bassetti, F.; Bevilacqua, C.; Cardamone, S.; et al. Innovative Industrial Solutions for Improving the Technical/Economic Competitiveness of Concentrated Solar Power. Energies 2024, 17, 360. [Google Scholar] [CrossRef]
- Aboelmaaref, M.M.; Zayed, M.E.; Li, Y.; Zhao, J.; Rehman, S.; Irshad, K.; Ali, E.S.; Alsaman, A.S. Performance assessment of hybrid adsorption/humidification-dehumidification desalination cycle powered by dish/stirling concentrated solar power system for sustainable freshwater production maximization. Process Saf. Environ. Prot. 2025, 193, 1094–1113. [Google Scholar] [CrossRef]
- Zayed, M.E.; Zhao, J.; Elsheikh, A.H.; Li, W.; Sadek, S.; Aboelmaaref, M.M. A comprehensive review on Dish/Stirling concentrated solar power systems: Design, optical and geometrical analyses, thermal performance assessment, and applications. J. Clean. Prod. 2021, 283, 124664. [Google Scholar] [CrossRef]
- Di Lorenzo, G.; Stracqualursi, E.; Vescio, G.; Araneo, R. State of the Art of Renewable Sources Potentialities in the Middle East: A Case Study in the Kingdom of Saudi Arabia. Energies 2024, 17, 1816. [Google Scholar] [CrossRef]
- Gokon, N. Progress in Concentrated Solar Power, Photovoltaics, and Integrated Power Plants Towards Expanding the Introduction of Renewable Energy in the Asia/Pacific Region. Curr. Sustain. Renew. Energy Rep. 2023, 10, 250–263. [Google Scholar] [CrossRef]
- Ghaithan, A.; Hadidi, L.; Mohammed, A. Techno-Economic Assessment of Concentrated Solar Power Generation in Saudi Arabia. Renew. Energy 2024, 220, 119623. [Google Scholar] [CrossRef]
- 9HA Gas Turbine|9HA.01 and 9HA.02|GE Vernova. Available online: https://www.gevernova.com/gas-power/products/gas-turbines/9ha (accessed on 9 June 2024).
- Arrieta, F.R.P.; Lora, E.E.S. Influence of Ambient Temperature on Combined-Cycle Power-Plant Performance. Appl. Energy 2005, 80, 261–272. [Google Scholar] [CrossRef]
- Rahman, M.M.; Ibrahim, T.K.; Abdalla, A.N. Thermodynamic Performance Analysis of Gas-Turbine Power-Plant. Int. J. Phys. Sci. 2011, 6, 3539–3550. [Google Scholar]
- Kotowicz, J.; Brzęczek, M. Analysis of Increasing Efficiency of Modern Combined Cycle Power Plant: A Case Study. Energy 2018, 153, 90–99. [Google Scholar] [CrossRef]
- Alberizzi, J.C.; Frigola, J.M.; Rossi, M.; Renzi, M. Optimal Sizing of a Hybrid Renewable Energy System: Importance of Data Selection with Highly Variable Renewable Energy Sources. Energy Convers. Manag. 2020, 223, 113303. [Google Scholar] [CrossRef]
- Nathan, G.J.; Jafarian, M.; Dally, B.B.; Saw, W.L.; Ashman, P.J.; Hu, E.; Steinfeld, A. Solar Thermal Hybrids for Combustion Power Plant: A Growing Opportunity. Prog. Energy Combust. Sci. 2018, 64, 4–28. [Google Scholar] [CrossRef]
- Bravo, H.J.; Ramos, J.C.; Celis, C. Cylindrical Parabolic Trough Concentrator and Solar Tower Comparison in an Integrated Solar Combined Cycle Power Plant. In Proceedings of the ASME 2019 Power Conference, Salt Lake City, UT, USA, 15–18 July 2019; p. V001T06A015. [Google Scholar]
- Talal, W.; Akroot, A. Exergoeconomic Analysis of an Integrated Solar Combined Cycle in the Al-Qayara Power Plant in Iraq. Processes 2023, 11, 656. [Google Scholar] [CrossRef]
- Talal, W.; Akroot, A. An Exergoeconomic Evaluation of an Innovative Polygeneration System Using a Solar-Driven Rankine Cycle Integrated with the Al-Qayyara Gas Turbine Power Plant and the Absorption Refrigeration Cycle. Machines 2024, 12, 133. [Google Scholar] [CrossRef]
- Amani, M.; Ghenaiet, A. Novel Hybridization of Solar Central Receiver System with Combined Cycle Power Plant. Energy 2020, 201, 117627. [Google Scholar] [CrossRef]
- Binamer, A.O. Al-Abdaliya Integrated Solar Combined Cycle Power Plant: Case Study of Kuwait, Part I. Renew. Energy 2019, 131, 923–937. [Google Scholar] [CrossRef]
- Darwish Ahmad, A.; Abubaker, A.M.; Najjar, Y.S.H.; Manaserh, Y.M.A. Power Boosting of a Combined Cycle Power Plant in Jordan: An Integration of Hybrid Inlet Cooling & Solar Systems. Energy Convers. Manag. 2020, 214, 112894. [Google Scholar] [CrossRef]
- AlKassem, A. A Performance Evaluation of an Integrated Solar Combined Cycle Power Plant with Solar Tower in Saudi Arabia. Renew. Energy Focus 2021, 39, 123–138. [Google Scholar] [CrossRef]
- Islam, M.T.; Huda, N.; Saidur, R. Current Energy Mix and Techno-Economic Analysis of Concentrating Solar Power (CSP) Technologies in Malaysia. Renew. Energy 2019, 140, 789–806. [Google Scholar] [CrossRef]
- Yousef, B.A.A.; Hachicha, A.A.; Rodriguez, I.; Abdelkareem, M.A.; Inyaat, A. Perspective on Integration of Concentrated Solar Power Plants. Int. J. Low Carbon Technol. 2021, 16, 1098–1125. [Google Scholar] [CrossRef]
- Rovira, A.; Barbero, R.; Ortega, G.; Subires, A.; Muñoz, M. Towards High Solar Contribution in Hybrid CSP-Combined Cycle Gas Turbine Plants. Int. J. Energy Res. 2023, 2023, 8289873. [Google Scholar] [CrossRef]
- Elmorsy, L.; Morosuk, T.; Tsatsaronis, G. Exergy-Based Analysis and Optimization of an Integrated Solar Combined-Cycle Power Plant. Entropy 2020, 22, 655. [Google Scholar] [CrossRef] [PubMed]
- Elmohlawy, A.E.; Ochkov, V.F.; Kazandzhan, B.I. Thermal Performance Analysis of a Concentrated Solar Power System (CSP) Integrated with Natural Gas Combined Cycle (NGCC) Power Plant. Case Stud. Therm. Eng. 2019, 14, 100458. [Google Scholar] [CrossRef]
- Bergantini Botamede, B.; Oliveira Salviano, L. Thermodynamic Analysis of Concentrated Solar Energy Layouts Integrated with Combined Power System. Appl. Therm. Eng. 2023, 229, 120618. [Google Scholar] [CrossRef]
- Boretti, A.; Al-Zubaidy, S. A case study on combined cycle power plant integrated with solar energy in Trinidad and Tobago. Sustain. Energy Technol. Assess. 2019, 32, 100–110. [Google Scholar] [CrossRef]
- Dadri ISCC Plant|Concentrating Solar Power Projects|NREL. Available online: https://solarpaces.nrel.gov/project/dadri-iscc-plant (accessed on 9 April 2024).
- Agua Prieta II|Concentrating Solar Power Projects|NREL. Available online: https://solarpaces.nrel.gov/project/agua-prieta-ii (accessed on 9 April 2024).
- City of Medicine Hat ISCC Project|Concentrating Solar Power Projects|NREL. Available online: https://solarpaces.nrel.gov/project/city-medicine-hat-iscc-project (accessed on 9 April 2024).
- ISCC Ain Beni Mathar|Concentrating Solar Power Projects|NREL. Available online: https://solarpaces.nrel.gov/project/iscc-ain-beni-mathar (accessed on 9 April 2024).
- ISCC Green Duba 1|Concentrating Solar Power Projects|NREL. Available online: https://solarpaces.nrel.gov/project/iscc-green-duba-1 (accessed on 9 April 2024).
- ISCC Kuraymat|Concentrating Solar Power Projects|NREL. Available online: https://solarpaces.nrel.gov/project/iscc-kuraymat (accessed on 9 April 2024).
- ISCC Waad Al Shamal|Concentrating Solar Power Projects|NREL. Available online: https://solarpaces.nrel.gov/project/iscc-waad-al-shamal (accessed on 9 April 2024).
- Deputy Office of Human Resources, Research, and Information Technology under the Iranian Ministry of Energy. Monthly Report on Water and Electricity Industry Statistics; Ministry of Energy: Tehran, Iran, 2024.
- Solar Resource Maps of Iran. Available online: https://solargis.com/maps-and-gis-data/download/iran (accessed on 9 June 2024).
- Statistics of Iran’s Electricity Industry for Strategic Management in 1400, Tavanir, under the Deputy Office of Research and Human Resources, within the Information Technology, Communications, and Statistics Department—Statistics and GIS Group. Esfand (February) 1400. Available online: www.moe.gov.ir (accessed on 30 April 2025).
- NSRDB. Available online: https://nsrdb.nrel.gov/ (accessed on 9 June 2024).
- Yazd, Yazd, Iran Weather Forecast|AccuWeather. Available online: https://www.accuweather.com/en/ir/yazd/211668/weather-forecast/211668 (accessed on 9 June 2024).
- Morales-Salinas, L.; Ortega-Farias, S.; Riveros-Burgos, C.; Chávez, J.L.; Wang, S.; Tian, F.; Carrasco-Benavides, M.; Neira-Román, J.; López-Olivari, R.; Fuentes-Jaque, G. Assessment of Atmospheric Emissivity Models for Clear-Sky Conditions with Reanalysis Data. Sci. Rep. 2023, 13, 14465. [Google Scholar] [CrossRef]
- 9E Gas Turbine (50 Hz)|9E.03/9E.04 Gas Turbine|GE Vernova. Available online: https://www.gevernova.com/gas-power/products/gas-turbines/9e (accessed on 9 June 2024).
- Alami, A.H.; Olabi, A.G.; Mdallal, A.; Rezk, A.; Radwan, A.; Rahman, S.M.A.; Shah, S.K.; Abdelkareem, M.A. Concentrating Solar Power (CSP) Technologies: Status and Analysis. Int. J. Thermofluids 2023, 18, 100340. [Google Scholar] [CrossRef]
- Manikandan, G.K.; Iniyan, S.; Goic, R. Enhancing the optical and thermal efficiency of a parabolic trough collector—A review. Appl. Energy 2019, 235, 1524–1540. [Google Scholar] [CrossRef]
- Fluid Selecting Resources|Therminol Heat Transfer Fluids. Available online: https://www.therminol.com/resources/fluid-selection (accessed on 19 July 2024).
- SolarPACES. CSP Projects Around the World; SolarPACES: Rioja, Spain, 2025. [Google Scholar]
- Lugand, P.; Parietti, C. Combined Cycle Plants with Frame 9F Gas Turbines. In Proceedings of the ASME 1990 International Gas Turbine and Aeroengine Congress and Exposition, American Society of Mechanical Engineers Digital Collection, Brussels, Belgium, 11–14 June 1990; ASME: New York, NY, USA, 2015. [Google Scholar] [CrossRef]
Project | Location | Start Year | Status | Nominal Capacity |
---|---|---|---|---|
Dadri ISCC Plant [33] | Dadri Uttar Pradesh India | 2019 | Operational | 14 MW |
Agua Prieta II [34] | Agua Prieta Sonora Mexico | 2017 | Operational | 12 MW |
City of Medicine Hat ISCC Project [35] | City of Medicine Hat Canada | 2014 | Operational | 1.1 MW |
ISCC Ain Beni Mathar [36] | Ain Beni Mathar Oriental Morocco | 2011 | Operational | 20 MW |
ISCC Green Duba 1 [37] | Duba Tabuk South Africa | 2023 | Under Construction | 43 MW |
ISCC Kuraymat [38] | Kuraymat Egypt | 2011 | Operational | 20 MW |
ISCC Waad Al Shamal [39] | Waad Al Shamal Saudi Arabia | 2018 | Operational | 50 MW |
Project Name | City | Coordinates | Annual DNI |
---|---|---|---|
CGN Delingha—50 MW Trough CSP Project | Delingha City, Qinghai, China | 37.356°, 097.271° | 2003.9 |
Planta Solar 10—PS10 CSP Project | Cañada Real de la Isla o del Cincho, Sanlúcar la Mayor, Andalusia, Spain | 37.442°, −006.25° | 2102.8 |
Solana Generating Station CSP Project | Gila Bend, Arizona, United State | 32.917°, −112.967° | 2778.3 |
Yazd ISCC CSP Project | Yazd, Iran | 31.9°, 54.3° | 1831.3 |
ISCC Ain Beni Mathar CSP Project | unnamed road, Bni Mathar, Morocco | 34.064°, −002.1° | 2082.2 |
Location Priority by DNI | Steam Power Plant Difference (MW) | Gas Power Plant Difference (MW) | Combined Cycle Power Plant Difference (MW) | Sum |
---|---|---|---|---|
Power Reduction for Power plants located in DNIs under 1900 | 205 | 813.5 | 1393 | 2411.5 |
Power Reduction for Power plants located in DNIs over 1900 | 103 | 942.9 | 2073.8 | 3119.7 |
Total Power Reduction | 308 | 1756.4 | 3466.8 | 5531.2 |
Inputs | Unit | Yazd | Seville |
---|---|---|---|
Ambient temperature | C | 29.89 | 31.6 |
Ambient relative humidity | % | 15.1 | 36.96 |
Site altitude | m | 1190 | 19 |
Configuration | Description |
---|---|
CONFIGURATION 1 | The main combined cycle power plant |
CONFIGURATION 2 | The main combined cycle power plant (The compressor’s inlet air is cooled via fogging) |
CONFIGURATION 3 | The CSP is integrated into the combined cycle power plant in the HRSG section |
CONFIGURATION 4 | The CSP is integrated into the combined cycle power plant in the HRSG section (The compressor’s inlet air is cooled via fogging) |
CONFIGURATION 5 | Compressor’s inlet is cooled via a chiller powered by CSP |
CONFIGURATION 6 | Utilizing CSP for preheating the combustion chamber’s inlet air |
CONFIGURATION 7 | Utilizing CSP for preheating the combustion chamber’s inlet air (The compressor’s inlet air is cooled via fogging) |
CONFIGURATION 8 | Utilizing CSP for preheating the combustion chamber’s inlet air and cooling the compressor’s inlet air using a CSP-powered chiller |
CONFIGURATION 9 | Integrating the CSP in the HRSG section and cooling the compressor’s inlet air using a CSP-powered chiller |
CONFIGURATION 10 | Utilizing CSP for preheating the combustion chamber’s inlet air and integrating the CSP into the HRSG section |
CONFIGURATION 11 | Utilizing CSP for preheating the combustion chamber’s inlet air and integrating the CSP into the HRSG section and cooling the compressor’s inlet air using a CSP-powered chiller. |
Parameter | Base Model (Summer Conditions) | Combined Cycle (ISO Conditions) [46,51] |
---|---|---|
Ambient Temperature (c) | 29.89 | 15 |
Ambient Pressure (bar) | 0.878 | 1.013 |
Elevation | 1190 | Sea elevation |
Turbine Power Output (MW) | 113.4 | 116.9 |
Turbine Efficiency (%) | 33.98% | 34.30% |
Combined Cycle Power (MW) | 167.7 | 205 |
Combined Cycle Efficiency (%) | 50.24% | 53.10% |
Scenario Type | Configuration | Net Cycle Power Output | Net Power Increase From Base Model | Net Electric Efficiency (LHV) | Gas Turbine Power Output | Input Fuel Total LHV | Total Heat Absorbed by CSP System |
---|---|---|---|---|---|---|---|
Without CSP | CONFIGURATION 1 | 153,881 | −13,856 | 50.17 | 102,256 | 306,745 | - |
CONFIGURATION 2 | 167,737 | 0 | 50.24 | 113,416 | 333,898 | - | |
With CSP Hybridization | CONFIGURATION 4 | 185,728 | 17,991 | 55.62 | 113,457 | 333,936 | 41,391 |
CONFIGURATION 3 | 185,775 | 18,038 | 55.4 | 102,257 | 335,346 | 41,403 | |
CONFIGURATION 5 | 157,403 | −10,334 | 49.75 | 105,376 | 323,380 | 7016 | |
CONFIGURATION 9 | 175,505 | 7768 | 55.47 | 105,416 | 323,402 | 48,412 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moradmand, A.; Soltani, M.; Ziaei Tabatabaei, S.; Haghparast Kashani, A.; Golmohammad, M.; Mahmoudpour, A.; Bandehee, M. Enhancing Yazd’s Combined Cycle Power Plant Performance Through Concentrated Solar Power Integration. Energies 2025, 18, 5368. https://doi.org/10.3390/en18205368
Moradmand A, Soltani M, Ziaei Tabatabaei S, Haghparast Kashani A, Golmohammad M, Mahmoudpour A, Bandehee M. Enhancing Yazd’s Combined Cycle Power Plant Performance Through Concentrated Solar Power Integration. Energies. 2025; 18(20):5368. https://doi.org/10.3390/en18205368
Chicago/Turabian StyleMoradmand, Alireza, M. Soltani, Saeid Ziaei Tabatabaei, Arash Haghparast Kashani, Mohammad Golmohammad, Alireza Mahmoudpour, and Mohammad Bandehee. 2025. "Enhancing Yazd’s Combined Cycle Power Plant Performance Through Concentrated Solar Power Integration" Energies 18, no. 20: 5368. https://doi.org/10.3390/en18205368
APA StyleMoradmand, A., Soltani, M., Ziaei Tabatabaei, S., Haghparast Kashani, A., Golmohammad, M., Mahmoudpour, A., & Bandehee, M. (2025). Enhancing Yazd’s Combined Cycle Power Plant Performance Through Concentrated Solar Power Integration. Energies, 18(20), 5368. https://doi.org/10.3390/en18205368