Green Growth’s Unintended Burden: The Distributional and Well-Being Impacts of China’s Energy Transition
Abstract
1. Introduction
2. Energy Transition and Individual Well-Being: An Analytical Framework
3. Hypothesis Development
4. Methods
4.1. Empirical Models
4.2. Data
5. Results
5.1. Benchmark Regression
5.2. Robustness Checks
5.2.1. Alternative Regression Model: OLS Model
5.2.2. Alternative Coding of Life Satisfaction
5.2.3. Implicit Marginal Rates of Substitution
5.3. Endogeneity Test
6. Additional Analyses
7. Discussion
8. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Stern, N. The Economics of Climate Change: The Stern Review; Cambridge University Press: Cambridge, UK, 2007. [Google Scholar]
- OECD. Towards Green Growth: Monitoring Progress; OECD Publishing: Paris, France, 2011. [Google Scholar]
- Michailidis, M.; Zafeiriou, E.; Kantartzis, A.; Galatsidas, S.; Arabatzis, G. Governance, Energy Policy, and Sustainable Development: Renewable Energy Infrastructure Transition in Developing MENA Countries. Energies 2025, 18, 2759. [Google Scholar] [CrossRef]
- Ravallion, M. Growth, inequality and poverty: Looking beyond averages. World Dev. 2001, 29, 1803–1815. [Google Scholar] [CrossRef]
- Weng, Z.; Xu, M.; Li, J.; Wu, X.; Xie, Y.; Tong, D. Carbon decoupling and drivers decomposition under the carbon neutrality target: Evidence from county-level cities in China. Resour. Conserv. Recycl. 2025, 222, 108465. [Google Scholar] [CrossRef]
- Wang, Q.; Fan, J.; Kwan, M.-P.; Zhou, K.; Shen, G.; Li, N.; Wu, B.; Lin, J. Examining energy inequality under the rapid residential energy transition in China through household surveys. Nat. Energy 2023, 8, 251–263. [Google Scholar] [CrossRef]
- Stiglitz, J.; Sen, A.K.; Fitoussi, J.-P. The Measurement of Economic Performance and Social Progress Revisited: Reflections and Overview; Ofce: Paris, France, 2009. [Google Scholar]
- Graham, K.; Knittel, C.R. Assessing the distribution of employment vulnerability to the energy transition using employment carbon footprints. Proc. Natl. Acad. Sci. USA 2024, 121, e2314773121. [Google Scholar] [CrossRef] [PubMed]
- Frijters, P.; Haisken-DeNew, J.P.; Shields, M.A. Money does matter! Evidence from increasing real income and life satisfaction in East Germany following reunification. Am. Econ. Rev. 2004, 94, 730–740. [Google Scholar] [CrossRef]
- Hanna, R.; Duflo, E.; Greenstone, M. Up in smoke: The influence of household behavior on the long-run impact of improved cooking stoves. Am. Econ. J. Econ. Policy 2016, 8, 80–114. [Google Scholar] [CrossRef]
- Duflo, E.; Kremer, M.; Robinson, J. How high are rates of return to fertilizer? Evidence from field experiments in Kenya. Am. Econ. Rev. 2008, 98, 482–488. [Google Scholar] [CrossRef]
- Acemoglu, D.; Aghion, P.; Bursztyn, L.; Hemous, D. The environment and directed technical change. Am. Econ. Rev. 2012, 102, 131–166. [Google Scholar] [CrossRef]
- MacKerron, G.; Mourato, S. Life satisfaction and air quality in London. Ecol. Econ. 2009, 68, 1441–1453. [Google Scholar] [CrossRef]
- Xie, T.; Yuan, Y.; Zhang, H. Information, awareness, and mental health: Evidence from air pollution disclosure in China. J. Environ. Econ. Manag. 2023, 120, 102827. [Google Scholar] [CrossRef]
- Yuan, R.; Ma, Q.; Zhang, Q.; Yuan, X.; Wang, Q.; Luo, C. Coordinated effects of energy transition on air pollution mitigation and CO2 emission control in China. Sci. Total Environ. 2022, 841, 156482. [Google Scholar] [CrossRef] [PubMed]
- Galimova, T.; Ram, M.; Breyer, C. Mitigation of air pollution and corresponding impacts during a global energy transition towards 100% renewable energy system by 2050. Energy Rep. 2022, 8, 14124–14143. [Google Scholar] [CrossRef]
- Shen, G.; Ru, M.; Du, W.; Zhu, X.; Zhong, Q.; Chen, Y.; Shen, H.; Yun, X.; Meng, W.; Liu, J.; et al. Impacts of air pollutants from rural Chinese households under the rapid residential energy transition. Nat. Commun. 2019, 10, 3405. [Google Scholar] [CrossRef] [PubMed]
- Troncoso, K.; Soares da Silva, A. LPG fuel subsidies in Latin America and the use of solid fuels to cook. Energy Policy 2017, 107, 188–196. [Google Scholar] [CrossRef]
- Kalli, R.; Jena, P.R.; Managi, S. Subsidized LPG Scheme and the Shift to Cleaner Household Energy Use: Evidence from a Tribal Community of Eastern India. Sustainability 2022, 14, 2450. [Google Scholar] [CrossRef]
- Chen, Y.; Shen, H.; Zhong, Q.; Chen, H.; Huang, T.; Liu, J.; Cheng, H.; Zeng, E.Y.; Smith, K.R.; Tao, S. Transition of household cookfuels in China from 2010 to 2012. Appl. Energy 2016, 184, 800–809. [Google Scholar] [CrossRef]
- Ma, W.; Vatsa, P.; Zheng, H. Cooking fuel choices and subjective well-being in rural China: Implications for a complete energy transition. Energy Policy 2022, 165, 112992. [Google Scholar] [CrossRef]
- Akter, S.; Pratap, C. Impact of clean cooking fuel adoption on women’s welfare in India: The mediating role of women’s autonomy. Sustain. Sci. 2022, 17, 243–257. [Google Scholar] [CrossRef]
- Gielen, D.; Boshell, F.; Saygin, D.; Bazilian, M.D.; Wagner, N.; Gorini, R. The role of renewable energy in the global energy transformation. Energy Strategy Rev. 2019, 24, 38–50. [Google Scholar] [CrossRef]
- Kabeyi, M.J.B.; Olanrewaju, O.A. Sustainable Energy Transition for Renewable and Low Carbon Grid Electricity Generation and Supply. Front. Energy Res. 2022, 9, 743114. [Google Scholar] [CrossRef]
- Kemfert, C.; Präger, F.; Braunger, I.; Hoffart, F.M.; Brauers, H. The expansion of natural gas infrastructure puts energy transitions at risk. Nat. Energy 2022, 7, 582–587. [Google Scholar] [CrossRef]
- Stringer, T.; Joanis, M. Assessing energy transition costs: Sub-national challenges in Canada. Energy Policy 2022, 164, 112879. [Google Scholar] [CrossRef]
- Ma, T.; Zhang, S.; Xiao, Y.; Liu, X.; Wang, M.; Wu, K.; Shen, G.; Huang, C.; Fang, Y.R.; Xie, Y. Costs and health benefits of the rural energy transition to carbon neutrality in China. Nat. Commun. 2023, 14, 6101. [Google Scholar] [CrossRef]
- Guan, Y.; Yan, J.; Shan, Y.; Zhou, Y.; Hang, Y.; Li, R.; Liu, Y.; Liu, B.; Nie, Q.; Bruckner, B.; et al. Burden of the global energy price crisis on households. Nat. Energy 2023, 8, 304–316. [Google Scholar] [CrossRef]
- Kahneman, D.; Wakker, P.P.; Sarin, R. Back to Bentham? Explorations of experienced utility. Q. J. Econ. 1997, 112, 375–406. [Google Scholar] [CrossRef]
- Bertram, C.; Rehdanz, K. The role of urban green space for human well-being. Ecol. Econ. 2015, 120, 139–152. [Google Scholar] [CrossRef]
- Krekel, C.; Zerrahn, A. Does the presence of wind turbines have negative externalities for people in their surroundings? Evidence from well-being data. J. Environ. Econ. Manag. 2017, 82, 221–238. [Google Scholar] [CrossRef]
- Menz, T. Do people habituate to air pollution? Evidence from international life satisfaction data. Ecol. Econ. 2011, 71, 211–219. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, X.; Chen, X. Valuing Air Quality Using Happiness Data: The Case of China. Ecol. Econ. 2017, 137, 29–36. [Google Scholar] [CrossRef]
- Zheng, S.; Wang, J.; Sun, C.; Zhang, X.; Kahn, M.E. Air pollution lowers Chinese urbanites’ expressed happiness on social media. Nat. Hum. Behav. 2019, 3, 237–243. [Google Scholar] [CrossRef]
- Zhang, L.; Xiao, Y.; Wu, Q.; Li, J. Will the use of solid fuels reduce the life satisfaction of rural residents—Evidence from China. Energy Sustain. Dev. 2022, 68, 94–102. [Google Scholar] [CrossRef]
- Welsch, H.; Biermann, P. Energy Affordability and Subjective Well-Being: Evidence for European Countries. Energy J. 2017, 38, 159–176. [Google Scholar] [CrossRef]
- Meng, W.; Zhong, Q.; Chen, Y.; Shen, H.; Yun, X.; Smith, K.R.; Li, B.; Liu, J.; Wang, X.; Ma, J.; et al. Energy and air pollution benefits of household fuel policies in northern China. Proc. Natl. Acad. Sci. USA 2019, 116, 16773–16780. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.; Zhu, Z.; Zhu, B.; Wang, P. The determinants of energy choice for household cooking in China. Energy 2022, 260, 124987. [Google Scholar] [CrossRef]
- Stoner, O.; Lewis, J.; Martinez, I.L.; Gumy, S.; Economou, T.; Adair-Rohani, H. Household cooking fuel estimates at global and country level for 1990 to 2030. Nat. Commun. 2021, 12, 5793. [Google Scholar] [CrossRef] [PubMed]
- Baetschmann, G.; Ballantyne, A.; Staub, K.E.; Winkelmann, R. feologit: A new command for fitting fixed-effects ordered logit models. Stata J. 2020, 20, 253–275. [Google Scholar] [CrossRef]
- Chen, Y.; Fan, Z.; Gu, X.; Zhou, L.-A. Arrival of Young Talent: The Send-Down Movement and Rural Education in China. Am. Econ. Rev. 2020, 110, 3393–3430. [Google Scholar] [CrossRef]
- Nie, P.; Li, Q.; Sousa-Poza, A. Energy poverty and subjective well-being in China: New evidence from the China Family Panel Studies. Energy Econ. 2021, 103, 105548. [Google Scholar] [CrossRef]
- Barrington-Leigh, C.; Baumgartner, J.; Carter, E.; Robinson, B.E.; Tao, S.; Zhang, Y. An evaluation of air quality, home heating and well-being under Beijing’s programme to eliminate household coal use. Nat. Energy 2019, 4, 416–423. [Google Scholar] [CrossRef]
- IEA. World Energy Outlook 2022; IEA: Paris, France, 2022. [Google Scholar]
- Mitchell, C. Momentum is increasing towards a flexible electricity system based on renewables. Nat. Energy 2016, 1, 15030. [Google Scholar] [CrossRef]
- Yang, Z.; Duan, J.; Fan, N. Towards carbon neutrality: The decoupling effect of industrial restructuring and non-fossil energy substitution on carbon emissions. Energy 2024, 308, 132787. [Google Scholar] [CrossRef]
- Jie, D.; Xu, X.; Guo, F. The future of coal supply in China based on non-fossil energy development and carbon price strategies. Energy 2021, 220, 119644. [Google Scholar] [CrossRef]
- Sun, C.; Yi, X.; Ma, T.; Cai, W.; Wang, W. Evaluating the optimal air pollution reduction rate: Evidence from the transmission mechanism of air pollution effects on public subjective well-being. Energy Policy 2022, 161, 112706. [Google Scholar] [CrossRef]
- Wang, M.; Zhou, T. Does smart city implementation improve the subjective quality of life? Evidence from China. Technol. Soc. 2023, 72, 102161. [Google Scholar] [CrossRef]
- Liu, X.; Yang, J.; Xu, C.; Li, X.; Zhu, Q. Environmental regulation efficiency analysis by considering regional heterogeneity. Resour. Policy 2023, 83, 103735. [Google Scholar] [CrossRef]
- Greenstone, M.; Hanna, R. Environmental regulations, air and water pollution, and infant mortality in India. Am. Econ. Rev. 2014, 104, 3038–3072. [Google Scholar] [CrossRef]
- Duflo, E.; Greenstone, M.; Hanna, R. Cooking stoves, indoor air pollution and respiratory health in rural Orissa. Econ. Political Wkly. 2008, 43, 71–76. [Google Scholar]
- Malakar, Y.; Day, R. Differences in firewood users’ and LPG users’ perceived relationships between cooking fuels and women’s multidimensional well-being in rural India. Nat. Energy 2020, 5, 1022–1031. [Google Scholar] [CrossRef]
- Ravallion, M. Are there lessons for Africa from China’s success against poverty? World Dev. 2009, 37, 303–313. [Google Scholar] [CrossRef]
- Energy Institute. Statistical Review of World Energy 2023; Energy Institute: London, UK, 2023. [Google Scholar]
- Blazquez, J.; Fuentes, R.; Manzano, B. On some economic principles of the energy transition. Energy Policy 2020, 147, 111807. [Google Scholar] [CrossRef]
- Mpholo, M.; Mothala, M.; Mohasoa, L.; Eager, D.; Thamae, R.; Molapo, T.; Jardine, T. Determination of the lifeline electricity tariff for Lesotho. Energy Policy 2020, 140, 111381. [Google Scholar] [CrossRef]
- Silva, R.D.d.S.E.; Oliveira, R.C.d.; Tostes, M.E.d.L. Analysis of the Brazilian energy efficiency program for electricity distribution systems. Energies 2017, 10, 1391. [Google Scholar] [CrossRef]
Variables | Definition | Obs | Mean | Std. Dev. | Min | Max |
---|---|---|---|---|---|---|
LS | Life satisfaction, ranging from 1 (very dissatisfied) to 5 (very satisfied) | 43,980 | 3.788 | 1.047 | 1 | 5 |
ET | Energy transition, indicated by the share of non-fire power generation | 43,980 | 0.248 | 0.228 | 0.006 | 0.911 |
Control variables at the individual level | ||||||
income | Personal annual total income | 43,356 | 61,167.37 | 91,953.55 | 0 | 6,033,600 |
age | >16 | 43,980 | 50.421 | 13.272 | 18 | 96 |
gender | 0 = female, 1 = male | 43,980 | 0.447 | 0.497 | 0 | 1 |
eduyear | Years of education | 43,774 | 6.879 | 4.558 | 0 | 19 |
ethnicity | 0 = others, 1 = Han nationality | 43,980 | 0.934 | 0.248 | 0 | 1 |
party | 0 = others, 1 = Communist Party member | 43,980 | 0.001 | 0.029 | 0 | 1 |
job | 0 = unemployed, 1 = employed | 43,980 | 0.754 | 0.430 | 0 | 1 |
urban | 0 = rural, 1 = city | 43,980 | 0.447 | 0.497 | 0 | 1 |
household | Household type, 0 = agricultural registered permanent residence, 1 = non-agricultural registered permanent residence | 43,922 | 0.246 | 0.430 | 0 | 1 |
married | 0 = others, 1 = married | 43,980 | 0.893 | 0.309 | 0 | 1 |
unmarried | 0 = others, 1 = unmarried | 43,980 | 0.039 | 0.195 | 0 | 1 |
divorced_wid | 0 = others, 1 = divorced or widowed | 43,980 | 0.068 | 0.251 | 0 | 1 |
health | Self-reported health status, ranging from 1 (unhealthy) to 5 (very healthy) | 43,980 | 2.854 | 1.225 | 1 | 5 |
confidence | Confidence for the future, ranging from 1 (very low) to 5 (very high) | 43,980 | 3.984 | 1.038 | 1 | 5 |
Control variables at the household level | ||||||
familysize | Number of family members | 43,980 | 4.160 | 1.904 | 1 | 21 |
Control variables at the provincial level | ||||||
GDP | Provincial GDP per capita | 43,980 | 53,263.55 | 25,535.75 | 19,710 | 164,889.5 |
Mediating variables | ||||||
AQI | Air quality index | 26,863 | 77.099 | 17.789 | 44.604 | 113.167 |
envi | Subjectively perceived level of environmental pollution, ranging from 0 (not serious) to 10 (very serious) | 43,980 | 6.257 | 2.801 | 0 | 10 |
cookfuel | 0 = Firewood, coal, or others, 1 = Gas, LPG, natural gas, solar, biogas, or electricity | 43,980 | 0.651 | 0.477 | 0 | 1 |
Call | Total annual energy costs for households | 43,154 | 2673.166 | 2891.327 | 0 | 84,400 |
Cheat | Annual heating costs for households | 43,980 | 322.762 | 854.373 | 0 | 24,400 |
Celec | Annual electricity costs for households | 43,980 | 104.239 | 120.519 | 0 | 3000 |
Cfuel | Annual fuel costs for households | 43,980 | 93.781 | 178.213 | 0 | 5000 |
Variables | Ologit | FE-Ologit | |||||
---|---|---|---|---|---|---|---|
(1) | (2) | (3) | (4) | (5) | (6) | ||
ET | 0.166 *** | 0.449 *** | 1.506 *** | 1.089 *** | 1.651 *** | 1.216 ** | |
(0.037) | (0.043) | (0.400) | (0.404) | (0.470) | (0.482) | (0.037) | |
Income 1 | 0.097 *** | 0.053 *** | 0.066 *** | 0.048 ** | 0.064 *** | ||
(0.000) | (0.000) | (0.000) | (0.000) | (0.000) | (0.000) | ||
Control variables | YES | YES | YES | YES | YES | ||
Observations | 43,980 | 43,096 | 73,711 | 73,711 | 73,711 | 73,711 | |
Person-fixed effects | YES | YES | YES | YES | |||
Province-fixed effects | YES | YES | |||||
Year-fixed effects | YES | YES |
Variables | Very Dissatisfied | Dissatisfied | Generally Satisfied | Satisfied | Very Satisfied |
---|---|---|---|---|---|
(LS = 1) | (LS = 2) | (LS = 3) | (LS = 4) | (LS = 5) | |
ET | −0.038 *** | −0.072 *** | −0.183 *** | 0.040 *** | 0.253 *** |
(0.015) | (0.029) | (0.072) | (0.016) | (0.100) | |
Income 1 | −0.002 *** | −0.004 *** | −0.010 *** | 0.002 *** | 0.013 *** |
(0.000) | (0.000) | (0.000) | (0.000) | (0.000) | |
eduyear | 0.001 ** | 0.002 ** | 0.004 ** | −0.001 ** | −0.006 ** |
(0.000) | (0.000) | (0.000) | (0.000) | (0.000) | |
married | −0.011 *** | −0.021 *** | −0.052 *** | 0.012 *** | 0.073 *** |
(0.003) | (0.006) | (0.016) | (0.003) | (0.022) | |
health | −0.005 *** | −0.010 *** | −0.024 *** | 0.005 *** | 0.034 *** |
(0.000) | (0.001) | (0.002) | (0.000) | (0.003) |
Variables | (1) | (2) | (3) |
---|---|---|---|
ET | 0.435 *** | 0.677 *** | 0.555 *** |
(0.142) | (0.165) | (0.165) | |
Income 1 | 0.009 ** | 0.006 | 0.009 ** |
(0.000) | (0.000) | (0.000) | |
Constant | 2.641 *** | −1.373 *** | 2.368 *** |
(0.669) | (0.307) | (0.709) | |
Observations | 43,096 | 43,096 | 43,096 |
R-squared | 0.281 | 0.267 | 0.281 |
Number of pid | 9952 | 9952 | 9952 |
Control variables | YES | YES | YES |
Person-fixed effects | YES | YES | YES |
Province-fixed effects | YES | YES | |
Year-fixed effects | YES | YES |
Variables | Logit | Xtlogit | ||||||
---|---|---|---|---|---|---|---|---|
(1) | (2) | (3) | (4) | (5) | (6) | (7) | ||
ET | 0.216 *** | 0.623 *** | 0.170 *** | 1.257 *** | 0.988 ** | 1.748 *** | 1.523 *** | |
(0.043) | (0.055) | (0.058) | (0.472) | (0.483) | (0.566) | (0.583) | (0.043) | |
Income 1 | 0.242 *** | 0.174 *** | 0.055 ** | 0.071 ** | 0.049 * | 0.069 * | ||
(0.000) | (0.000) | (0.000) | (0.000) | (0.000) | (0.000) | (0.000) | ||
Constant | 0.368 *** | −5.280 *** | −4.949 *** | |||||
(0.014) | (0.184) | (0.187) | ||||||
Observations | 43,980 | 43,096 | 43,096 | 30,440 | 30,440 | 30,440 | 30,440 | |
Control variables | YES | YES | YES | YES | YES | YES | ||
Number of pid | 6759 | 6759 | 6759 | 6759 | ||||
Person-fixed effects | YES | YES | YES | YES | ||||
Province-fixed effects | YES | YES | ||||||
Year-fixed effects | YES | YES | YES |
Variables | OLS | 2SLS | |
---|---|---|---|
LS | First Stage | Second Stage | |
ET | 0.555 *** | 0.100 *** | |
(0.165) | (0.03) | ||
Recapacity | 0.0001 *** | ||
(0.00) | |||
Control Variables | YES | YES | YES |
Year-fixed effects | YES | YES | YES |
F-statistic | 9001.40 *** | ||
R-squared | 0.281 | 0.720 | 0.342 |
Variables | (1) | (2) | (3) | (4) | (5) |
---|---|---|---|---|---|
LS | AQI | Envi | Cookfuel | Call | |
ET | 1.216 ** | −75.678 *** | −0.917 ** | 1.599 ** | 1413.823 ** |
(0.482) | (1.240) | (0.411) | (0.743) | (661.740) | |
Income 1 | 0.064 *** | −0.032 *** | −0.053 *** | 0.359 *** | 70.190 *** |
(0.000) | (0.000) | (0.000) | (0.000) | (0.000) | |
Constant | 113.217 *** | 5224.457 ** | |||
(1.014) | (2338.302) | ||||
Observations | 73,711 | 26,445 | 220,852 | 15,272 | 34,451 |
R-squared | 0.031 | ||||
Control variables | YES | YES | YES | YES | YES |
Person-fixed effects | YES | YES | YES | YES | YES |
Year-fixed effects | YES | YES | YES | YES | YES |
Province-fixed effects | YES | YES | YES | YES | YES |
Variables | Income | Urban | Region | |||||
---|---|---|---|---|---|---|---|---|
(1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | |
Low | Middle | High | Rural | Urban | Eastern | Central | Western | |
ET | 3711.832 *** | −723.895 | −2310.876 * | 2149.801 *** | −802.569 | 30.621 | −1446.329 * | −868.702 |
(1208.621) | (981.754) | (1260.646) | (765.772) | (681.521) | (820.814) | (867.890) | (1070.391) | |
Constant | 1306.396 | 1877.490 | 6423.409 ** | 2369.548 | 8698.440 | 945.411 | 8741.785 ** | 3908.261 |
(4115.473) | (3021.367) | (3105.298) | (1497.160) | (5723.977) | (2889.303) | (3935.267) | (2607.269) | |
Observations | 13,976 | 14,101 | 14,222 | 23,452 | 18,847 | 17,977 | 10,370 | 11,447 |
R-squared | 0.040 | 0.047 | 0.043 | 0.045 | 0.048 | 0.072 | 0.077 | 0.019 |
Control variables | YES | YES | YES | YES | YES | YES | YES | YES |
Person-fixed effects | YES | YES | YES | YES | YES | YES | YES | YES |
Year-fixed effects | YES | YES | YES | YES | YES | YES | YES | YES |
Province-fixed effects | YES | YES | YES | YES | YES | YES | YES | YES |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, L.; Sheng, J. Green Growth’s Unintended Burden: The Distributional and Well-Being Impacts of China’s Energy Transition. Energies 2025, 18, 5367. https://doi.org/10.3390/en18205367
Liu L, Sheng J. Green Growth’s Unintended Burden: The Distributional and Well-Being Impacts of China’s Energy Transition. Energies. 2025; 18(20):5367. https://doi.org/10.3390/en18205367
Chicago/Turabian StyleLiu, Li, and Jichuan Sheng. 2025. "Green Growth’s Unintended Burden: The Distributional and Well-Being Impacts of China’s Energy Transition" Energies 18, no. 20: 5367. https://doi.org/10.3390/en18205367
APA StyleLiu, L., & Sheng, J. (2025). Green Growth’s Unintended Burden: The Distributional and Well-Being Impacts of China’s Energy Transition. Energies, 18(20), 5367. https://doi.org/10.3390/en18205367