Identification of Oil Vertical Migration Through Tectonic Fractures: A New Insight into the Oil Migration Process in the Central Ordos Basin, China
Abstract
:1. Introduction
2. Geological Background
2.1. Tectonic–Sedimentary Evolution
2.2. Source–Reservoir–Cap Condition
2.3. Faults
3. Samples and Methods
4. Results
4.1. Fracture Characteristics
4.2. N-Alkane and Isoprenoid Alkanes
4.3. Terpanes
4.4. Steranes
4.5. Pyrrolic Nitrogen Compounds
5. Discussion
5.1. Oil Source
5.2. Identification of Oil Vertical Migration Through Faults or Tectonic Fractures
5.2.1. Evidence from the Light Fraction of Crude Oils
5.2.2. Evidence from the Maturity of Crude Oils
5.2.3. Evidence from the Nitrogen Compounds in Crude Oils
5.2.4. Evidence from the Spatial Distribution of Oil Reservoirs
5.3. Pathways for Oil Vertical Migration
5.4. Oil Migration Process Within the Mesozoic Petroleum System
6. Conclusions
- (1)
- Lots of tectonic fractures, but no faults, were observed in the YcF and YaF cores. A total of 77% of the YcF cores contain tectonic fractures, while 31% of the YaF cores contain them. The NE-SW trending fault zone across the northern Zhijing area is characterized by longer longitudinal extension and a greater apparent density of tectonic fracture than the zones in the southern area. A total of 81% of the tectonic fractures are filled by predominant calcite cements, but only 2% of the tectonic fractures contain solid bitumen.
- (2)
- The studied oils are all originated from the same oil source, and the maturities of the YaF and YcF oils are similar. However, compared with the YcF oils, the YaF oils show disordered nC18-distribution and “mismatches” at n-undecane, as well as decrease in toluene/n-heptane ratios. These differences are not related to the oil source and thermal maturity but are associated with the oil migration process. The rapid vertical migration through faults or tectonic fractures is expected to cause the separation and re-mixing of light and heavy fractions of the migrating oils.
- (3)
- The 1/4-MC, 1,8/2,7-DMC, and Ts/Tm values of the YaF oils are all disordered in spatial distribution without clear variation trends. These distribution patterns do not support a long-distance lateral migration for the oils from the paleo-rivers but can be well explained by the oil vertical migration through faults or tectonic fractures.
- (4)
- Areas occupied by YaF oil reservoirs lack YcF oil reservoirs, and vice versa. This spatial complementarity resulted from vertical oil migration from the YcF to YaF.
- (5)
- Once the migrating oils in the YcF encounter opened tectonic fractures or the YcF oil reservoirs are destroyed by the later-formed tectonic fractures, oil vertical migration from the YcF to YaF would occur. This study offers new insights into the oil migration processes within the Mesozoic petroleum system of the Ordos Basin and refines the previous accumulation model for the YaF oils.
- (6)
- The method, which comprehensively analyzes the characteristics of the light fractions, maturity, nitrogen compounds of crude oils, and the spatial distribution of oil reservoirs, provides effective evidence for demonstrating oil vertical migration through tectonic fractures. It can clarify the oil migration pathways and is of great significance for oil exploration.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Odling, N.E.; Webman, I. A “conductance” mesh approach to the permeability of natural and simulated fracture patterns. Water Resour. Res. 1991, 27, 2633–2643. [Google Scholar] [CrossRef]
- Hennings, P.; Allwardt, P.; Paul, P.; Zahm, C.; Reid, R.; Alley, H.; Kirschner, R.; Lee, B.; Hough, E. Relationship between fractures, fault zones, stress, and reservoir productivity in the Suban gas field, Sumatra, Indonesia. AAPG Bull. 2012, 96, 753–772. [Google Scholar] [CrossRef]
- Zeng, L.; Tang, X.; Wang, T.; Gong, L. The influence of fracture cements in tight Paleogene saline lacustrine carbonate reservoirs, western Qaidam Basin, northwest China. AAPG Bull. 2012, 96, 2003–2017. [Google Scholar] [CrossRef]
- Ju, W.; Wu, C.; Wang, K.; Sun, W.; Li, C.; Chang, X. Prediction of tectonic fractures in low permeability sandstone reservoirs: A case study of the Es3m reservoir in the Block Shishen 100 and adjacent regions, Dongying depression. J. Pet. Sci. Eng. 2017, 156, 884–895. [Google Scholar] [CrossRef]
- Zhang, X.; Shi, W.; Hu, Q.; Zhai, G.; Wang, R.; Xu, X.; Meng, F.; Liu, Y.; Bai, L. Developmental characteristics and controlling factors of natural fractures in the lower paleozoic marine shales of the upper Yangtze Platform, southern China. J. Nat. Gas Sci. Eng. 2020, 76, 103191. [Google Scholar] [CrossRef]
- Liu, G.; Zeng, L.; Zhu, R.; Gong, L.; Ostadhassan, M.; Mao, Z. Effective fractures and their contribution to the reservoirs in deep tight sandstones in the Kuqa Depression, Tarim Basin, China. Mar. Pet. Geol. 2021, 124, 104824. [Google Scholar] [CrossRef]
- Laubach, S.E.; Ward, M.E. Diagenesis in porosity evolution of opening-mode fractures, Middle Triassic to Lower Jurassic La Boca Formation, NE Mexico. Tectonophysics 2006, 419, 75–97. [Google Scholar] [CrossRef]
- Yao, J.; Zhao, Y.; Liu, G.; Qi, Y.; Li, Y.; Luo, A.; Zhang, X. Formation patterns of Chang 9 oil reservoir in Triassic Yanchang Formation, Ordos Basin, NW China. Pet. Explor. Dev. 2018, 45, 389–401. [Google Scholar] [CrossRef]
- Laubach, S.; Marrett, R.; Olson, J. New directions in fracture characterization. Geophysics 2000, 19, 673–816. [Google Scholar] [CrossRef]
- Pudji, P.; Taufan, M.; Sesila, N.; Kharisma, I. Identification and characterization of microfractures in carbonate samples. Pet. Explor. Dev. 2022, 49, 366–376. [Google Scholar]
- Peacock, D.; Mann, A. Evaluation of the controls on fracturing in reservoir rocks. J. Pet. Geol. 2006, 28, 385–396. [Google Scholar] [CrossRef]
- Zeng, L.; Song, Y.; Liu, G.; Tan, X.; Xu, X.; Yao, Y.; Mao, Z. Natural fractures in ultra-deep reservoirs of China: A review. J. Struct. Geol. 2023, 175, 104954. [Google Scholar] [CrossRef]
- Marrett, R.; Laubach, S.E.; Kim, K. Diagenetic controls on fracture permeability and sealing. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 1997, 34, 204–409. [Google Scholar] [CrossRef]
- Luczaj, J.A.; Harrison, W.B.I.; Smith Williams, N. Fractured hydrothermal dolomite reservoirs in the Devonian Dundee formation of the central Michigan Basin. AAPG Bull. 2006, 90, 1787–1801. [Google Scholar] [CrossRef]
- Prioul, R.; Jocker, J. Fracture characterization at multiple scales using borehole images, sonic logs, and walkaround vertical seismic profile. AAPG Bull. 2009, 93, 1503–1516. [Google Scholar] [CrossRef]
- Zeng, L.; Lyu, W.; Li, J.; Zhu, L.; Weng, J.; Yue, F.; Zu, K. Natural fractures and their influence on shale gas enrichment in Sichuan Basin, China. J. Nat. Gas Sci. Eng. 2016, 30, 1–9. [Google Scholar] [CrossRef]
- Lin, F.; Bodnar, R.J.; Becker, S.P. Experimental determination of the Raman CH4 symmetric stretching (ν1) band position from 1–650bar and 0.3–22 °C: Application to fluid inclusion studies. Geochim. Cosmochim. Acta 2007, 71, 3746–3756. [Google Scholar] [CrossRef]
- Lu, W.; Chou, I.; Burruss, R.C.; Song, Y. A unified equation for calculating methane vapor pressures in the CH4–H2O system with measured Raman shifts. Geochim. Cosmochim. Acta 2007, 71, 3969–3978. [Google Scholar] [CrossRef]
- Chen, Z.; Yang, Y.; Wang, T.G.; Cheng, B.; Li, M.; Luo, B.; Chen, Y.; Ni, Z.; Yang, C.; Chen, T.; et al. Dibenzothiophenes in solid bitumens: Use of molecular markers to trace paleo-oil filling orientations in the Lower Cambrian reservoir of the Moxi–Gaoshiti Bulge, Sichuan Basin, southern China. Org. Geochem. 2017, 108, 94–112. [Google Scholar] [CrossRef]
- Yuan, Z. Research on Sedimentary Facies of Jurassic Yan’an Formation and Disciplinarian of Accumulation Oil & Gas in Ansai oilfield of Ordos Basin. Master’s Thesis, Northwest University, Xi’an, China, 2007. [Google Scholar]
- Dai, T.Y. Relation Between Pre-Jurassic Paleogeomorphology and Hydrocarbon Accumulation in Zhenyuan Area. Master’s Thesis, Chengdu University of Technology, Chengdu, China, 2016. [Google Scholar]
- Fu, J.H.; Dong, G.D.; Zhou, X.P.; Hui, X.; Dan, W.D.; Fan, L.Y.; Wang, Y.G.; Zhang, H.T.; Gu, Y.H.; Zhou, G.X. Research progress of petroleum geology and exploration technology in Ordos Basin. China Pet. Explor. 2021, 26, 19–40. [Google Scholar]
- Zhang, C.L.; Liu, X.S.; Yang, Y.J.; Yu, J.; Han, T.Y.; Zhang, Y. Petroleum exploration history and enlightenment of Changqing oilfield in Ordos Basin. Xinjiang Pet. Geol. 2021, 42, 253–263. [Google Scholar]
- Pu, L.; Liu, Y.N.; Liu, W.; Zhou, S.X.; Xin, H.G.; Li, J.H. Pre-Jurassic paleogeomorphology characteristics and its reservoir control in northern Shaanxi Area of Ordos Basin. J. Yangtze Univ. (Nat. Sci. Ed.) 2022, 19, 22–31. [Google Scholar]
- Zhao, D.L.; Bai, Y.B.; Zhang, H. Characteristics and accumulation mechanisms of Yan 9 reservoir in Jingbian oilfield, Ordos Basin. Xinjiang Geol. 2022, 40, 388–393. [Google Scholar]
- Qu, H.; Yang, B.; Gao, S.; Zhao, J.; Han, X.; Chen, S.; Hayat, K. Controls on hydrocarbon accumulation by facies and fluid potential in large-scale lacustrine petroliferous basins in compressional settings: A case study of the Mesozoic Ordos Basin, China. Mar. Pet. Geol. 2020, 122, 104668. [Google Scholar] [CrossRef]
- Wang, Q. Reservoir Characteristics and Main Controlling Factors of Jurassic Yan’an Formation in Wuqi-Ansai Area. Master’s Thesis, Chang’an University, Xi’an, China, 2021. [Google Scholar]
- Liang, J.W. Research on Sedimentary System and Squence Stratigraphy of the Jurassic in Ordos Basin. Ph.D. Thesis, Northwest University, Xi’an, China, 2007. [Google Scholar]
- Su, F.Y.; Zhou, W.; Jin, W.H.; Deng, H.C.; Liu, Y. Identification and distribution of the Mesozoic plays in Ordos Basin. Oil Gas Geol. 2012, 33, 582–590. [Google Scholar]
- Liu, C.Y.; Zhao, H.G.; Gui, X.J.; Yue, P.L.; Zhao, J.F.; Wang, J.Q. Space-time coordinate of the evolution and reformation and mineralization response in Ordos Basin. Acta Geol. Sin. 2006, 80, 617–638. [Google Scholar]
- Ji, L.; Yan, K.; Meng, F.; Zhao, M. The oleaginous botryococcus from the Triassic Yanchang formation in Ordos Basin, northwestern China: Morphology and its paleoenvironmental significance. J. Asian Earth Sci. 2010, 38, 175–185. [Google Scholar] [CrossRef]
- Zou, C.; Zhang, X.; Luo, P.; Wang, L.; Luo, Z.; Liu, L. Shallow-lacustrine sand-rich deltaic depositional cycles and sequence stratigraphy of the Upper Triassic Yanchang Formation, Ordos Basin, China. Basin Res. 2010, 22, 108–125. [Google Scholar]
- Yang, H.; Deng, X. Deposition of Yanchang Formation deep-water sandstone under the control of tectonic events in the Ordos Basin. Pet. Explor. Dev. 2013, 40, 549–557. [Google Scholar] [CrossRef]
- Li, W.H.; Liu, X.; Zhang, Q.; Guo, Y.; Li, K.Y.; Yuan, Z.; Wang, Y.; Ma, Y.; Bai, J.L.; Yang, B.; et al. Deposition evolution of Middle-Late Triassic Yanchang formation in Ordos Basin. J. Northwest Univ. (Nat. Sci. Ed.) 2019, 49, 605–621. [Google Scholar]
- Zhai, M.G. Ordos Block (Basin) is a key to understand early continental evolution and tectonic regime of the North China Craton. Chin. Sci. Bull. 2021, 66, 3441–3461. [Google Scholar] [CrossRef]
- Zhang, W.Z.; Yang, H.; Hou, L.H.; Liu, F. Distribution and geological significance of 17α(H)-diahopanes from different hydrocarbon source rocks of Yanchang Formation in Ordos Basin. Geochimica 2009, 39, 1438–1445. [Google Scholar] [CrossRef]
- Zhou, S.Y. Evaluation of the Chang 7 and Chang 9 Hydrocarbon Source Rocks and Oil Genesis Study in the Zhoujiawan-Gaoqiao Area of the Ordos Basin. Master’s Thesis, Southwest Petroleum University, Chengdu, China, 2017. [Google Scholar]
- Liao, Q. Effective Source Rock and Its Control to Crude Oil in the Chang 7 Member of the Ordos Basin. Master’s Thesis, China University of Petroleum, Beijing, China, 2019. [Google Scholar]
- Liang, X.W.; Wang, H.H.; Niu, X.B.; Wang, C.Y.; Feng, S.B. Evaluation and oil-source correlation of Yanchang formation source rocks in the central-western Ordos Basin. Chengdu Univ. Technol. Acad. J. Cent. 2011, 38, 402–407. [Google Scholar]
- Shi, B.H.; Zhang, Y.; Chen, J.; Zhang, L. Characteristics and geological significane of fluid inclusions in Mesozoic reservoirs in Dingbian area, Ordos Basin. Acta Pet. Sin. 2014, 35, 1087–1094. [Google Scholar]
- Dong, J.C.; Wang, A.G.; Fan, Z.Q.; Sun, B.; Pu, L.; Liu, P.F.; Hu, R.; Zhang, W.G. Origin and dominated factors of Chang 7 Member tight reservoirs in Yanchang formation, central Ordos Basin. Fault-Block Oil Gas Field 2021, 28, 446–451, (In Chinese with English Abstract). [Google Scholar]
- Zhao, W.Z.; Hu, S.Y.; Wang, Z.C.; Dong, D.Z. The control mechanism of basement faults in the petroleum accumulation of the Upper Triassic Yanchang formation in the Ordos Basin. Pet. Explor. Dev. 2003, 30, 1–5. [Google Scholar]
- Ma, R.Y.; Zhu, H.P.; Zhang, D.F.; Pan, A.F. Basement faults and their recent activity in Ordos Basin. J. Earth Sci. Environ. 2009, 31, 400–408. [Google Scholar]
- Wu, Z.Q. Analysis on the Relationship Between Faults and Mesozoic and Paleozoic Oil and Gas Reservoirs in Ordos Basin. Master’s Thesis, Northwest University, Xi’an, China, 2020. [Google Scholar]
- Du, Z.Y. Influence of Mesozoic Faults on Hydrocarbon Accumulation Conditions in the Southern Ordos Basin. Master’s Thesis, China University of Petroleum, East China, Qingdao, China, 2020. [Google Scholar]
- Yang, Z.; Wang, A.; Meng, P.; Chen, M.; Guo, K.; Zhu, N. Combined use of in-reservoir geological records for oil-reservoir destruction identification: A case study in the Jingbian area (Ordos Basin, China). Front. Earth Sci. 2023, 11, 1133539. [Google Scholar] [CrossRef]
- Wang, A.; Wang, Z.; Li, L.; Fan, C.; Zhang, K.; Xiang, B.; Zhou, N.; Wang, Y. Hydrocarbon migration in the multiple-sourced petroleum system in the northwestern Junggar Basin (northwestern China): Constraint from geochemical and phase fractionation analysis. AAPG Bull. 2019, 103, 2247–2284. [Google Scholar] [CrossRef]
- Pollard, D.D.; Segall, P. 8–Theoretical displacements and stresses near fractures in rock: With applications to faults, joints, veins, dikes, and solution surfaces. In Fracture Mechanics of Rock; Academic Press: London, UK, 1987. [Google Scholar]
- Herrera-Herrera, A.V.; Leierer, L.; Jambrina-Enríquez, M.; Connolly, R.; Mallol, C. Evaluating different methods for calculating the Carbon Preference Index (CPI): Implications for palaeoecological and archaeological research. Org. Geochem. 2020, 146, 104056. [Google Scholar] [CrossRef]
- Luo, X.Y.; Zhao, Z.J.; Meng, Y.L. Application of an odd/even predominance of n-alkanes in oil–source rock correlation: Taking the lower Paleozoic strata of the Tarim Basin as an example. Toxicol. Environ. Chem. 2015, 97, 409–416. [Google Scholar]
- Kissin, Y.V. Catagenesis and composition of petroleum: Origin of n-alkanes and isoalkanes in petroleum crudes. Geochim. Cosmochim. Acta 1987, 51, 2445–2457. [Google Scholar] [CrossRef]
- Li, B.; Xu, Y.D.; Han, J.P.; Tang, X.Q. The distributing characteristics of mole concentration of n-alkanes in crude oil in the northern Tarim Basin and its geochemistry meanings. J. Oil Gas Technol. 2010, 32, 13–17. [Google Scholar]
- Peters, K.; Huizinga, B.; Kontorovich, A.; Andrusevich, V.; Moldowan, J.; Demaison, G.; Stasova, O. Geochemistry of selected oils and rocks from the central portion of the West Siberian Basin, Russia. AAPG Bull. 1993, 77, 863–887. [Google Scholar]
- Abdel-Fattah, M.I.; Reda, M.; Fathy, M.; Saadawi, D.A.; Alshehri, F.; Ahmed, M.S. Oil-source correlation and Paleozoic source rock analysis in the Siwa Basin, Western Desert: Insights from well-logs, Rock-Eval pyrolysis, and biomarker data. Energy Geosci. 2024, 5, 100298. [Google Scholar] [CrossRef]
- Farrimond, P.; Bevan, J.C.; Bishop, A.N. Tricyclic terpane maturity parameters: Response to heating by an igneous intrusion. Org. Geochem. 1999, 30, 1011–1019. [Google Scholar] [CrossRef]
- Peters, K.E.; Moldowan, J.M. The Biomarker Guide: Interpreting Molecular Fossils in Petroleum and Ancient Sediments; Prentice Hall: Englewood Cliffs, NJ, USA, 1992. [Google Scholar]
- Seifert, W.K.; Moldowan, J.M. Use of biological markers in petroleum exploration. Methods Geochem. Geophys. 1986, 24, 261–290. [Google Scholar]
- Peters, K.E.; Walters, C.C.; Moldowan, J.M. The Biomarker Guide: Volume 1: Biomarkers and Isotopes in the Environment and Human History; Cambridge University Press: Cambridge, UK, 2004; Volume 1. [Google Scholar]
- Moldowan, J.M.; Fago, F.J.; Carlson, R.M.K.; Young, D.C.; An Duvne, G.; Clardy, J.; Schoell, M.; Pillinger, C.T.; Watt, D.S. Rearranged hopanes in sediments and petroleum. Geochim. Cosmochim. Acta 1991, 55, 3333–3353. [Google Scholar] [CrossRef]
- Volkman, J.K. A review of sterol markers for marine and terrigenous organic matter. Org. Geochem. 1986, 9, 83–99. [Google Scholar] [CrossRef]
- Zhang, H.; Lei, H.W.; Zhang, T.; Bai, Y.B. Geochemical characteristics of Yan 9 crude oil and oil-source correlation in western Jingbian Oil Field, Ordos Basin. Pet. Geol. Exp. 2018, 40, 836–842. [Google Scholar]
- Fan, B.J.; Mei, Q.L.; Wang, X.J.; Meng, Y.; Huang, Q.J. Geochemical comparison of mudstone and shale-A case study of the 7th member of Yanchang Formation in Ansai area, Ordos Basin. Oil Gas Geol. 2020, 41, 1119–1128. [Google Scholar]
- Han, Z.H. Study on Source Rock and Reservoir Forming Dynamic of Chang 7 Member in Qilicun Oilfield, Ordos Basin. Master’s Thesis, Xi’an Shiyou University, Xi’an, China, 2020. [Google Scholar]
- Wang, A.G.; Li, C.Y.; Jing, X.H.; Pu, L.; Yang, Z.G. Difference, origin and oil source significance of tricyclic terpenes in Chang 7 source rocks in Ordos Basin. J. China Univ. Pet. (Ed. Nat. Sci.) 2023, 47, 48–59. [Google Scholar]
- Dong, L.H.; Du, Y.J.; Li, J.; He, B. Biomarker characteristics of hydrocarbon source rocks of Yanchang Formation in central Ordos Basin. J. Xi’an Univ. Sci. Technol. 2018, 38, 604–610. [Google Scholar]
- Meulbroek, P.; Cathles, L.; Whelan, J. Phase fractionation at south Eugene Island Block 330. Org. Geochem. 1998, 29, 223–239. [Google Scholar] [CrossRef]
- Losh, S.; Cathles, L.; Meulbroek, P.; Macleod, G. Gas washing of oil along a regional transect, offshore Louisiana. Org. Geochem. 2002, 33, 655–663. [Google Scholar] [CrossRef]
- Hasinger, M.; Scherr, K.E.; Lundaa, T.; Bräuer, L.; Zach, C.; Loibner, A.P. Changes in iso- and n-alkane distribution during biodegradation of crude oil under nitrate and sulphate reducing conditions. J. Biotechnol. 2012, 157, 490–498. [Google Scholar] [CrossRef]
- Zhu, G.Y.; Zhang, B.T.; Yang, H.J.; Su, J.; Liu, K.Y.; Zhu, Y.F. Secondary alteration to ancient oil reservoirs by late gas filling in the Tazhong area, Tarim Basin. J. Pet. Sci. Eng. 2014, 122, 240–256. [Google Scholar] [CrossRef]
- Thompson, K.F.M. Fractionated aromatic petroleums and the generation of gas-condensates. Org. Geochem. 1987, 11, 573–590. [Google Scholar] [CrossRef]
- England, W.A.; Mackenzie, A.S.; Mann, D.M.; Quigley, T.M. The movement and entrapment of petroleum fluids in the subsurface. J. Geol. Soc. 1987, 144, 327–347. [Google Scholar] [CrossRef]
- Yamamoto, M.; Taguchi, K.; Sasaki, K.; Curiale, J.A.; Alexander, R.; Brooks, P.W. Basic nitrogen compounds in bitumen and crude oils. Chem. Geol. 1991, 93, 193–206. [Google Scholar] [CrossRef]
- Carvalho Dias, L.; Bomfim Bahia, P.V.; Nery Do Amaral, D.; Machado, M.E. Nitrogen compounds as molecular markers: An overview of analytical methodologies for its determination in crude oils and source rock extracts. Microchem. J. 2020, 157, 105039. [Google Scholar] [CrossRef]
Member | Oil Sample | Well | A | B | C | D | E | F | G | H | I | J | K |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Yan 9 | ZJ-18 | L25 | 1.09 | 0.37 | 0.30 | 1.24 | 1.37 | 1.08 | 0.98 | 0.27 | 0.07 | 0.09 | 1.41 |
ZJ-19 | DZ6497 | 1.13 | 0.56 | 0.44 | 1.34 | 1.47 | 1.24 | 0.94 | 0.31 | 0.08 | 0.09 | 1.00 | |
ZJ-20 | DZ6222 | 1.12 | 0.39 | 0.29 | 1.37 | 1.44 | 1.14 | 1.06 | 0.34 | 0.09 | 0.09 | 1.12 | |
ZJ-21 | ZC103 | 1.12 | 0.46 | 0.32 | 1.40 | 1.41 | 1.16 | 1.15 | 0.37 | 0.09 | 0.10 | 1.71 | |
ZJ-22 | ZC10–34 | 1.11 | 0.58 | 0.42 | 1.30 | 1.42 | 1.22 | 0.81 | 0.28 | 0.07 | 0.09 | 0.92 | |
ZJ-23 | X61 | 1.12 | 0.47 | 0.36 | 1.30 | 1.40 | 1.15 | 1.01 | 0.30 | 0.08 | 0.09 | 0.97 | |
ZJ-24 | JT828 | 1.12 | 0.90 | 0.69 | 1.33 | 1.24 | 0.98 | 1.12 | 0.34 | 0.09 | 0.09 | 1.53 | |
ZJ-25 | JT 609 | 1.12 | 0.39 | 0.29 | 1.38 | 1.37 | 1.13 | 0.96 | 0.31 | 0.08 | 0.09 | 1.03 | |
ZJ-26 | JT 811 | 1.16 | 0.48 | 0.40 | 1.23 | 1.43 | 1.22 | 0.62 | 0.21 | 0.02 | 0.08 | 0.89 | |
ZJ-27 | JT 955 | 1.13 | 0.43 | 0.32 | 1.39 | 1.34 | 1.11 | 1.11 | 0.35 | 0.09 | 0.09 | 1.14 | |
ZJ-28 | JT 472 | 1.13 | 0.43 | 0.33 | 1.38 | 1.31 | 1.09 | 1.15 | 0.34 | 0.09 | 0.09 | 1.14 | |
ZJ-29 | X60–3 | 1.13 | 0.40 | 0.30 | 1.36 | 1.43 | 1.21 | 1.20 | 0.36 | 0.08 | 0.09 | 1.44 | |
ZJ-30 | JT 592 | 1.13 | 0.42 | 0.31 | 1.41 | 1.46 | 1.29 | 1.17 | 0.33 | 0.09 | 0.09 | 1.14 | |
Yan 10 | ZJ-12 | WC28–115–1 | 1.10 | 0.52 | 0.42 | 1.20 | 1.46 | 1.22 | 0.69 | 0.24 | 0.05 | 0.09 | 0.89 |
ZJ-13 | WC28–99–3 | 1.10 | 0.36 | 0.29 | 1.25 | 1.43 | 1.15 | 0.69 | 0.23 | 0.05 | 0.09 | 0.89 | |
ZJ-14 | W190 | 1.11 | 0.35 | 0.27 | 1.34 | 1.36 | 1.07 | 0.85 | 0.27 | 0.08 | 0.09 | 1.00 | |
ZJ-15 | DT6138 | 1.12 | 0.49 | 0.38 | 1.31 | 1.41 | 1.16 | 1.09 | 0.33 | 0.09 | 0.09 | 1.30 | |
ZJ-16 | DT6515 | 1.13 | 0.41 | 0.30 | 1.39 | 1.43 | 1.26 | 1.08 | 0.32 | 0.08 | 0.09 | 0.92 | |
ZJ-17 | ZC2 | 1.13 | 0.48 | 0.37 | 1.33 | 1.38 | 1.13 | 1.22 | 0.35 | 0.09 | 0.09 | 1.06 | |
Chang 4 + 5 | ZJ-10 | Z354 | 1.09 | 0.37 | 0.33 | 1.18 | 1.36 | 1.15 | 0.38 | 0.16 | 0.02 | 0.08 | 0.84 |
ZJ-11 | Y87–01 | 1.14 | 0.46 | 0.40 | 1.18 | 1.32 | 1.09 | 0.51 | 0.20 | 0.02 | 0.08 | 0.97 | |
Chang 6 | ZJ-1 | Z311 | 1.08 | 0.30 | 0.27 | 1.13 | 1.41 | 1.20 | 0.93 | 0.28 | 0.10 | 0.10 | 0.92 |
ZJ-2 | WC49–1774 | 1.10 | 0.83 | 0.64 | 1.26 | 1.40 | 1.20 | 0.98 | 0.28 | 0.08 | 0.09 | 1.21 | |
ZJ-3 | JT332 | 1.13 | 0.40 | 0.34 | 1.21 | 1.37 | 1.17 | 0.71 | 0.23 | 0.06 | 0.09 | 0.87 | |
ZJ-4 | X14–01 | 1.10 | 0.35 | 0.28 | 1.29 | 1.28 | 1.07 | 0.82 | 0.26 | 0.08 | 0.09 | 1.24 | |
ZJ-5 | F893 | 1.11 | 0.33 | 0.26 | 1.30 | 1.37 | 1.17 | 1.06 | 0.28 | 0.08 | 0.09 | 0.80 | |
ZJ-6 | Z386 | 1.09 | 0.32 | 0.27 | 1.23 | 1.44 | 1.19 | 0.86 | 0.24 | 0.05 | 0.09 | 0.85 | |
ZJ-7 | ST17 | 1.12 | 0.33 | 0.25 | 1.32 | 1.32 | 1.24 | 1.93 | 0.51 | 0.14 | 0.10 | 0.97 | |
ZJ-8 | Y84–05 | 1.14 | 0.46 | 0.39 | 1.20 | 1.36 | 1.18 | 0.52 | 0.21 | 0.02 | 0.09 | 0.90 | |
ZJ-9 | X143–02 | 1.11 | 0.34 | 0.27 | 1.31 | 1.41 | 1.22 | 0.77 | 0.25 | 0.07 | 0.09 | 0.92 |
Member | Well | 1-MC ng/mg | 4-MC ng/mg | 1/4-MC | 1,8-DMC ng/mg | 2,7-DMC ng/mg | 1,8/2,7-DMC |
---|---|---|---|---|---|---|---|
Yan 9 | JT609 | 1.07 | 0.42 | 2.57 | 2.59 | 1.24 | 2.09 |
DZ6497 | 1.23 | 0.49 | 2.53 | 3.11 | 1.55 | 2.00 | |
DZ6222 | 0.83 | 0.40 | 2.05 | 1.79 | 0.93 | 1.92 | |
ZC103 | 0.39 | 0.15 | 2.52 | 0.79 | 0.40 | 1.96 | |
ZC10–34 | 0.81 | 0.34 | 2.39 | 2.52 | 1.17 | 2.16 | |
JT828 | 0.54 | 0.27 | 1.98 | 1.58 | 0.83 | 1.89 | |
JT955 | 1.61 | 0.64 | 2.52 | 3.21 | 2.01 | 1.60 | |
JT472 | 1.64 | 0.60 | 2.74 | 3.24 | 1.84 | 1.76 | |
X60–3 | 1.24 | 0.47 | 2.66 | 2.71 | 1.59 | 1.71 | |
JT592 | 1.41 | 0.54 | 2.63 | 3.14 | 1.81 | 1.73 | |
Yan 10 | W190 | 1.26 | 0.48 | 2.60 | 2.92 | 1.33 | 2.19 |
DT6138 | 0.28 | 0.12 | 2.43 | 0.50 | 0.24 | 2.07 | |
DT6515 | 0.43 | 0.15 | 2.85 | 0.88 | 0.39 | 2.27 | |
ZC2 | 1.74 | 0.70 | 2.47 | 3.67 | 2.33 | 1.58 | |
Chang 6 | Z311 | 5.16 | 2.34 | 2.21 | 7.88 | 4.82 | 1.64 |
WC49–17 | 1.37 | 0.53 | 2.57 | 3.27 | 1.34 | 2.44 | |
ZT332 | 4.56 | 1.70 | 2.68 | 6.98 | 2.98 | 2.34 | |
X14–01 | 4.04 | 1.58 | 2.55 | 6.04 | 2.91 | 2.08 | |
F893 | 2.76 | 1.06 | 2.60 | 4.35 | 2.53 | 1.72 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ren, Y.; Wang, A.; Du, Y.; Li, C.; Wang, B.; Li, Z.; Wang, J.; Wei, J. Identification of Oil Vertical Migration Through Tectonic Fractures: A New Insight into the Oil Migration Process in the Central Ordos Basin, China. Energies 2025, 18, 283. https://doi.org/10.3390/en18020283
Ren Y, Wang A, Du Y, Li C, Wang B, Li Z, Wang J, Wei J. Identification of Oil Vertical Migration Through Tectonic Fractures: A New Insight into the Oil Migration Process in the Central Ordos Basin, China. Energies. 2025; 18(2):283. https://doi.org/10.3390/en18020283
Chicago/Turabian StyleRen, Yiwei, Aiguo Wang, Yanjun Du, Chunyu Li, Bianyang Wang, Zilong Li, Jie Wang, and Jinxiang Wei. 2025. "Identification of Oil Vertical Migration Through Tectonic Fractures: A New Insight into the Oil Migration Process in the Central Ordos Basin, China" Energies 18, no. 2: 283. https://doi.org/10.3390/en18020283
APA StyleRen, Y., Wang, A., Du, Y., Li, C., Wang, B., Li, Z., Wang, J., & Wei, J. (2025). Identification of Oil Vertical Migration Through Tectonic Fractures: A New Insight into the Oil Migration Process in the Central Ordos Basin, China. Energies, 18(2), 283. https://doi.org/10.3390/en18020283