Modeling and Optimization of Nanofluid-Based Shaft Cooling for Automotive Electric Motors
Abstract
1. Introduction
2. Methodology
2.1. Statement of the Problem
2.2. Governing Equations
3. Meshing
4. Numerical Solution Method and Validation
5. Discussion and Results
5.1. Flow and Temperature Fields
5.2. Effect of Helical Fins on the Flow Field
5.3. Effect of Adding Nanoparticles
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- IPCC. Climate Change 2023—Synthesis Report, Summary for Policymakers. Available online: https://www.ipcc.ch/report/ar6/syr/downloads/report/IPCC_AR6_SYR_SPM.pdf (accessed on 23 September 2025).
- Dornoff, J. CO2 Emission Standards for New Passenger Cars and Vans in the European Union. ICCT, Policy Update, May 2023. Available online: https://theicct.org/publication/eu-co2-standards-cars-vans-may23 (accessed on 2 September 2025).
- IEA, Transport Sector CO2 Emissions by Mode in the Sustainable Development Scenario—2000–2030, Paris. Available online: https://www.iea.org/data-and-statistics/charts/transport-sector-co2-emissions-by-mode-in-the-sustainable-development-scenario-2000-2030 (accessed on 29 August 2025).
- Di Battista, D.; Di Bartolomeo, M.; Cipollone, R. Full energy recovery from exhaust gases in a turbocharged diesel engine. Energy Convers. Manag. 2022, 271, 116280. [Google Scholar] [CrossRef]
- Fatigati, F.; Di Giovine, G.; Cipollone, R. Feasibility Assessment of a Dual Intake-Port Scroll Expander Operating in an ORC-Based Power Unit. Energies 2022, 15, 770. [Google Scholar] [CrossRef]
- Di Giovine, G.; Di Bartolomeo, M.; Cipollone, R. An innovative triple-screw pump for engine cooling in the road transportation sector. Energy 2024, 304, 132001. [Google Scholar] [CrossRef]
- Di Giovine, G.; Di Battista, D.; Cipollone, R. The Effects of the Oil Temperature Warm-Up on Engine Fuel Consumption; SAE Technical Paper 2024-01-2411. SAE Int. J. Adv. Curr. Pract. Mobil. 2024, 7, 693–705. [Google Scholar] [CrossRef]
- Sellnau, M.; Hoyer, K.; Moore, W.; Foster, M.; Sinnamon, J.; Klemm, W. Advancement of GDCI Engine Technology for US 2025 CAFE and Tier 3 Emissions; SAE Technical Paper 2018-01-0901; SAE: Warrendale, PA, USA, 2018. [Google Scholar] [CrossRef]
- Arsie, I.; Battistoni, M.; Brancaleoni, P.P.; Cipollone, R.; Corti, E.; Di Battista, D.; Millo, F.; Occhicone, A.; Peiretti Paradisi, B.; Rolando, L.; et al. A New Generation of Hydrogen-Fueled Hybrid Propulsion Systems for the Urban Mobility of the Future. Energies 2024, 17, 34. [Google Scholar] [CrossRef]
- Perrone, D.; Falbo, B.; Falbo, L.; Castiglione, T. Effects of Fuel and Intake Air Temperatures on Ethanol Evaporation under Cold and Warm Conditions in a Diesel-Derived Heavy-Duty SI Engine. SAE Technical Paper 2025-24-0076. In Proceedings of the 17th International Conference on Engines and Vehicles, Capri, Italy, 14–17 September 2025. [Google Scholar] [CrossRef]
- Bieker, G. A Global Comparison of the Life-Cycle Greenhouse Gas Emissions of Combustion Engine and Electric Passenger Cars, White Paper, ICCT, July 2021. Available online: https://theicct.org/publication/a-global-comparison-of-the-life-cycle-greenhouse-gas-emissions-of-combustion-engine-and-electric-passenger-cars/ (accessed on 23 September 2025).
- Bibra, E.; Connelly, E.; Dhir, S.; Drtil, M.; Henriot, P.; Hwang, I.; Marois, J.-B.; McBain, S.; Aryanpur, V.; Paoli, L.; et al. Global EV Outlook 2022: Securing Supplies for an Electric Future; International Energy Agency: Paris, France, 2022. [Google Scholar]
- Olabi, A.G.; Abdelkareem, M.A.; Wilberforce, T.; Alkhalidi, A.; Salameh, T.; Abo-Khalil, A.G.; Hassan, M.M.; Sayed, E.T. Battery electric vehicles: Progress, power electronic converters, strength (S), weakness (W), opportunity (O), and threats (T). Int. J. Thermofluids 2022, 16, 100212. [Google Scholar] [CrossRef]
- Tian, J.; Fan, Y.; Pan, T.; Zhang, X.; Yin, J.; Zhang, Q. A critical review on inconsistency mechanism, evaluation methods and improvement measures for lithium-ion battery energy storage systems. Renew. Sustain. Energy Rev. 2024, 189, 113978. [Google Scholar] [CrossRef]
- Ghaeminezhad, N.; Wang, Z.; Ouyang, Q. A Review on lithium-ion battery thermal management system techniques: A control-oriented analysis. Appl. Therm. Eng. 2023, 219, 119497. [Google Scholar] [CrossRef]
- Zhao, G.; Wang, X.; Negnevitsky, M.; Li, C. An up-to-date review on the design improvement and optimization of the liquid-cooling battery thermal management system for electric vehicles. Appl. Therm. Eng. 2023, 219, 119626. [Google Scholar] [CrossRef]
- Ruan, H.; Barreras, J.V.; Engstrom, T.; Merla, Y.; Millar, R.; Wu, B. Lithium-ion battery lifetime extension: A review of derating methods. J. Power Sources 2023, 563, 232805. [Google Scholar] [CrossRef]
- Zheng, S.; Zhu, X.; Xiang, Z.; Xu, L.; Zhang, L.; Lee, C.H.T. Technology trends, challenges, and opportunities of reduced-rare-earth PM motor for modern electric vehicles. Green Energy Intell. Transp. 2022, 1, 100012. [Google Scholar] [CrossRef]
- Previati, G.; Mastinu, G.; Gobbi, M. Thermal Management of Electrified Vehicles—A Review. Energies 2022, 15, 1326. [Google Scholar] [CrossRef]
- Wang, X.; Li, B.; Gerada, D.; Huang, K.; Stone, I.; Worrall, S.; Yan, Y. A critical review on thermal management technologies for motors in electric cars. Appl. Therm. Eng. 2022, 201, 117758. [Google Scholar] [CrossRef]
- Gundabattini, E.; Kuppan, R.; Solomon, D.G.; Kalam, A.; Kothari, D.P.; Bakar, R.A. A review on methods of finding losses and cooling methods to increase efficiency of electric machines. Ain Shams Eng. J. 2021, 12, 497–505. [Google Scholar] [CrossRef]
- Raj, J.A.P.S.; Asirvatham, L.G.; Angeline, A.A.; Manova, S.; Rakshith, B.L.; Bose, J.R.; Mahian, O.; Wongwises, S. Thermal management strategies and power ratings of electric vehicle motors. Renew. Sustain. Energy Rev. 2024, 189, 113874. [Google Scholar] [CrossRef]
- Hanselman, D.D. Brushless Permanent Magnet Motor Design, 2nd ed.; Magna Physics Publishing: Cranston, RI, USA, 2003; pp. 34–38. ISBN 1-881855-15-5. [Google Scholar]
- Carriero, A.; Locatelli, M.; Ramakrishnan, K.; Mastinu, G.; Gobbi, M. A Review of the State of the Art of Electric Traction Motors Cooling Techniques; SAE Technical Paper 2018-01-0057; SAE: Warrendale, PA, USA, 2018. [Google Scholar] [CrossRef]
- Melka, B.; Smolka, J.; Hetmanczyk, J.; Lasek, P. Numerical and experimental analysis of heat dissipation intensification from electric motor. Energy 2019, 182, 269–279. [Google Scholar] [CrossRef]
- Sun, Y.; Zhang, S.; Yuan, W.; Tang, Y.; Li, J.; Tang, K. Applicability study of the potting material based thermal management strategy for permanent magnet synchronous motors. Appl. Therm. Eng. 2019, 149, 1370–1378. [Google Scholar] [CrossRef]
- Deriszadeh, A.; De Monte, F.; Villani, M. Numerical Thermal Performance Investigation of an Electric Motor Passive Cooling System Employing Phase Change Materials. In Proceedings of the ASME, 2021 Heat Transfer Summer Conference, Online, 16–18 June 2021; p. V001T08A006. [Google Scholar] [CrossRef]
- Wang, J.X.; Li, Y.Z.; Wang, S.N.; Zhang, H.S.; Ning, X.; Guo, W. Experimental investigation of the thermal control effects of phase change material based packaging strategy for on-board permanent magnet synchronous motors. Energy Convers. Manag. 2016, 123, 232–242. [Google Scholar] [CrossRef]
- Putra, N.; Ariantara, B. Electric motor thermal management system using L-shaped flat heat pipes. Appl. Therm. Eng. 2017, 126, 1156–1163. [Google Scholar] [CrossRef]
- Fawzal, A.S.; Cirstea, R.M.; Woolmer, T.J.; Dickison, M.; Blundell, M.; Gyftakis, K.N. Air inlet/outlet arrangement for rotor cooling application of axial flux PM machines. Appl. Therm. Eng. 2018, 130, 1520–1529. [Google Scholar] [CrossRef]
- Chen, W.; Ju, Y.; Yan, D.; Guo, L.; Geng, Q.; Shi, T. Design and optimization of dual-cycled cooling structure for fully-enclosed permanent magnet motor. Appl. Therm. Eng. 2019, 152, 338–349. [Google Scholar] [CrossRef]
- Jaeger, M.; Ruf, A.; Hameyer, K.; Tongeln, T.G.-V. Thermal analysis of an electrical traction motor with an air cooled rotor. In Proceedings of the 2018 IEEE Transportation Electrification Conference and Expo (ITEC), Long Beach, CA, USA, 13–15 June 2018; pp. 467–470. [Google Scholar] [CrossRef]
- Kim, C.; Lee, K.S.; Yook, S.J. Effect of air-gap fans on cooling of windings in a large-capacity, high-speed induction motor. Appl. Therm. Eng. 2016, 100, 658–667. [Google Scholar] [CrossRef]
- Chiu, H.C.; Jang, J.H.; Yan, W.M.; Shiao, R.B. Thermal performance analysis of a 30kW switched reluctance motor. Int. J. Heat Mass Transf. 2017, 114, 145–154. [Google Scholar] [CrossRef]
- Deriszadeh, A.; De Monte, F.; Villani, M.; Di Leonardo, L. Hydrothermal Performance of Ethylene Glycol and Water Mixture in a Spiral Channel for Electric Motor Cooling. In Proceedings of the 2019 21st European Conference on Power Electronics and Applications (EPE’19 ECCE Europe), Genova, Italy, 2–6 September 2019; pp. 1–10. [Google Scholar] [CrossRef]
- Satrústegui, M.; Martinez-Iturralde, M.; Ramos, J.C.; Gonzalez, P.; Astarbe, G.; Elosegui, I. Design criteria for water cooled systems of induction machines. Appl. Therm. Eng. 2017, 114, 1018–1028. [Google Scholar] [CrossRef]
- Chen, X.; Wang, J.; Griffo, A.; Spagnolo, A. Thermal Modeling of Hollow Conductors for Direct Cooling of Electrical Machines. IEEE Trans. Ind. Electron. 2020, 67, 895–905. [Google Scholar] [CrossRef]
- Wang, X.; Li, B.; Huang, K.; Yan, Y.; Stone, I.; Worrall, S. Experimental investigation on end winding thermal management with oil spray in electric vehicles. Case Stud. Therm. Eng. 2022, 35, 102082. [Google Scholar] [CrossRef]
- Fawzal, A.S.; Cirstea, R.M.; Gyftakis, K.N.; Woolmer, T.J.; Dickison, M.; Blundell, M. Fan Performance Analysis for Rotor Cooling of Axial Flux Permanent Magnet Machines. IEEE Trans. Ind. Appl. 2017, 53, 3295–3304. [Google Scholar] [CrossRef]
- El-Refaie, A.M.; Alexander, J.P.; Galioto, S.; Reddy, P.B.; Huh, K.K.; de Bock, P.; Shen, X. Advanced High-Power-Density Interior Permanent Magnet Motor for Traction Applications. IEEE Trans. Ind. Appl. 2014, 50, 3235–3248. [Google Scholar] [CrossRef]
- Gai, Y.; Ma, C.; Xu, Y.; Chong, Y.C. Numerical prediction and measurement of pressure drop and heat transfer in a water-cooled hollow-shaft rotor for a traction motor application. IET Electr. Power Appl. 2021, 15, 476–486. [Google Scholar] [CrossRef]
- Chuan, H.; Burke, R.; Wu, Z. A Comparative Study on Different Cooling Topologies for Axial Flux Permanent Magnet Machine. In Proceedings of the 2019 IEEE Vehicle Power and Propulsion Conference (VPPC), Hanoi, Vietnam, 14–17 October 2019; pp. 1–6. [Google Scholar] [CrossRef]
- Gai, Y.; Kimiabeigi, M.; Widmer, J.D.; Chong, Y.C.; Goss, J.; SanAndres, U.; Staton, D.A. Shaft cooling and the influence on the electromagnetic performance of traction motors. In Proceedings of the 2017 IEEE International Electric Machines and Drives Conference (IEMDC), Miami, FL, USA, 21–24 May 2017; pp. 1–6. [Google Scholar] [CrossRef]
- Gai, Y.; Kimiabeigi, M.; Chong, Y.C.; Widmer, J.D.; Goss, J.; SanAndres, U.; Steven, A.; Staton, D.A. On the Measurement and Modeling of the Heat Transfer Coefficient of a Hollow-Shaft Rotary Cooling System for a Traction Motor. IEEE Trans. Ind. Appl. 2018, 54, 5978–5987. [Google Scholar] [CrossRef]
- Zhou, P.; Kalayjian, N.R.; Cutler, G.D.; Augenbergs, P.K. Liquid Cooled Rotor Assembly. US Patent US7579725B2, 25 August 2009. [Google Scholar]
- Zysset, E. Liquid Cooled Asynchronous Electric Machine. US Patent US6191511B1, 20 February 2001. [Google Scholar]
- Konovalov, D.; Tolstorebrov, I.; Eikevik, T.M.; Kobalava, H.; Radchenko, M.; Hafner, A.; Radchenko, A. Recent Developments in Cooling Systems and Cooling Management for Electric Motors. Energies 2023, 16, 7006. [Google Scholar] [CrossRef]
- Rawlinson, P.D.; Sampson, N.J.; Kalayjian, N.R.; Johnston, V.G. Thermal Management System for Use with an Integrated Motor Assembly. US Patent US2012/0153718A1, 21 June 2012. [Google Scholar]
- Lee, K.-H.; Cha, H.-R.; Kim, Y.-B. Development of an interior permanent magnet motor through rotor cooling for electric vehicles. Appl. Therm. Eng. 2016, 95, 348–356. [Google Scholar] [CrossRef]
- Fujita, H.; Itoh, A.; Urano, T. Newly Developed Motor Cooling Method Using Refrigerant. World Electr. Veh. J. 2019, 10, 38. [Google Scholar] [CrossRef]
- Kim, S.; Lee, S.; Kang, D.G.; Kim, M.S. Motor cooling method using flow boiling of two-phase refrigerant and its analysis with lumped parameter thermal model. Int. J. Therm. Sci. 2023, 192, 108458. [Google Scholar] [CrossRef]
- Deriszadeh, A.; De Monte, F. Performance Evaluation of the Electric Machine Cooling System Employing Nanofluid as an Advanced Coolant. ChemEngineering 2021, 5, 53. [Google Scholar] [CrossRef]
- Deriszadeh, A.; De Monte, F. On Heat Transfer Performance of Cooling Systems Using Nanofluid for Electric Motor Applications. Entropy 2020, 22, 99. [Google Scholar] [CrossRef]
- Almurtaji, S.; Ali, N.; Teixeira, J.A.; Addali, A. On the role of nanofluids in thermal-hydraulic performance of heat exchangers—A review. Nanomaterials 2020, 10, 734. [Google Scholar] [CrossRef]
- Shah, T.R.; Ali, H.M.; Janjua, M.M. On aqua-based silica (SiO2–water) nanocoolant: Convective thermal potential and experimental precision evaluation in aluminum tube radiator. Nanomaterials 2020, 10, 1736. [Google Scholar] [CrossRef]
- Benedict, F.; Kumar, A.; Kadirgama, K.; Mohammed, H.A.; Ramasamy, D.; Samykano, M.; Saidur, R. Thermal performance of hybrid-inspired coolant for radiator application. Nanomaterials 2020, 10, 1100. [Google Scholar] [CrossRef]
- Parsaiemehr, M.; Pourfattah, F.; Ali Akbari, O.; Toghraie, D.; Sheikhzadeh, G. Turbulent flow and heat transfer of Water/Al2O3 nanofluid inside a rectangular ribbed channel. Phys. E Low Dimens. Syst. Nanostruct. 2018, 96, 73–84. [Google Scholar] [CrossRef]
- Jha, P.; Hussain, M.; Khan, M.K. Numerical evaluation of nanofluid-based indirect liquid cooling of a Li-ion battery pack using equivalent circuit model under static and dynamic loading conditions. Int. Commun. Heat Mass Transf. 2024, 159, 108079. [Google Scholar] [CrossRef]
- Asim, M.; Baig, T.; Siddiqui, F.R.; Khan, S.; Khan, S.A.; Babar, H.; Said, Z.; Zhao, J.; Abidi, I.H. Advancements in thermal management solutions for electric vehicle high-power electronics: Innovations, cooling methods, and future perspectives. J. Energy Storage 2025, 111, 115344. [Google Scholar] [CrossRef]
- Pandey, G.K.; Sikha, S.S.; Thakur, A.; Yarlagadda, S.S.; Thatikonda, S.S.; Baiju Suja, B.; Mystkowski, A.; Dragašius, E.; Gundabattini, E. Thermal Mapping and Heat Transfer Analysis of an Induction Motor of an Electric Vehicle Using Nanofluids as a Cooling Medium. Sustainability 2023, 15, 8124. [Google Scholar] [CrossRef]
- Deriszadeh, A.; Di Battista, D.; Di Giovine, G.; Cipollone, R. Model based design and optimization of a shaft cooling for automotive electric motor. J. Phys. Conf. Ser. 2024, 2893, 012124. [Google Scholar] [CrossRef]
- Thomas, R.; Husson, H.; Garbuio, L.; Gerbaud, L. Comparative study of the Tesla Model S and Audi e-Tron Induction Motors. In Proceedings of the 17-th International Conference on Electrical Machines, Drives and Power Systems (ELMA), Sofia, Bulgaria, 1–4 July 2021; p. hal-03304650. [Google Scholar]
- Dinh, I. Thermal Analysis Based Design of Hollow Shaft for Improved Cooling of Induction Motors, 2023. Electronic Theses and Dissertations. 8947. Available online: https://scholar.uwindsor.ca/etd/8947 (accessed on 15 September 2025).
- The 2019 Audi e-tron Introduction, eSelf-Study Program 990993, Audi of America, LLC, Service Training, Created 01/2019, Course Number 990993. Available online: https://static.nhtsa.gov/odi/tsbs/2019/MC-10155750-9999.pdf (accessed on 16 September 2025).
- Wilcox David, C. Turbulence Modeling for CFD, 3rd ed.; DCW Industries, Inc.: La Canada, CA, USA, 2006; ISBN 978-1-928729-08-2 (1-928729-08-8). [Google Scholar]
- Yu, C.; Zhang, H.; Wang, Y.; Zeng, M.; Gao, B. Numerical study on turbulent heat transfer performance of twisted oval tube with different cross sectioned wire coil. Case Stud. Therm. Eng. 2020, 22, 100759. [Google Scholar] [CrossRef]
- Shukla, K.N.; Koller, T.M.; Rausch, M.H.; Fröba, A.P. Effective thermal conductivity of nanofluids—A new model taking into consideration Brownian motion. Int. J. Heat Mass Transf. 2016, 99, 532–540. [Google Scholar] [CrossRef]
- Das, S.K.; Choi, S.U.; Yu, W.; Pradeep, T. Nanofluids Science and Technology; John Wiley & Sons: Hoboken, NJ, USA, 2008. [Google Scholar] [CrossRef]
- Daas, A.; Derfouf, S.; Chehhat, A.; Belghar, N. Numerical study by CFD, of the effect of the presence of aluminum oxide nanoparticles (Al2O3) on forced convection through a double tube heat exchanger. South Fla. J. Dev. 2024, 5, 12. [Google Scholar] [CrossRef]
- Sun, L.; Geng, J.; Dong, K.; Sun, Q. An Experimental Study on the Effect of Nanofluids on the Thermal Conductivity and Rheological Properties of a Coolant for Liquids. Energies 2024, 17, 1313. [Google Scholar] [CrossRef]
- Versteeg, H.K.; Malalasekera, W. An Introduction to Computational Fluid Dynamics: The Finite Volume Method. In Fluid Flow Handbook; McGraw-Hill Education: New York, NY, USA, 2007. [Google Scholar]
- Bejan, A. Convection Heat Transfer; Wiley: Weinheim, Germany, 2013. [Google Scholar]
Specification | Value | Unit |
---|---|---|
Electric machine type | Induction (Asynchronous) | - |
Power | 130 | kW |
Peak power (10 s) | 165 | kW |
Torque | 314 | Nm |
Peak torque (10 s) | 355 | Nm |
0 | 983.2 | 4184 | 0.65 | 4.67 × 10−4 |
2 | 1042.9 | 3923.7 | 0.68 | 5.58 × 10−4 |
4 | 1102.7 | 3691.6 | 0.72 | 6.95 × 10−4 |
Al2O3 | 3970 | 765 | 40 | ------- |
Mesh Refinement | Total Grid Number | Nu | Deviation |
---|---|---|---|
Coarse mesh | 558,000 | 812.44 | ---- |
Normal mesh | 1,982,000 | 827.89 | 1.9% |
Fine mesh | 3,570,000 | 833.21 | 1.01% |
Very fine mesh | 6,069,000 | 834.52 | 0.16% |
Volumetric Flow Rate (L/min) | Direct-Through Configuration Rotor Wall Temperature [K] | Helical with 0.5 Turn Configuration Rotor Wall Temperature [K] |
---|---|---|
7 | 383.3 | 353.2 |
8 | 382.7 | 353.0 |
9 | 382.1 | 352.8 |
10 | 381.7 | 352.7 |
11 | 381.2 | 352.6 |
Flow Rate [L/min] | Helical with 0.5 Turn | Helical with 1 Turn | Helical with 2 Turns |
---|---|---|---|
7 | 2.14 | 1.65 | 1.33 |
8 | 2.35 | 1.80 | 1.48 |
9 | 2.55 | 1.96 | 1.62 |
10 | 2.73 | 2.12 | 1.74 |
11 | 2.98 | 2.30 | 1.88 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Di Battista, D.; Deriszadeh, A.; Di Giovine, G.; Di Prospero, F.; Cipollone, R. Modeling and Optimization of Nanofluid-Based Shaft Cooling for Automotive Electric Motors. Energies 2025, 18, 5286. https://doi.org/10.3390/en18195286
Di Battista D, Deriszadeh A, Di Giovine G, Di Prospero F, Cipollone R. Modeling and Optimization of Nanofluid-Based Shaft Cooling for Automotive Electric Motors. Energies. 2025; 18(19):5286. https://doi.org/10.3390/en18195286
Chicago/Turabian StyleDi Battista, Davide, Ali Deriszadeh, Giammarco Di Giovine, Federico Di Prospero, and Roberto Cipollone. 2025. "Modeling and Optimization of Nanofluid-Based Shaft Cooling for Automotive Electric Motors" Energies 18, no. 19: 5286. https://doi.org/10.3390/en18195286
APA StyleDi Battista, D., Deriszadeh, A., Di Giovine, G., Di Prospero, F., & Cipollone, R. (2025). Modeling and Optimization of Nanofluid-Based Shaft Cooling for Automotive Electric Motors. Energies, 18(19), 5286. https://doi.org/10.3390/en18195286