Analysis of Real and Simulated Energy Produced by a Photovoltaic Installations Located in Poland
Abstract
1. Introduction
- wK—coefficient allowing the conversion of sunlight data for an inclined surface of a photovoltaic generator (photovoltaic modules) from sunlight data read from a map, which are for a horizontal surface
- MM—nominal power of modules (PV generator) determined under STC (standard test conditions), i.e., at a temperature of 25 °C and insolation of 1000 W per 1 m2 of module for a period of 1 h. This value can be found in the panel data sheet, kW
- WW—efficiency factor—an indicator that takes into account the level of losses in a photovoltaic installation. In a photovoltaic installation, there are: cable losses—1%, inverter losses—3–7%, module losses due to temperature—4–8%, losses due to low solar radiation—1–3%, losses due to shading and dirt—1–5%, losses due to current mismatch of modules—1%, losses on shunt diodes—0.5%
- IR—standard solar radiation intensity at which photovoltaic modules are tested, kW/m2.
2. Materials and Methods
2.1. Research Object
2.2. Software Used for Forecasting Electricity Production
- location of the photovoltaic system—by selecting a location on the map or entering an address
- mounting position
- slope of PV modules,
- azimuth (orientation) of PV modules
- estimated system losses.
2.3. Assessment of the Correlation of Real and Simulated Results
- Ri—real electricity production, kWh
- Si—simulated electricity production, kWh
- n—sample size,
- —average real electricity production, kWh
3. Results and Discussion
3.1. Real Electricity Production by the Studied PV Installations
3.2. Comparison of Simulation Results with Real Data
4. Conclusions
- The simulations conducted indicate the greatest consistency between the simulation results and real data obtained by using the PVGIS 5.3 software. For installations PV1. PV3. and PV4. the lowest MPEs were obtained. indicating the smallest deviation of simulated values from real data.
- The ENERAD software significantly underestimated the electricity production for the analyzed PV installations. The differences between the predicted and real values range between 35% and 41%. This may be due to the fact that the program uses the outdated SARAH2 meteorological database or because of the calculation algorithm used. It is questionable whether the values obtained in this program can be used for preliminary analysis of the profitability of installing the systems.
- Based on the results obtained, it can be concluded that the PVGIS 5.3 software best reflects the real conditions of the analyzed PV installations and can be used as a tool for forecasting the annual electricity production of photovoltaic systems. The simulations obtained can be helpful in designing PV installations and in assessing the profitability of their installation.
- The advantage of PVGIS24 software is its versatility. It allows us to conduct simulations for more complex installations whose PV modules face different directions.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Owusu, P.A.; Asumadu-Sarkodie, S. A Review of Renewable Energy Sources. Sustainability Issues and Climate Change Mitigation. Cogent Eng. 2016, 3, 1167990. [Google Scholar]
- Kim, H.; Park, S.; Lee, J. Is renewable energy acceptable with power grid expansion? A quantitative study of South Korea’s renewable energy acceptance. Renew. Sustain. Energy Rev. 2021, 139, 110584. [Google Scholar] [CrossRef]
- Keramitsoglou, K.M.; Mellon, R.C.; Tsagkaraki, M.I.; Tsagarakis, K.P. Designing a logo for renewable energy sources with public participation: Empirical evidence from Greece. Renew. Energy 2020, 153, 1205–1218. [Google Scholar] [CrossRef]
- Karasmanaki, E.; Tsantopoulos, G. Exploring future scientists’ awareness about and attitudes towards renewable energy sources. Energy Policy 2019, 131, 111–119. [Google Scholar] [CrossRef]
- Karytsas, S.; Theodoropoulou, H. Socioeconomic and demographic factors that influence publics’ awareness on the different forms of renewable energy sources. Renew. Energy 2014, 71, 480–485. [Google Scholar] [CrossRef]
- Roddis, P.; Ziv, G.; Dallimer, M.; Carver, S.; Norman, P.D. The role of community acceptance in planning outcomes for onshore wind and solar farms: An energy justice analysis. Appl. Energy 2018, 226, 353–364. [Google Scholar] [CrossRef]
- European Commission, Directorate-General for Research and Innovation. Proposed Mission: 100 Climate-Neutral Cities by 2030—By and for the Citizens. Report of the Mission Board for Climate-Neutral and Smart Cities; European Union: Luxembourg, 2020; Available online: https://ec.europa.eu/info/publications/100-climate-neutral-cities-2030-and-citizens_en (accessed on 14 June 2025).
- Statistic Poland. Energy from Renewable Sources in 2023. Statistical Analyses; Statistic Poland: Warsaw, Rzeszow, 2024. Available online: https://stat.gov.pl/en/topics/environment-energy/energy/energy-from-renewable-sources-in-2023.9.3.html (accessed on 14 June 2025).
- Gnatowska, R.; Moryń-Kucharczyk, E. The Place of Photovoltaics in Poland’s Energy Mix. Energies 2021, 14, 1471. [Google Scholar] [CrossRef]
- Act of 7 July 1994—Building Law (Dz. U. 2025 r. item 418). Available online: https://isap.sejm.gov.pl/isap.nsf/download.xsp/WDU20250000418/U/D20250418Lj.pdf (accessed on 10 July 2025). (In Polish)
- Ministry of Development and Technology. Regulation of the Minister of Infrastructure of 12 April 2002 on Technical Conditions to be Met by Buildings and Their Location (Dz.U. 2022 Item 1225 as Amended); Ministry of Development and Technology: Warsaw, Poland, 2024. (In Polish) [Google Scholar]
- European Union. Directive (EU) 2024/1275 of the European Parliament and of the Council of 24 April 2024 on the energy performance of buildings. Off. J. Eur. Union 2024. Available online: https://eur-lex.europa.eu/eli/dir/2024/1275/oj/eng (accessed on 10 July 2025).
- Energy Regulatory Office. Report 2025 Electricity Generated from Renewable Energy Sources in Micro-Installations (Including by Prosumers) and Introduced into the Distribution Network in 2024 (Article 6a of the Renewable Energy Sources Act) Electricity Generation in Micro-Installations in 2024. Available online: https://www.ure.gov.pl (accessed on 14 June 2025). (In Polish)
- Niechaj, M. Effective use of photovoltaic systems i polish conditions. J. Ecol. Eng. 2016, 17, 147–154. [Google Scholar] [CrossRef]
- Ceran, B.; Szczerbowski, R. Techno-economic analysis of a photovoltaic installation. Bull. Miner. Energy Econ. Res. Inst. Pol. Acad. Sci. 2017, 98, 15–26. [Google Scholar]
- Janke, J.R. Multicriteria GIS modeling of wind and solar farms in Colorado. Renew. Energy 2010, 35, 2228–2234. [Google Scholar] [CrossRef]
- Leonarczyk, J. Results of the seasonal study on energetic output of photovoltaic installation with 668Wpeak power. Probl. Agric. Eng. 2013, 1, 151–160. [Google Scholar]
- Eleftheriadis, I.; Anagnostopoulou, E. Identifying barriers in the diffusion of renewable energy sources. Energy Policy 2015, 80, 153–164. [Google Scholar] [CrossRef]
- Zhu, J.; Cui, Y. Photovoltaics: More solar cells for less. Nat. Mater. 2010, 9, 183–184. [Google Scholar] [CrossRef]
- Yao, W.; Zhang, C.; Wang, X.; Zhang, Z.; Li, X.; Di, H. A new correlation between global solar radiation and the quality of sunshine duration in China. Energy Convers. Manag. 2018, 164, 579–587. [Google Scholar] [CrossRef]
- Matuszczyk, P.; Popławski, T.; Flasza, J. The influence of solar radiation and temperature module on selected parameters and the power rating of photovoltaic panels. Przegląd Elektrotech. 2015, 91, 159–162. [Google Scholar]
- Canales, F.A.; Jadwiszczak, P.; Jurasz, J.; Wdowikowski, M.; Ciapała, B.; Kazmierczak, B. The impact of long-term changes in air temperature on renewable energy in Poland. Sci. Total Environ. 2020, 729, 138965. [Google Scholar] [CrossRef] [PubMed]
- Korsavi, S.S.; Zomorodian, Z.S.; Tahsildoost, M. Energy and economic performance of rooftop PV panels in the hot and dry climate of Iran. J. Clean. Prod. 2018, 174, 1204–1214. [Google Scholar] [CrossRef]
- Głuchy, D.; Kurz, D.; Trzmiel, G. The impact of wind and snow on photovoltaic installations in Poland. Pozn. Univ. Technol. Acad. J. Electr. Eng. 2013, 74, 253–260. [Google Scholar]
- Heidari, N.; Gwamuri, J.; Townsend, T.; Pearce, J.M. Impact of Snow and Ground Interference on Photovoltaic Electric System Performance. IEEE J. Photovolt. 2015, 5, 1680–1685. [Google Scholar] [CrossRef]
- Baranes, E.; Jacqmin, J.; Poudou, J.C. Non-renewable and intermittent renewable energy sources: Friends and foes? Energy Policy 2017, 111, 58–67. [Google Scholar] [CrossRef]
- Szczerbowski, R. Photovoltaic systems—Technical and economic aspects. Przegląd Elektrotech. 2014, 90, 31–36. [Google Scholar]
- Knutel, B.; Pierzyńska, A.; Dębowski, M.; Bukowski, P.; Dyjakon, A. Assessment of Energy Storage from Photovoltaic Installations in Poland Using Batteries or Hydrogen. Energies 2020, 13, 4023. [Google Scholar] [CrossRef]
- Akpolat, A.N.; Dursun, E.; Kuzucuoglu, A.E.; Yang, Y.; Blaabjerg, F.; Baba, A.F. Performance analysis of a Grid-connected rooftop solar photovoltaic system. Electronics 2019, 8, 905. [Google Scholar] [CrossRef]
- Szymański, B. Instalacje Fotowoltaiczne, 4th ed.; GLOBEnergia: Krakow, Poland, 2017; ISBN 978-83-64339-00-4. (In Polish) [Google Scholar]
- Ilba, M. Energia Słoneczna. Nasłonecznienie i Praktyczna Efektywność Mikroinstalacji Fotowoltaicznych na Terenie Polski; CeDeWu: Warszawa, Poland, 2022; ISBN 978-83-8102-765-6. (In Polish) [Google Scholar]
- Kymakis, E.; Kalykakis, S.; Papazoglou, T.M. Performance Analysis of a Grid Connected Photovoltaic Park on the Island of Crete. Energy Convers. Manag. 2009, 50, 433–438. [Google Scholar] [CrossRef]
- Instytut Meteorologii i Gospodarki Wodnej—Państwowy Instytut Badawczy. Available online: https://www.imgw.pl/ (accessed on 20 July 2025).
- WeatherOnline—Meteorological Services. Available online: https://www.weatheronline.pl (accessed on 20 July 2025).
- The Official Portal for European Data. Available online: https://data.europa.eu (accessed on 20 July 2025).
- European Commission. JRC Photovoltaic Geographical Information System (PVGIS 5.3). Available online: https://re.jrc.ec.europa.eu/pvg_tools/en/ (accessed on 25 July 2025).
- Enerad. Photovoltaic Calculator. Available online: https://enerad.pl/kalkulator-fotowoltaiki/ (accessed on 25 July 2025).
- PVGIS. Solar Panel Calculator. PVGIS 24. Available online: https://pvgis.com (accessed on 25 July 2025).
Slope | W | SW | S | SE | E | ||
---|---|---|---|---|---|---|---|
90° | 60° | 30° | 0° | 330° | 300° | 270° | |
90° | 51% | 62% | 69% | 72% | 70% | 63% | 52% |
80° | 58% | 71% | 80% | 82% | 80% | 71% | 51% |
70° | 65% | 78% | 87% | 90% | 87% | 79% | 65% |
60° | 71% | 84% | 93% | 96% | 94% | 85% | 72% |
50° | 76% | 89% | 97% | 99% | 98% | 89% | 77% |
40° | 80% | 92% | 99% | 100% | 99% | 92% | 81% |
30° | 83% | 93% | 99% | 100% | 100% | 93% | 84% |
20° | 85% | 93% | 97% | 99% | 97% | 93% | 86% |
10° | 87% | 90% | 93% | 95% | 94% | 91% | 87% |
0° | 90% | 90% | 90% | 90% | 90% | 90% | 90% |
PV1 | PV2 | PV3 | PV4 | ||
---|---|---|---|---|---|
Type of building | public utility | public utility | public utility | public utility | |
Distance from meteorological station [km] | 40 | 20 | 20 | 20 | |
Mounting position | free-standing | free-standing | roof | roof | |
Slope [°] | 25 | 25 | 37 | 12 | |
Orientation | S | S | SE | NW | SE |
Type of modules | Jinko Solar MM445-60HLD-MBV | Longi LR4-72HBD-440M | Longi LR4-72HBD-445M | Sharp NU-JC330 | Talesun TP660P 270 |
Number of modules [pcs] | 20 | 22 | 16 | 8 | 45 |
Power of module [Wp] | 445 | 440 | 455 | 330 | 270 |
Nominal power of system [kW] | 8.9 | 9.68 | 9.92 | 12.15 |
Month | Tmin | Tmax | V | DS | MS | IR |
---|---|---|---|---|---|---|
January | −3.90 | −0.20 | 12.90 | 2.60 | 36.10 | 21.74 |
February | −3.50 | 1.4 | 12.50 | 3.80 | 60.50 | 40.37 |
March | −0.70 | 6.80 | 12.50 | 5.50 | 121.50 | 81.19 |
April | 3.90 | 13.80 | 11.50 | 7.30 | 172.60 | 128.30 |
May | 8.40 | 16.60 | 9.90 | 8.80 | 223.90 | 162.19 |
June | 12.30 | 22.90 | 9.10 | 9.50 | 258.90 | 180.90 |
July | 14.20 | 25.00 | 9.30 | 8.90 | 250.30 | 174.20 |
August | 13.70 | 24.60 | 8.50 | 8.50 | 231.30 | 152.42 |
September | 9.70 | 19.10 | 8.90 | 6.90 | 158.70 | 104.52 |
October | 5.30 | 13 | 9.80 | 5.10 | 113.50 | 63.82 |
November | 2.00 | 6.50 | 11.40 | 3.10 | 49.00 | 26.99 |
December | −1.70 | 1.70 | 12.70 | 2.20 | 24.90 | 17.85 |
PV Installation | Year | Monthly Electricity Production [kWh] | ∑ | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
I | II | III | IV | V | VI | VII | VIII | IX | X | XI | XII | |||
PV1 | 2022 | 228 | 450 | 1055 | 934 | 1483 | 1589 | 1268 | 1284 | 759 | 663 | 188 | 92 | 9992 |
2023 | 128 | 436 | 771 | 974 | 1458 | 1293 | 1355 | 1230 | no data | no data | no data | no data | 9663 * | |
2024 | 162 | 315 | 681 | 1045 | 1724 | 1373 | 1351 | 1269 | 973 | 623 | 312 | 132 | 9960 | |
average | 172 | 401 | 836 | 984 | 1555 | 1418 | 1325 | 1261 | 866 | 643 | 250 | 112 | 9822 | |
PV2 | 2023 | 165 | 510 | 887 | 1175 | 1620 | 1511 | 1521 | 1355 | 1251 | 704 | 306 | 124 | 11,129 |
2024 | 261 | 361 | 813 | 1199 | 1884 | 1475 | 1512 | 1405 | 1189 | 780 | 388 | 235 | 11,502 | |
average | 213 | 435 | 850 | 1187 | 1752 | 1493 | 1517 | 1380 | 1220 | 742 | 347 | 180 | 11,315 | |
PV3 | 2022 | 154 | 404 | 950 | 899 | 1492 | 1598 | 1262 | 1242 | 727 | 573 | 168 | 74 | 9543 |
2023 | 120 | 355 | 678 | 891 | 1360 | 1326 | 1334 | 1136 | 978 | 530 | 210 | 83 | 9000 | |
2024 | 185 | 273 | 609 | 930 | 1472 | 1236 | 1331 | 1137 | 928 | 557 | 248 | 145 | 9052 | |
average | 153 | 344 | 746 | 906 | 1441 | 1386 | 1309 | 1172 | 878 | 553 | 209 | 101 | 9199 | |
PV4 | 2020 | 179 | 343 | 937 | 1628 | 1568 | 1651 | 1566 | 1554 | 914 | 377 | 185 | 99 | 11,001 |
2021 | 49 | 117 | 724 | 1139 | 1614 | 1914 | 1645 | 1157 | 867 | 520 | 190 | 70 | 10,007 | |
2022 | 107 | 286 | 924 | 940 | 1762 | 1944 | 1566 | 1437 | 807 | 488 | 142 | 50 | 10,452 | |
2023 | 114 | 324 | 698 | 1030 | 1662 | 1510 | 1565 | 1258 | 899 | 412 | 129 | 53 | 9655 | |
2024 | 69 | 266 | 604 | 1046 | 1804 | 1476 | 1489 | 1232 | 784 | 350 | 165 | 91 | 9376 | |
average | 104 | 267 | 777 | 1156 | 1682 | 1699 | 1566 | 1328 | 854 | 430 | 162 | 73 | 10,098 |
PV installation Year | PV1 2022–2024 [kWh·kW−1] | PV2 2023–2024 [kWh·kW−1] | PV3 2023–2024 [kWh·kW−1] | PV2 2020–2024 [kWh·kW−1] |
---|---|---|---|---|
January | 19.38 | 22.04 | 15.42 | 8.52 |
February | 45.01 | 44.96 | 34.66 | 21.98 |
March | 93.88 | 87.81 | 75.19 | 63.99 |
April | 110.59 | 122.59 | 91.38 | 95.18 |
May | 174.70 | 181.01 | 145.29 | 138.44 |
June | 159.36 | 154.22 | 139.76 | 139.83 |
July | 148.82 | 156.68 | 131.95 | 128.91 |
August | 141.69 | 142.51 | 118.12 | 109.26 |
September | 97.26 | 126.02 | 88.50 | 70.31 |
October | 72.26 | 76.66 | 55.78 | 35.36 |
November | 28.13 | 35.86 | 21.06 | 13.35 |
December | 12.54 | 18.57 | 10.16 | 5.99 |
∑ | 1103.64 | 1168.93 | 927.27 | 831.12 |
Month | PV1 | PV2 | PV3 | PV4 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
REAL | ENERAD | PVGIS 5.3 | PVGIS24 | REAL | ENERAD | PVGIS 5.3 | PVGIS24 | REAL | ENERAD | PVGIS 5.3 | PVGIS24 | REAL | PVGIS 5.3 | PVGIS24 | |
January | 172.48 | 99.18 | 249.85 | 285.73 | 213.32 | 106.42 | 268.06 | 302.35 | 152.93 | 96.47 | 221.67 | 253.93 | 103.56 | 257.07 | 293.15 |
February | 400.55 | 188.27 | 422.26 | 450.31 | 435.26 | 205.26 | 466.32 | 525.97 | 343.85 | 184.41 | 382.60 | 441.30 | 267.11 | 454.73 | 521.76 |
March | 835.56 | 426.64 | 759.92 | 855.25 | 850.02 | 458.48 | 836.58 | 943.59 | 745.92 | 409.03 | 699.75 | 812.28 | 777.45 | 892.87 | 1032.76 |
April | 984.28 | 715.66 | 1058.81 | 1174.65 | 1186.64 | 780.44 | 1147.00 | 1293.71 | 906.48 | 699.43 | 986.28 | 1151.12 | 1156.42 | 1289.76 | 1502.90 |
May | 1554.87 | 909.70 | 1204.40 | 1337.11 | 1752.17 | 994.97 | 1306.65 | 1473.79 | 1441.26 | 895.31 | 1158.08 | 1354.10 | 1682.00 | 1539.08 | 1799.18 |
June | 1418.27 | 1018.23 | 1266.67 | 1402.73 | 1492.85 | 1110.01 | 1377.57 | 1553.77 | 1386.41 | 996.51 | 1235.79 | 1446.98 | 1698.99 | 1653.46 | 1936.93 |
July | 1324.54 | 979.70 | 1234.23 | 1364.80 | 1516.64 | 1060.48 | 1339.43 | 1510.75 | 1308.98 | 957.03 | 1196.71 | 1399.51 | 1566.26 | 1611.04 | 1884.96 |
August | 1261.07 | 818.44 | 1166.11 | 1270.07 | 1379.53 | 898.07 | 1269.93 | 1432.36 | 1171.75 | 797.25 | 1098.78 | 1284.96 | 1327.54 | 1437.96 | 1679.61 |
September | 865.65 | 530.79 | 919.35 | 1006.89 | 1219.88 | 577.42 | 998.52 | 1126.24 | 877.94 | 510.63 | 828.87 | 966.44 | 854.25 | 1062.81 | 1235.30 |
October | 643.13 | 291.09 | 669.75 | 663.73 | 742.05 | 313.26 | 724.51 | 817.18 | 553.33 | 273.89 | 575.36 | 667.24 | 429.62 | 700.11 | 807.69 |
November | 250.37 | 117.85 | 318.78 | 297.13 | 347.14 | 127.82 | 334.28 | 388.32 | 208.87 | 113.07 | 253.44 | 312.30 | 162.23 | 307.91 | 352.24 |
December | 111.65 | 71.33 | 217.24 | 217.98 | 179.77 | 77.45 | 229.87 | 259.28 | 100.82 | 71.52 | 185.42 | 212.38 | 72.72 | 205.69 | 234.40 |
∑ | 9871.46 | 6166.88 | 9487.37 | 10,326.38 | 11,315.24 | 6710.08 | 10,298.72 | 11,627.31 | 9198.53 | 6004.55 | 8822.75 | 10,302.54 | 10,098.16 | 11,412.49 | 13,280.88 |
PV Installation | Software | MPE | RMSE |
---|---|---|---|
PV1 | ENERAD | −37% | 42% |
PVGIS 5.3 | −3% | 16% | |
PVGIS 24 | 5% | 13% | |
PV2 | ENERAD | −41% | 48% |
PVGIS 5.3 | 9% | 17% | |
PVGIS 24 | 3% | 12% | |
PV3 | ENERAD | −35% | 40% |
PVGIS 5.3 | −4% | 14% | |
PVGIS 24 | 12% | 15% | |
PV4 | PVGIS 5.3 | 13% | 18% |
PVGIS 24 | 32% | 33% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hołota, E.; Życzyńska, A.; Dyś, G. Analysis of Real and Simulated Energy Produced by a Photovoltaic Installations Located in Poland. Energies 2025, 18, 5279. https://doi.org/10.3390/en18195279
Hołota E, Życzyńska A, Dyś G. Analysis of Real and Simulated Energy Produced by a Photovoltaic Installations Located in Poland. Energies. 2025; 18(19):5279. https://doi.org/10.3390/en18195279
Chicago/Turabian StyleHołota, Ewa, Anna Życzyńska, and Grzegorz Dyś. 2025. "Analysis of Real and Simulated Energy Produced by a Photovoltaic Installations Located in Poland" Energies 18, no. 19: 5279. https://doi.org/10.3390/en18195279
APA StyleHołota, E., Życzyńska, A., & Dyś, G. (2025). Analysis of Real and Simulated Energy Produced by a Photovoltaic Installations Located in Poland. Energies, 18(19), 5279. https://doi.org/10.3390/en18195279