Systematic Review of Optimization Methodologies for Smart Home Energy Management Systems
Abstract
1. Introduction
2. The Architecture of HEMS Within Smart Grids
- Household Loads: These are categorized into scheduled and unscheduled loads. Scheduled loads include appliances that operate at pre-determined times, such as washing machines and dishwashers, while unscheduled loads are devices used on-demand, such as lighting and televisions. Effective management of these loads helps balance energy demand and reduces peak loads [33].
- Energy Storage Systems: These include battery storage systems that store excess energy generated from renewable sources or during off-peak grid hours for later use. This ensures energy availability during periods of high demand or low generation [34].
- Alternative Energy Sources: Solar panels, wind turbines, or other renewable energy systems integrated into HEMSs allow households to generate their power, reducing reliance on the grid and lowering energy costs [35].
- Control Systems and Communication Technology: Advanced control systems supported by communication technologies, such as Zigbee, Wi-Fi, or Power Line Communication (PLC), enable real-time monitoring and control of energy usage. These systems interact with smart meters to facilitate demand response (DR) and real-time pricing (RTP) mechanisms, ensuring optimal energy use [41].
3. HEMS Optimization Methodology
3.1. Heuristic Optimization Methods for HEMSs
3.2. Machine Learning Optimization Methods for HEMS
3.2.1. Supervised Learning Optimization Methods for HEMS
3.2.2. Unsupervised Learning Optimization Methods for HEMS
3.2.3. Reinforcement Learning Optimization Methods for HEMS
4. Algorithmic Complexity and Optimization Challenges in HEMS
5. Comparative Analysis of Optimization Techniques for HEMS
6. Conclusions
- A unified taxonomy of HEMS methods (2019–2024) spanning mathematical, heuristic/metaheuristic, and ML/DRL approaches, systematically mapped to decision horizons, controllability, and uncertainty modeling, with distinctions between real-time and day-ahead scheduling.
- An algorithmic-complexity perspective synthesizing how horizon length, time resolution, and scenario growth affect tractability and what this implies for practical on-device controllers, an aspect rarely addressed in prior reviews.
- A comparative evidence table across studies reporting cost savings, PAR reduction, comfort penalties, and runtime, enabling like-for-like benchmarking beyond prior narrative surveys.
- Deployment considerations integrating privacy, cybersecurity, AMI/HAN constraints, and explainability, contextualized to AI-enabled HEMS, an often-overlooked dimension in the literature.
6.1. Practical Implications
6.2. Future Research Directions
- Adaptive Hybrid Optimization: Develop lightweight frameworks that dynamically switch between heuristic and learning-based strategies according to system state and uncertainty.
- Explainable and Trustworthy AI: Advance explainable reinforcement learning and interpretable models to enhance transparency, trust, and regulatory compliance.
- Standardized Benchmarks and Validation: Create open datasets and hardware-in-the-loop testbeds for reproducible, realistic cross-study comparisons.
- Scalable Community-Level HEMS: Extend optimization beyond single households to neighbourhood-level coordination, integrating shared DERs and peer-to-peer trading.
- Privacy-Preserving and Secure Architectures: Employ federated learning and robust cybersecurity techniques to safeguard user data while enabling efficient control.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
AMI | Advanced Metering Infrastructure |
BESS | Battery Energy Storage System |
CPP | Critical Peak Pricing |
DR | Demand Response |
DERs | Distributed Energy Resources |
DRL | Deep Reinforcement Learning |
DQN | Deep Q-Networks |
EV | Electric Vehicle |
XAI | Explainable AI |
HAN | Home Area Network |
HEMS | Home Energy Management System |
ML | Machine Learning |
PAR | Peak-to-Average Ratio |
PPO | Proximal Policy Optimization |
ICTs | Information and Communication Technologies |
RTEP | Real-time Electricity Pricing |
RTP | Real-time Pricing |
SAC | Soft Actor–critic |
TOUP | Time-of-Use Pricing |
NILM | Non-Intrusive Load Monitoring |
References
- Molla, T.; Khan, B.; Singh, P. A comprehensive analysis of smart home energy management system optimization techniques. J. Auton. Intell. 2018, 1, 15–21. [Google Scholar] [CrossRef]
- Davarzani, S.; Pisica, I.; Taylor, G.A.; Munisami, K.J. Residential demand response strategies and applications in active distribution network management. Renew. Sustain. Energy Rev. 2021, 138, 110567. [Google Scholar] [CrossRef]
- Khan, B.; Getachew, H.; Alhelou, H.H. Components of the smart-grid system. In Solving Urban Infrastructure Problems Using Smart City Technologies; Vacca, J.R., Ed.; Elsevier: Amsterdam Netherlands, 2021; pp. 385–397. [Google Scholar]
- Boopathy, P.; Liyanage, M.; Deepa, N.; Velavali, M.; Reddy, S.; Maddikunta, P.K.R.; Khare, N.; Gadekallu, T.R.; Hwang, W.J.; Pham, Q.V. Deep learning for intelligent demand response and smart grids: A comprehensive survey. Comput. Sci. Rev. 2024, 51, 100617. [Google Scholar] [CrossRef]
- Salam, I.U.; Yousif, M.; Numan, M.; Billah, M. Addressing the challenge of climate change: The role of microgrids in fostering a sustainable future—A comprehensive review. Renew. Energy Focus 2024, 48, 100538. [Google Scholar] [CrossRef]
- Saeed, M.H.; Fangzong, W.; Kalwar, B.A.; Iqbal, S. A review on microgrids’ challenges & perspectives. IEEE Access 2021, 9, 166502–166517. [Google Scholar] [CrossRef]
- Adebiyi, A.A.; Moloi, K. Renewable energy source utilization progress in South Africa: A review. Energies 2024, 17, 3487. [Google Scholar] [CrossRef]
- Mohassel, R.R.; Fung, A.; Mohammadi, F.; Raahemifar, K. A survey on advanced metering infrastructure. Int. J. Electr. Power Energy Syst. 2014, 63, 473–484. [Google Scholar] [CrossRef]
- Wali, M.; Channi, H.K. (Eds.) Smart Meter Infrastructure for Distributed Renewable Power. In AI Approaches to Smart and Sustainable Power Systems; IGI Global: Hershey, PA, USA, 2024; Volume 1, pp. 81–99. [Google Scholar]
- Tepe, İ.F.; Irmak, E. Optimizing real-time demand response in smart homes through fuzzy-based energy management and control system. Electr. Eng. 2024, 107, 2121–2145. [Google Scholar] [CrossRef]
- Palensky, P.; Dietrich, D. Demand side management: Demand response, intelligent energy systems, and smart loads. IEEE Trans. Ind. Inform. 2011, 7, 381–388. [Google Scholar] [CrossRef]
- Sarker, E.; Halder, P.; Seyedmahmoudian, M.; Jamei, E.; Horan, B.; Mekhilef, S.; Stojcevski, A. Progress on the demand side management in smart grid and optimization approaches. Int. J. Energy Res. 2021, 45, 36–64. [Google Scholar] [CrossRef]
- Mishra, A.; Singh, S. Demand-side flexibility management: State of the art. In Renewable Energy Integration in Utility Grids; Academic Press: Cambridge, MA, USA, 2025; pp. 321–333. [Google Scholar]
- Nebey, A.H. Recent advancement in demand side energy management system for optimal energy utilization. Energy Rep. 2024, 11, 5422–5435. [Google Scholar] [CrossRef]
- Khaleel, M.; Yusupov, Z.; Alfalh, B.; Guneser, M.T.; Nassar, Y.; El-Khozondar, H. Impact of smart grid technologies on sustainable urban development. Int. J. Electr. Eng. Sustain. 2024, 2, 62–82. [Google Scholar]
- Zheng, Z.; Shafique, M.; Luo, X.; Wang, S. A systematic review towards integrative energy management of smart grids and urban energy systems. Renew. Sustain. Energy Rev. 2024, 189, 114023. [Google Scholar] [CrossRef]
- Binz Varghese, K. Baseline Load Estimation of Residential Customers for Incentive-Based Demand Response Programs. Master’s Thesis, Universitat Politècnica de Catalunya, Barcelona, Spain, 2024; p. 86. [Google Scholar]
- Stanelyte, D.; Radziukyniene, N.; Radziukynas, V. Overview of demand-response services: A review. Energies 2022, 15, 1659. [Google Scholar] [CrossRef]
- Wanjala, J.; Langa, H.M.; Walingo, T. Cost Minimization in a Smart Grid using a Genetic Algorithm. In Proceedings of the 2024 International Conference on Science, Engineering and Business for Driving Sustainable Development Goals (SEB4SDG), Omu-Aran, Nigeria, 2–4 April 2024; IEEE: Piscataway, NJ, USA, 2024; pp. 1–6. [Google Scholar]
- Jo, H.C.; Park, H.A.; Kwon, S.Y.; Cho, K.H. Home Energy Management Systems (HEMSs) with Optimal Energy Management of Home Appliances Using IoT. Energies 2024, 17, 3009. [Google Scholar] [CrossRef]
- Raza, A.; Jingzhao, L.; Ghadi, Y.; Adnan, M.; Ali, M. Smart home energy management systems: Research challenges and survey. Alex. Eng. J. 2024, 92, 117–170. [Google Scholar] [CrossRef]
- Youssef, H.; Kamel, S.; Hassan, M.H. Smart home energy management and power trading optimization using an enhanced manta ray foraging optimization. Sci. Rep. 2023, 13, 22163. [Google Scholar] [CrossRef]
- Han, B.; Zahraoui, Y.; Mubin, M.; Mekhilef, S.; Seyedmahmoudian, M.; Stojcevski, A. Home energy management systems: A review of the concept, architecture, and scheduling strategies. IEEE Access 2023, 11, 19999–20025. [Google Scholar] [CrossRef]
- Balakrishnan, R.; Geetha, V. Review on home energy management system. Mater. Today Proc. 2021, 47, 144–150. [Google Scholar] [CrossRef]
- Kuzlu, M.; Pipattanasomporn, M.; Rahman, S. Communication network requirements for major smart grid applications in HAN, NAN and WAN. Comput. Netw. 2024, 67, 74–88. [Google Scholar] [CrossRef]
- Li, Y.; Qin, D.; Poor, H.V.; Wang, Y. Introducing edge intelligence to smart meters via federated split learning. Nat. Commun. 2024, 15, 1–14. [Google Scholar] [CrossRef]
- Abdullah, A.A.; El-Den, B.M.; Abo-Al-Ez, K.M.; Hassan, T.M. Security management for an advanced metering infrastructure (AMI) system of smart electrical grids. Appl. Sci. 2023, 13, 8990. [Google Scholar] [CrossRef]
- Said, D. A survey on information communication technologies in modern demand-side management for smart grids: Challenges, solutions, and opportunities. IEEE Eng. Manag. Rev. 2022, 51, 76–107. [Google Scholar] [CrossRef]
- Panda, S.; Mohanty, S.; Rout, P.K.; Sahu, B.K.; Bajaj, M.; Zawbaa, H.M.; Kamel, S. Residential Demand Side Management model, optimization and future perspective: A review. Energy Rep. 2022, 8, 3727–3766. [Google Scholar] [CrossRef]
- Mahapatra, B.; Nayyar, A. Home energy management system (HEMS): Concept, architecture, infrastructure, challenges and energy management schemes. Energy Syst. 2022, 13, 643–669. [Google Scholar] [CrossRef]
- Missaoui, R.; Joumaa, H.; Ploix, S.; Bacha, S. Managing energy smart homes according to energy prices: Analysis of a building energy management system. Energy Build. 2014, 71, 155–167. [Google Scholar] [CrossRef]
- Al-Ali, A.R.; El-Hag, A.; Bahadiri, M.; Harbaji, M.; El Haj, Y.A. Smart home renewable energy management system. Energy Procedia 2011, 12, 120–126. [Google Scholar] [CrossRef]
- Honarmand, M.E.; Hosseinnezhad, V.; Hayes, B.; Shafie-Khah, M.; Siano, P. An overview of demand response: From its origins to the smart energy community. IEEE Access 2021, 9, 96851–96876. [Google Scholar] [CrossRef]
- Mohammad, A.; Zuhaib, M.; Ashraf, I. An optimal home energy management system with integration of renewable energy and energy storage with home to grid capability. Int. J. Energy Res. 2022, 46, 8352–8366. [Google Scholar] [CrossRef]
- Ali, A.O.; Elmarghany, M.R.; Abdelsalam, M.M.; Sabry, M.N.; Hamed, A.M. Closed-loop home energy management system with renewable energy sources in a smart grid: A comprehensive review. J. Energy Storage 2022, 50, 104609. [Google Scholar] [CrossRef]
- Espe, E.; Potdar, V.; Chang, E. Prosumer communities and relationships in smart grids: A literature review, evolution and future directions. Energies 2018, 11, 2528. [Google Scholar] [CrossRef]
- Shivam, K.; Tzou, J.C.; Wu, S.C. A multi-objective predictive energy management strategy for residential grid-connected PV-battery hybrid systems based on machine learning technique. Energy Convers. Manag. 2021, 237, 114103. [Google Scholar] [CrossRef]
- Mohammad, A.; Zuhaib, M.; Ashraf, I.; Alsultan, M.; Ahmad, S.; Sarwar, A.; Abdollahian, M. Integration of electric vehicles and energy storage system in home energy management system with home to grid capability. Energies 2021, 14, 8557. [Google Scholar] [CrossRef]
- Umoh, V.; Adebiyi, A.; Moloi, K. Hosting Capacity Assessment of South African Residential Low-Voltage Networks for Electric Vehicle Charging. Engineering 2023, 4, 1965–1980. [Google Scholar] [CrossRef]
- Umoh, V.B.; Adebivi, A.A.; Moloi, K. Electric Vehicles Hosting Capacity Assessment for a South African Low Voltage Distribution Network. In Proceedings of the IEEE 2023 3rd International Conference on Electronic and Electrical Engineering and Intelligent System (ICE3IS), Yogyakarta, Indonesia, 9–10 August 2023; pp. 53–57. [Google Scholar]
- Abrahamsen, F.E.; Ai, Y.; Cheffena, M. Communication technologies for smart grid: A comprehensive survey. Sensors 2021, 21, 8087. [Google Scholar] [CrossRef] [PubMed]
- Amer, A.; Shaban, K.; Gaouda, A.; Massoud, A. Home energy management system embedded with a multi-objective demand response optimization model to benefit customers and operators. Energies 2021, 14, 257. [Google Scholar] [CrossRef]
- Gomes, I.; Bot, K.; Ruano, M.G.; Ruano, A. Recent techniques used in home energy management systems: A review. Energies 2022, 15, 2866. [Google Scholar] [CrossRef]
- Jha, A.V.; Appasani, B.; Gupta, D.K.; Ramavath, S.; Khan, M.S. Machine Learning and Deep Learning Approaches for Energy Management in Smart Grid 3.0. In Smart Grid 3.0: Computational and Communication Technologies; Springer: Berlin/Heidelberg, Germany, 2023; pp. 121–151. [Google Scholar] [CrossRef]
- Manzoor, A.; Javaid, N.; Ullah, I.; Abdul, W.; Almogren, A.; Alamri, A. An intelligent hybrid heuristic scheme for smart metering-based demand side management in smart homes. Energies 2017, 10, 1258. [Google Scholar] [CrossRef]
- Ruano, A.; Hernandez, A.; Ureña, J.; Ruano, M.; Garcia, J. NILM techniques for intelligent home energy management and ambient assisted living: A review. Energies 2019, 12, 2203. [Google Scholar] [CrossRef]
- Sun, W.; Tang, M.; Zhang, L.; Huo, Z.; Shu, L. A survey of using swarm intelligence algorithms in IoT. Sensors 2020, 20, 1420. [Google Scholar] [CrossRef]
- Hussain, H.M.; Nardelli, P.H.J. A Heuristic-based Home Energy Management System for Demand Response. In Proceedings of the 2020 IEEE Conference on Industrial Cyberphysical Systems (ICPS), Tampere, Finland, 10–12 June 2020; pp. 285–290. [Google Scholar]
- Rehman, A.U.; Hafeez, G.; Albogamy, F.R.; Wadud, Z.; Ali, F.; Khan, I.; Rukh, G.; Khan, S. An efficient energy management in smart grid considering demand response program and renewable energy sources. IEEE Access 2021, 9, 148821–148844. [Google Scholar] [CrossRef]
- Tostado-Véliz, M.; Arévalo, P.; Kamel, S.; Zawbaa, H.M.; Jurado, F. Home energy management system considering effective demand response strategies and uncertainties. Energy Rep. 2022, 8, 5256–5271. [Google Scholar] [CrossRef]
- Mahmood, Z.; Cheng, B.; Butt, N.A.; Rehman, G.U.; Zubair, M.; Badshah, A.; Aslam, M. Efficient scheduling of home energy management controller (HEMC) using heuristic optimization techniques. Sustainability 2023, 15, 1378. [Google Scholar] [CrossRef]
- Youssef, H.; Kamel, S.; Hassan, M.H. Meta-heuristic-based home energy management system for optimizing smart appliance scheduling and electricity cost reduction in residential complexes. Neural Comput. Appl. 2024, 36, 23077–23102. [Google Scholar] [CrossRef]
- Priolkar, J.; Sreeraj, E.S. Optimal scheduling and demand response implementation for home energy management. Int. J. Electr. Comput. Eng. 2024, 14, 1352–1368. [Google Scholar] [CrossRef]
- Rezaee Jordehi, A. Enhanced leader particle swarm optimisation (ELPSO): A new algorithm for optimal scheduling of home appliances in demand response programs. Artif. Intell. Rev. 2020, 53, 2043–2073. [Google Scholar] [CrossRef]
- Huy, T.H.B.; Dinh, H.T.; Kim, D. Multi-objective framework for a home energy management system with the integration of solar energy and an electric vehicle using an augmented ε-constraint method and lexicographic optimization. Sustain. Cities Soc. 2023, 88, 104289. [Google Scholar] [CrossRef]
- Youssef, H.; Kamel, S.; Hassan, M.H. Smart home energy management with long-term memory artificial rabbit algorithm for cost and load optimization. Clust. Comput. 2025, 28, 1–28. [Google Scholar] [CrossRef]
- Keerthana, K.; Snekha, S.; Nandan, G.; Ramalingam, S.P.; Shanmugam, P.K.; Raglend, I.J. Minimising Energy Consumption Cost Using Ant Colony Optimization with Power Quality Considerations Under HEMS Environment. In Proceedings of the 2023 Innovations in Power and Advanced Computing Technologies (i-PACT), Kuala Lumpur, Malaysia, 8–10 December 2023; pp. 1–8. [Google Scholar]
- Van Groesen, S. Optimal Demand Response Management for HEMS Using Real-Time Pricing. Bachelor Dissertation, Erasmus University Rotterdam, Rotterdam, The Netherlands, 2024; p. 95. [Google Scholar]
- Silva, B.N.; Khan, M.; Wijesinghe, R.E.; Wijenayake, U. Meta-heuristic optimization based cost efficient demand-side management for sustainable smart communities. Energy Build. 2024, 303, 113599. [Google Scholar] [CrossRef]
- Sarker, I.H. Machine learning: Algorithms, real-world applications and research directions. SN Comput. Sci. 2021, 2, 160. [Google Scholar] [CrossRef]
- Ali, S.; Abuhmed, T.; El-Sappagh, S.; Muhammad, K.; Alonso-Moral, J.M.; Confalonieri, R.; Guidotti, R.; Del Ser, J.; Díaz-Rodríguez, N.; Herrera, F. Explainable Artificial Intelligence (XAI): What we know and what is left to attain Trustworthy Artificial Intelligence. Inf. Fusion 2023, 99, 101805. [Google Scholar] [CrossRef]
- Nutakki, M.; Mandava, S. Review on optimization techniques and role of Artificial Intelligence in home energy management systems. Eng. Appl. Artif. Intell. 2023, 119, 100918. [Google Scholar] [CrossRef]
- Park, B.; Kwon, S.H.; Oh, B. Standby Power Reduction of Home Appliance by the i-HEMS System Using Supervised Learning Techniques. Energies 2024, 17, 2404. [Google Scholar] [CrossRef]
- Huy, T.H.B.; Dinh, H.T.; Vo, D.N.; Kim, D. Real-time energy scheduling for home energy management systems with an energy storage system and electric vehicle based on a supervised-learning-based strategy. Energy Convers. Manag. 2023, 292, 117340. [Google Scholar] [CrossRef]
- Dinh, H.T.; Lee, K.H.; Kim, D. Supervised-learning-based hour-ahead demand response for a behaviour-based home energy management system approximating MILP optimization. Appl. Energy 2022, 321, 119382. [Google Scholar] [CrossRef]
- Kermansaravi, A.; Refaat, S.S.; Trabelsi, M.; Vahedi, H. AI-based energy management strategies for electric vehicles: Challenges and future directions. Energy Rep. 2025, 13, 5535–5550. [Google Scholar] [CrossRef]
- Powroźnik, P.; Szcześniak, P. Predictive Analytics for Energy Efficiency: Leveraging Machine Learning to Optimize Household Energy Consumption. Energies 2024, 17, 5866. [Google Scholar] [CrossRef]
- Amer, A.A.; Shaban, K.; Massoud, A.M. DRL-HEMS: Deep reinforcement learning agent for demand response in home energy management systems considering customers and operators perspectives. IEEE Trans. Smart Grid 2022, 14, 239–250. [Google Scholar] [CrossRef]
- Rokonuzzaman, M.; Rahman, S.; Hannan, M.A.; Mishu, M.K.; Tan, W.S.; Rahman, K.S.; Pasupuleti, J.; Amin, N. Levenberg-Marquardt algorithm-based solar PV energy integrated internet of home energy management system. Appl. Energy 2025, 378, 124407. [Google Scholar] [CrossRef]
- Nutakki, M.; Koduru, S.; Mandava, S. Quantum support vector machine for forecasting house energy consumption: A comparative study with deep learning models. J. Cloud Comput. 2024, 13, 105. [Google Scholar] [CrossRef]
- Yu, J.; Li, X.; Yang, L.; Li, L.; Huang, Z.; Shen, K.; Yang, X.; Yang, X.; Xu, Z.; Zhang, D.; et al. Deep learning models for PV power forecasting. Energies 2024, 17, 3973. [Google Scholar] [CrossRef]
- Lee, S.; Seon, J.; Hwang, B.; Kim, S.; Sun, Y.; Kim, J. Recent trends and issues of energy management systems using machine learning. Energies 2024, 17, 624. [Google Scholar] [CrossRef]
- Reddy, K.H.K.; Behera, R.K.; Singh, R.K.B. An Ensemble Learning based Energy Forecasting Model: A Sustainable Home Energy Management System for Smart City. Procedia Comput. Sci. 2025, 258, 1316–1325. [Google Scholar] [CrossRef]
- Alfaverh, K.; Fawaier, M.; Szamel, L. Optimizing home energy flows and battery management with supervised and unsupervised learning in renewable systems. Electronics 2025, 14, 1166. [Google Scholar] [CrossRef]
- Al-Ani, O.; Das, S. Reinforcement learning: Theory and applications in HEMS. Energies 2022, 15, 6392. [Google Scholar] [CrossRef]
- Aldahmashi, J.; Ma, X. Real-time energy management in smart homes through deep reinforcement learning. IEEE Access 2024, 12, 43155–43172. [Google Scholar] [CrossRef]
- Mansour, S.H.; Azzam, S.M.; Hasanien, H.M.; Tostado-Véliz, M.; Alkuhayli, A.; Jurado, F. Deep reinforcement learning-based plug-in electric vehicle charging/discharging scheduling in a home energy management system. Energy 2025, 316, 134420. [Google Scholar] [CrossRef]
- Li, Y.; Chen, X.; Wang, Y. EdgeHEM: Sparse Federated Reinforcement Learning for Home Energy Management at the Edge. IEEE Trans.Smart Grid 2025, 92, 1–13. [Google Scholar] [CrossRef]
- Birge, J.R.; Louveaux, F. Introduction to Stochastic Programming; Springer Science & Business Media: New York, NY, USA, 2011; ISBN 1461402379. [Google Scholar]
- Duan, J.; Li, Y.; Li, Y.; Yang, P.; Zeng, Z. Statistical Feasibility Robust Optimization with Polyhedron Uncertainty Set for Hydrogen-Data Center Microgrid Operations. IEEE Trans. Autom. Sci. Eng. 2024, 22, 9884–9902. [Google Scholar] [CrossRef]
- Germscheid, S.H.; Mitsos, A.; Dahmen, M. Scenario Reduction Methods for Risk-Averse Demand Response Scheduling Under Price Uncertainty. Comput. Aided Chem. Eng. 2024, 53, 3223–3228. [Google Scholar] [CrossRef]
- Makhadmeh, S.N.; Al-Betar, M.A.; Alyasseri, Z.A.A.; Abasi, A.K.; Khader, A.T.; Damaševičius, R.; Mohammed, M.A.; Abdulkareem, K.H. Smart Home Battery for the Multi-Objective Power Scheduling Problem in a Smart Home Using Grey Wolf Optimizer. Electronics 2021, 10, 447. [Google Scholar] [CrossRef]
- Hussain, A.; Musilek, P. Energy management of buildings with energy storage and solar photovoltaic: A diversity in experience approach for deep reinforcement learning agents. Energy AI 2024, 15, 100313. [Google Scholar] [CrossRef]
- Ahrarinouri, M.; Rastegar, M.; Seifi, A.R. Multiagent Reinforcement Learning for Energy Management in Residential Buildings. IEEE Trans. Ind. Inform. 2021, 17, 659–666. [Google Scholar] [CrossRef]
- Diyan, M.; Silva, B.N.; Han, K.A. Multi-Objective Approach for Optimal Energy Management in Smart Home Using the Reinforcement Learning. Sensors 2020, 20, 3450. [Google Scholar] [CrossRef]
- Gomes, I.L.R.; Ruano, M.G.; Ruano, A.E. MILP-based model predictive control for home energy management systems: A real case study in Algarve, Portugal. Energy Build. 2023, 281, 112774. [Google Scholar] [CrossRef]
- Ikram, A.I.; Ullah, A.; Datta, D.; Islam, A.; Ahmed, T. Optimizing energy consumption in smart homes: Load scheduling approaches. IET Power Electron. 2024, 17, 2656–2668. [Google Scholar] [CrossRef]
- Yang, Y.; Wang, S. Resilient residential energy management with vehicle-to-home and photovoltaic uncertainty. Int. J. Electr. Power Energy Syst. 2021, 132, 107206. [Google Scholar] [CrossRef]
- Akbari, S.; Martins, J.; Camarinha-Matos, L.M.; Petrone, G. A two-stage probabilistic flexibility management model for aggregated residential buildings. Energy Build. 2025, 332, 115404. [Google Scholar] [CrossRef]
- Avordeh, T.K.; Gyamfi, S. Optimizing residential demand response in Ghana through iterative techniques and home appliance trend analysis. Heliyon 2024, 10, e25807. [Google Scholar] [CrossRef]
- Tesfatsion, L. Locational marginal pricing: A fundamental reconsideration. IEEE Open Access J. Power Energy 2024, 11, 104–116. [Google Scholar] [CrossRef]
- Li, C.; Grossmann, I.E. A review of stochastic programming methods for optimization of process systems under uncertainty. Front. Chem. Eng. 2021, 2, 622241. [Google Scholar] [CrossRef]
- Fariman, S.K.; Danesh, K.; Pourtalebiyan, M.; Fakhri, Z.; Motallebi, A.; Fozooni, A. A robust optimization model for multi-objective blood supply chain network considering scenario analysis under uncertainty: A multi-objective approach. Sci. Rep. 2024, 14, 9452. [Google Scholar] [CrossRef]
- Wang, K.; Aydemir, M.; Jacquillat, A. Scenario-based robust optimization for two-stage decision making under binary uncertainty. Inf. J. Optim. 2024, 6, 84–117. [Google Scholar] [CrossRef]
Ref. | Objective | Dataset/Case Study | Scenario Uncertainty Considered | Normalized Outcomes |
---|---|---|---|---|
Sarker et al. (2021) [12] | Review of DSM in smart grids; optimization approaches for DR | Survey of global DSM/DR works | Stochastic renewable generation, demand variability | Cost ↓ (reported), PAR ↓ (✓), Comfort ↑ (discussed qualitatively), Runtime—not benchmarked |
Mishra & Singh (2025) [13] | Demand-side flexibility management, state-of-the-art | Conceptual/aggregated studies | Load forecast uncertainty, DR participation | Cost ↓ (review evidence), PAR ↓ (not quantified), Comfort trade-offs noted, Runtime—not reported |
Nebey (2024) [14] | Demand-side EMS for optimal utilization | Residential & microgrid case studies | Uncertain load profiles | Cost ↓ (✓), PAR ↓ (✓), Comfort ↑ (fewer violations), Runtime moderate |
Zheng et al. (2024) [16] | Integrative smart grid + urban energy management | Multi-system reviews (urban grids) | High variability of demand + urban supply | Cost ↓ (conceptual evidence), PAR—not focus, Comfort N/A, Runtime—not reported |
Binz Varghese (2024) [17] | Baseline load estimation for DR | Residential customer data (Barcelona) | Baseline uncertainty (consumer profiles) | Cost ↓ (via incentives), PAR ↓ (indirect), Comfort—trade-offs discussed, Runtime—not benchmarked |
Stanelyte et al. (2022) [18] | Review of DR services | Utility DR programs (Europe, US) | Customer participation uncertainty | Cost ↓ (✓), PAR ↓ (conceptual), Comfort—N/A, Runtime—N/A |
Wanjala et al. (2024) [19] | GA-based smart grid cost minimization | IEEE test systems | Uncertain load and pricing | Cost ↓ 10–20%, PAR ↓ (✓), Comfort N/A, Runtime ↑ (due to GA iterations) |
Jo et al. (2024) [20] | IoT-based HEMS for appliances | Residential IoT dataset (Korea) | Appliance usage uncertainty | Cost ↓ 12–15%, PAR ↓ (✓), Comfort ↑ (less violations), Runtime—moderate |
Optimization Method | Strengths | Limitations | Real-World Applications |
---|---|---|---|
Heuristic & Metaheuristic | Low computational cost, straightforward implementation, effective for multi-objective scheduling | Sensitive to parameter tuning, prone to local optima, limited adaptability in dynamic or stochastic environments | Appliance scheduling, PAR reduction, single-household DR programs |
Machine Learning (Supervised, DRL, Unsupervised) | High adaptability, data-driven forecasting, capable of handling uncertainty and complex energy patterns | Requires large datasets and significant training time, high computational complexity, interpretability challenges | ESS and EV optimization, PV power forecasting, adaptive DR participation |
Hybrid (Heuristic + ML) | Leverages complementary strengths, improved convergence and robustness, scalable to multi-home systems | Increased design complexity, potential for high resource requirements | Community-level DR, peer-to-peer energy trading, integrated RES and storage optimization |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Adebiyi, A.A.; Habyarimana, M. Systematic Review of Optimization Methodologies for Smart Home Energy Management Systems. Energies 2025, 18, 5262. https://doi.org/10.3390/en18195262
Adebiyi AA, Habyarimana M. Systematic Review of Optimization Methodologies for Smart Home Energy Management Systems. Energies. 2025; 18(19):5262. https://doi.org/10.3390/en18195262
Chicago/Turabian StyleAdebiyi, Abayomi A., and Mathew Habyarimana. 2025. "Systematic Review of Optimization Methodologies for Smart Home Energy Management Systems" Energies 18, no. 19: 5262. https://doi.org/10.3390/en18195262
APA StyleAdebiyi, A. A., & Habyarimana, M. (2025). Systematic Review of Optimization Methodologies for Smart Home Energy Management Systems. Energies, 18(19), 5262. https://doi.org/10.3390/en18195262