Energy Storage Capacity Configuration and Scheduling Method for Microgrid Considering Demand Response
Abstract
1. Introduction
2. Microgrid Model
2.1. Model of Wind Turbine
2.2. Model of Photovoltaic
2.3. Model of Energy Storage Battery
2.4. Model of Demand Response
2.5. Penalty Cost for Power Fluctuation of the Transmission Line
2.6. Model of Line Loss
3. Microgrid Economic Model and Constraints
3.1. Objective Function
3.2. Constraints
4. Double-Layer Optimization Algorithm
5. Example Analysis
5.1. Case Study
5.2. The Impact of Battery Price on Energy Storage Configuration and Cost
5.3. The Impact of Compensation Electricity Prices on Energy Storage Configuration and Cost
5.4. The Impact of Photovoltaic Capacity on Energy Storage Configuration and Cost
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zheng, W.; Lu, H.; Zhang, M.; Wu, Q.; Hou, Y.; Zhu, J. Distributed Energy Management of Multi-Entity Integrated Electricity and Heat Systems: A Review of Architectures, Optimization Algorithms, and Prospects. IEEE Trans. Smart Grid 2024, 15, 1544–1561. [Google Scholar] [CrossRef]
- International Energy Agency. Unlocking the Potential of Distributed Energy Resources. 2022. Available online: https://www.iea.org/reports/unlocking-the-potential-of-distributed-energy-resources (accessed on 17 September 2025).
- Du, Y.; Mendes, N.; Rasouli, S.; Mohammadi, J.; Moura, P. Federated learning assisted distributed energy optimization. IET Renew. Power Gener. 2024, 18, 2524–2538. [Google Scholar] [CrossRef]
- Wang, C.; Yang, X.; Wu, Z.; Che, Y.; Guo, L.; Zhang, S.; Liu, Y. A highly integrated and reconfigurable microgrid testbed with hybrid distributed energy source. IEEE Trans. Smart Grid 2014, 7, 451–459. [Google Scholar] [CrossRef]
- Rouholamini, M.; Wang, C.; Nehrir, H.; Hu, X.; Hu, Z.; Aki, H.; Zhao, B.; Miao, Z.; Strunz, K. A review of modeling, management, and applications of grid-connected li-ion battery storage systems. IEEE Trans. Smart Grid 2022, 13, 4505–4524. [Google Scholar] [CrossRef]
- Morstyn, T.; Hredzak, B.; Agelidis, V.G. Control strategies for microgrids with distributed energy storage systems: An overview. IEEE Trans. Smart Grid 2018, 9, 3652–3666. [Google Scholar] [CrossRef]
- US Department of Energy. Energy Storage Grand Challenge Roadmap. 2020. Available online: https://www.energy.gov/energy-storage-grand-challenge/articles/energy-storage-grand-challenge-roadmap?nrg_redirect=365461 (accessed on 17 September 2025).
- Abdelghany, M.B.; Al-Durra, A.; Gao, F. A coordinated optimal operation of a grid-connected wind-solar microgrid incorporating hybrid energy storage management systems. IEEE Trans. Sustain. Energy 2024, 15, 39–51. [Google Scholar] [CrossRef]
- Wu, T.; Shi, X.; Liao, L.; Zhou, C.; Zhou, H.; Su, Y. A capacity configuration control strategy to alleviate power fluctuation of hybrid energy storage system based on improved particle swarm optimization. Energies 2019, 12, 642. [Google Scholar] [CrossRef]
- Zhu, N.; Ma, X.; Guo, Z.; Shen, C.; Liu, J. Research on the optimal capacity configuration of green storage microgrid based on the improved sparrow search algorithm. Front. Energy Res. 2024, 12, 1383332. [Google Scholar] [CrossRef]
- Zhao, D.; Xia, X.; Tao, R. Optimal configuration of electric-gas-thermal multi-energy storage system for regional integrated energy system. Energies 2019, 12, 2586. [Google Scholar] [CrossRef]
- Yao, Q.; Yuan, X.; Huang, B.L. Optimal configuration of independent microgrid based on Monte Carlo processing of source and load uncertainty. Energy Storage Sci. Technol. 2020, 9, 186–194. [Google Scholar]
- Luo, X.; He, Y.; Zhang, J.; Li, J. Optimal Allocation of Hybrid Energy Storage Capacity Based on ISSA-Optimized VMD Parameters. Electronics 2024, 13, 2597. [Google Scholar] [CrossRef]
- Tian, Y.; Li, X.; Zhu, Y.; Xia, R. Optimal capacity allocation of multiple energy storage considering microgrid cost. J. Phys. Conf. Ser. 2018, 1074, 012126. [Google Scholar]
- Monfared, H.J.; Ghasemi, A.; Loni, A.; Marzband, M. A hybrid price-based demand response program for the residential micro-grid. Energy 2019, 185, 274–285. [Google Scholar] [CrossRef]
- Duc, T.T.; Tuan, A.N.; Duc, T.N.; Takano, H. Energy management of hybrid AC/DC microgrid considering incentive-based demand response program. IET Gener. Transm. Distrib. 2024, 18, 3289–3302. [Google Scholar] [CrossRef]
- Zhu, X.; Sun, Y.; Yang, J.; Dou, Z.; Li, G.; Xu, C.; Wen, Y. Day-ahead energy pricing and management method for regional integrated energy systems considering multi-energy demand responses. Energy 2022, 251, 123914. [Google Scholar] [CrossRef]
- Zheng, S.; Sun, Y.; Li, B.; Qi, B.; Shi, K.; Li, Y.; Tu, X. Incentive-based integrated demand response for multiple energy carriers considering behavioral coupling effect of consumers. IEEE Trans. Smart Grid 2020, 11, 3231–3245. [Google Scholar] [CrossRef]
- Ju, L.; Zhou, Q.; Lu, X.; Yang, S.; Fan, W.; Li, J. A multi-objective peak regulation transaction optimization and benefits coordination model for multi-sources coupling system considering flexible load response. Energy Rep. 2022, 8, 13083–13100. [Google Scholar] [CrossRef]
- Fan, H.; Yuan, Q.; Cheng, H. Multi-Objective Stochastic Optimal Operation of a Grid-Connected Microgrid Considering an Energy Storage System. Appl. Sci. 2018, 8, 2560. [Google Scholar] [CrossRef]
- Tabar, V.S.; Jirdehi, M.A.; Hemmati, R. Energy management in microgrid based on the multi objective stochastic programming incorporating portable renewable energy resource as demand response option. Energy 2017, 118, 827–839. [Google Scholar] [CrossRef]
- Lin, L.; Ou, K.; Lin, Q.; Xing, J.; Wang, Y.-X. Two-stage multi-strategy decision-making framework for capacity configuration optimization of grid-connected PV/battery/hydrogen integrated energy system. J. Energy Storage 2024, 97, 112862. [Google Scholar] [CrossRef]
- Zhang, J.; Hou, L.; Zhang, B.; Yang, X.; Diao, X.; Jiang, L.; Qu, F. Optimal operation of energy storage system in photovoltaic-storage charging station based on intelligent reinforcement learning. Energy Build. 2023, 299, 113570. [Google Scholar] [CrossRef]
- Xie, P.; Cai, Z.; Liu, P.; Li, X.; Zhang, Y.; Xu, D. Microgrid system energy storage capacity optimization considering multiple time scale uncertainty coupling. IEEE Trans. Smart Grid 2018, 10, 5234–5245. [Google Scholar] [CrossRef]
- Xiao, Y.; Zhang, L. Smart grid energy storage capacity planning and scheduling optimization through PSO-GRU and multihead-attention. Front. Energy Res. 2023, 11, 1254371. [Google Scholar] [CrossRef]
- Du, Y.; Jiang, L.; Li, Y.; Wu, Q. A robust optimization approach for demand side scheduling considering uncertainty of manually operated appliances. IEEE Trans. Smart Grid 2018, 9, 743–755. [Google Scholar] [CrossRef]
- Ministry of Industry and Information Technology. Lithiumion Battery Industry Standardization Conditions. 2020. Available online: https://www.miit.gov.cn/jgsj/dzs/wjfb/art/2020/art_b6e8117aaf6b40cfafa945d42d3b3ac3.html (accessed on 17 September 2025).
Parameters | Symbols | Values |
---|---|---|
Inertia weight | ω | 0.8 |
Group-learning factor | c2 | 0.5 |
Number of particles | P | 24 |
Velocity limit | vlim | 0.5 |
Self-learning factor | c1 | 0.5 |
Maximum number of iterations | Itermax | 50 |
Position limit | data | 1 |
Electricity Price Type | Time Period (h) | Unit Price (CNY/kWh) |
---|---|---|
Peak | 08:00–11:00 | 0.686 |
18:00–20:00 | ||
Flat | 11:00–18:00 | 0.459 |
20:00–23:00 | ||
Valley | 23:00–08:00(+1) | 0.223 |
Transferable load compensation price | 00:00–24:00 | 0.200 |
Interruptible load compensation price | 00:00–24:00 | 1.000 |
Parameters | Values | Parameters | Values |
---|---|---|---|
vin | 5 m/s | kσ1 | 1.4 × 105 |
vout | 25 m/s | kσ2 | −0.5 |
vr | 12 m/s | kσ3 | −1.23 × 105 |
Pr | 50 kW | kt | 4.14 × 10−10 s−1 |
NPVs | 10 | kSOC | 1.04 |
NPVp | 10 | SSOC,min | 0.1 |
PPV,STC | 0.45 kW | SSOC,max | 0.9 |
GT,STC | 1000 W/m2 | SSOCref | 0.5 |
Tj,STC | 25 °C | kT | 0.0693 |
γ | 0.043%/°C | Tref | 25 °C |
GT,NOCT | 800 W/m2 | Ypv | 0.45 CNY/h |
σ | 0.01% | YWT | 0.02 CNY/h |
ηbat | 95% | Ybat | 1000 CNY/kWh |
ηinv | 95% | λs | 0.2 CNY/kWh |
Eini,max | 5000 kWh | λc | 1.0 CNY/kWh |
Pch,max Pdis,max | Eini/2 h | Pep,max Pes,max | 1000 kW |
Case | Compensation Cost | Cost of Purchasing and Selling Electricity | Penalty Cost of Line Power Fluctuations | Equivalent Cost of Battery Attenuation | Total Cost |
---|---|---|---|---|---|
Case 1 | 0 | 3969.0 | 1764.6 | 0 | 5733.6 |
Case 2 | 624.3 | 2363.0 | 1058.9 | 0 | 4046.2 |
Case 3 | 0 | 1821.8 | 821.6 | 1296.8 | 3940.2 |
Case 4 | 526.2 | 1009.7 | 938.8 | 1236.7 | 3711.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pan, T.; Li, C.; Jin, X.; Meng, Z.; Cai, X. Energy Storage Capacity Configuration and Scheduling Method for Microgrid Considering Demand Response. Energies 2025, 18, 5167. https://doi.org/10.3390/en18195167
Pan T, Li C, Jin X, Meng Z, Cai X. Energy Storage Capacity Configuration and Scheduling Method for Microgrid Considering Demand Response. Energies. 2025; 18(19):5167. https://doi.org/10.3390/en18195167
Chicago/Turabian StylePan, Tingzhe, Chao Li, Xin Jin, Zijie Meng, and Xinlei Cai. 2025. "Energy Storage Capacity Configuration and Scheduling Method for Microgrid Considering Demand Response" Energies 18, no. 19: 5167. https://doi.org/10.3390/en18195167
APA StylePan, T., Li, C., Jin, X., Meng, Z., & Cai, X. (2025). Energy Storage Capacity Configuration and Scheduling Method for Microgrid Considering Demand Response. Energies, 18(19), 5167. https://doi.org/10.3390/en18195167