Hydrogen Production Through Methane Decomposition over Waste-Derived Carbon-Based Catalysts
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials and Reagents
2.2. Catalyst Preparation
2.3. Methods of Catalyst Characterization
2.4. Methane Decomposition Experimental Setup
2.5. CMD Experiments
3. Results and Discussion
3.1. Catalyst Production Yield
3.2. Catalyst Characterization
3.3. Impacts of Process Parameters
3.3.1. Optimization of Experimental Conditions
3.3.2. Activity of Carbon Catalysts
3.4. Catalyst Characterization
3.5. Perspectives of Using Waste-Derived Carbon-Based Catalysts in the CMD Process
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Nikolaidis, P.; Poullikkas, A. A comparative overview of hydrogen production processes. Renew. Sustain. Energy Rev. 2017, 67, 597–611. [Google Scholar] [CrossRef]
- Iulianelli, A.; Liguori, S.; Wilcox, J.; Basile, A. Advances on methane steam reforming to produce hydrogen through membrane reactors technology: A review. Catal. Rev. Sci. Eng. 2016, 58, 1–35. [Google Scholar] [CrossRef]
- Srilatha, K.; Bhagawan, D.; Kumar, S.S.; Himabindu, V. Sustainable fuel production by thermocatalytic decomposition of methane—A review. S. Afr. J. Chem. Eng. 2017, 24, 156–167. [Google Scholar] [CrossRef]
- Usman, M.; Wan Daud, W.M.A.; Abbas, H.F. Dry reforming of methane: Influence of process parameters—A review. Renew. Sustain. Energy Rev. 2015, 45, 710–744. [Google Scholar] [CrossRef]
- Msheik, M.; Rodat, S.; Abanades, S. Methane cracking for hydrogen production: A review of catalytic and molten media pyrolysis. Energies 2021, 14, 3107. [Google Scholar] [CrossRef]
- Mohd Noor, C.W.; Noor, M.M.; Mamat, R. Biodiesel as alternative fuel for marine diesel engine applications: A review. Renew. Sustain. Energy Rev. 2018, 94, 127–142. [Google Scholar] [CrossRef]
- Ren, J.T.; Chen, L.; Wang, H.Y.; Tian, W.W.; Yuan, Z.Y. Water electrolysis for hydrogen production: From hybrid systems to self-powered/catalyzed devices. Energy Environ. Sci. 2023, 17, 49–113. [Google Scholar] [CrossRef]
- Mirkarimi, S.M.R.; Bensaid, S.; Negro, V.; Chiaramonti, D. Review of methane cracking over carbon-based catalyst for energy and fuels. Renew. Sustain. Energy Rev. 2023, 187, 113747. [Google Scholar] [CrossRef]
- Patlolla, S.R.; Katsu, K.; Sharafian, A.; Wei, K.; Herrera, O.E.; Mérida, W. A review of methane pyrolysis technologies for hydrogen production. Renew. Sustain. Energy Rev. 2023, 181, 113323. [Google Scholar] [CrossRef]
- Pudukudy, M.; Yaakob, Z.; Jia, Q.; Takriff, M.S. Catalytic decomposition of undiluted methane into hydrogen and carbon nanotubes over Pt promoted Ni/CeO2 catalysts. New J. Chem. 2018, 42, 14843–14856. [Google Scholar] [CrossRef]
- Ibrahim, A.A.; Fakeeha, A.H.; Al-Fatesh, A.S.; Abasaeed, A.E.; Khan, W.U. Methane decomposition over iron catalyst for hydrogen production. Int. J. Hydrogen Energy 2015, 40, 7593–7600. [Google Scholar] [CrossRef]
- Dawkins, M.; Saal, D.; Marco, J.F.; Reynolds, J.; Dann, S. An iron ore-based catalyst for producing hydrogen and metallurgical carbon via catalytic methane pyrolysis for decarbonisation of the steel industry. Int. J. Hydrogen Energy 2023, 48, 21765–21777. [Google Scholar] [CrossRef]
- Karimi, S.; Bibak, F.; Meshkani, F.; Rastegarpanah, A.; Deng, J.; Liu, Y.; Dai, H. Promotional roles of second metals in catalyzing methane decomposition over the Ni-based catalysts for hydrogen production: A critical review. Int. J. Hydrogen Energy 2021, 46, 20435–20480. [Google Scholar] [CrossRef]
- Dipu, A.L. Methane decomposition into COx-free hydrogen over a Ni-based catalyst: An overview. Int. J. Energy Res. 2021, 45, 9858–9877. [Google Scholar] [CrossRef]
- Alharthi, A.I.; Abdel-Fattah, E.; Alotaibi, M.A.; Ud Din, I.; Nassar, A.A. Cobalt ferrite for direct cracking of methane to produce hydrogen and carbon nanostructure: Effect of temperature and methane flow rate. J. Saudi Chem. Soc. 2023, 27, 101641. [Google Scholar] [CrossRef]
- Silva, R.R.C.M.; Oliveira, H.A.; Guarino, A.C.; Toledo, B.B.; Moura, M.B.; Oliveira, B.T.; Passos, F.B. Effect of support on methane decomposition for hydrogen production over cobalt catalysts. Int. J. Hydrogen Energy 2016, 41, 6763–6772. [Google Scholar] [CrossRef]
- Serrano, D.P.; Botas, J.Á.; Pizarro, P.; Gómez, G. Kinetic and autocatalytic effects during the hydrogen production by methane decomposition over carbonaceous catalysts. Int. J. Hydrogen Energy 2013, 38, 5671–5683. [Google Scholar] [CrossRef]
- Abbas, H.F.; Wan Daud, W.M.A. Hydrogen production by methane decomposition: A review. Int. J. Hydrogen Energy 2010, 35, 1160–1190. [Google Scholar] [CrossRef]
- Muradov, N. Catalysis of methane decomposition over elemental carbon. Catal. Commun. 2001, 2, 89–94. [Google Scholar] [CrossRef]
- Muradov, N.; Smith, F.; T-Raissi, A. Catalytic activity of carbons for methane decomposition reaction. Catal. Today 2005, 102–103, 225–233. [Google Scholar] [CrossRef]
- Muradov, N.Z.; Veziroǧlu, T.N. From hydrocarbon to hydrogen-carbon to hydrogen economy. Int. J. Hydrogen Energy 2005, 30, 225–237. [Google Scholar] [CrossRef]
- Kim, M.H.; Lee, E.K.; Jun, J.H.; Kong, S.J.; Han, G.Y.; Lee, B.K.; Lee, T.J.; Yoon, K.J. Hydrogen production by catalytic decomposition of methane over activated carbons: Kinetic study. Int. J. Hydrogen Energy 2004, 29, 187–193. [Google Scholar] [CrossRef]
- Dufour, A.; Celzard, A.; Fierro, V.; Martin, E.; Broust, F.; Zoulalian, A. Catalytic decomposition of methane over a wood char concurrently activated by a pyrolysis gas. Appl. Catal. A Gen. 2008, 346, 164–173. [Google Scholar] [CrossRef]
- Moliner, R.; Suelves, I.; Lázaro, M.J.; Moreno, O. Thermocatalytic decomposition of methane over activated carbons: Influence of textural properties and surface chemistry. Int. J. Hydrogen Energy 2005, 30, 293–300. [Google Scholar] [CrossRef]
- Suelves, I.; Pinilla, J.L.; Lázaro, M.J.; Moliner, R. Carbonaceous materials as catalysts for decomposition of methane. Chem. Eng. J. 2008, 140, 432–438. [Google Scholar] [CrossRef]
- Lee, E.K.; Lee, S.Y.; Han, G.Y.; Lee, B.K.; Lee, T.J.; Jun, J.H.; Yoon, K.J. Catalytic decomposition of methane over carbon blacks for CO2-free hydrogen production. Carbon 2004, 42, 2641–2648. [Google Scholar] [CrossRef]
- Serrano, D.P.; Botas, J.Á.; Pizarro, P.; Guil-López, R.; Gómez, G. Ordered mesoporous carbons as highly active catalysts for hydrogen production by CH4; decomposition. Chem. Commun. 2008, 48, 6585–6587. [Google Scholar] [CrossRef] [PubMed]
- Serrano, D.P.; Botas, J.A.; Guil-Lopez, R. H2 production from methane pyrolysis over commercial carbon catalysts: Kinetic and deactivation study. Int. J. Hydrogen Energy 2009, 34, 4488–4494. [Google Scholar] [CrossRef]
- Guil-Lopez, R.; Botas, J.A.; Fierro, J.L.G.; Serrano, D.P. Comparison of metal and carbon catalysts for hydrogen production by methane decomposition. Appl. Catal. A Gen. 2011, 396, 40–51. [Google Scholar] [CrossRef]
- ASTM D6556-10; Standard Test Method for Carbon Black—Total and External Surface Area by Nitrogen Adsorption. ASTM International: West Conshohocken, PA, USA, 2010.
- UNI EN ISO 18122:2016; Solid Biofuels—Determination of Ash Content. International Organization for Standardization: Geneva, Switzerland, 2016.
- UNI EN ISO 16967:2015; Solid Biofuels—Determination of Major Elements (Al, Ca, Fe, Mg, P, K, Si, Na, Ti). International Organization for Standardization: Geneva, Switzerland, 2015.
- UNI EN ISO 16968:2015; Solid Biofuels—Determination of Minor Elements (Cd, Co, Cr, Cu, Hg, Mn, Mo, Ni, Pb, V, Zn, As). International Organization for Standardization: Geneva, Switzerland, 2015.
- UNI EN ISO 16948:2015; Solid Biofuels—Determination of Total Content of Carbon, Hydrogen and Nitrogen. International Organization for Standardization: Geneva, Switzerland, 2015.
- Jin, L.; Si, H.; Zhang, J.; Lin, P.; Hu, Z.; Qiu, B.; Hu, H. Preparation of activated carbon supported Fe-Al2O3 catalyst and its application for hydrogen production by catalytic methane decomposition. Int. J. Hydrogen Energy 2013, 38, 10373–10380. [Google Scholar] [CrossRef]
- Patel, S.; Kundu, S.; Halder, P.; Marzbali, M.H.; Chiang, K.; Surapaneni, A.; Shah, K. Production of hydrogen by catalytic methane decomposition using biochar and activated char produced from biosolids pyrolysis. Int. J. Hydrogen Energy 2020, 45, 29978–29992. [Google Scholar] [CrossRef]
- Bai, Z.; Chen, H.; Li, W.; Li, B. Hydrogen production by methane decomposition over coal char. Int. J. Hydrogen Energy 2006, 31, 899–905. [Google Scholar] [CrossRef]
- Wang, R.R.; Zhao, Y.Q.; Babich, A.; Senk, D.; Fan, X.Y. Hydrogen direct reduction (H-DR) in steel industry—An overview of challenges and opportunities. J. Clean. Prod. 2021, 329, 129797. [Google Scholar] [CrossRef]
- Speight, J.G. The Chemistry and Technology of Petroleum; CRC Press: Boca Raton, FL, USA, 2006. [Google Scholar]
Name of Catalyst | Pyrolysis Process | Leaching Process | Activation Process |
---|---|---|---|
Wood char | 500 °C, 40–60 min | - | - |
Activated wood char | 500 °C, 40–60 min | - | CO2, 0.25 L/min, 1 h, 800 °C |
Sewage sludge char | 550 °C, 30 min | - | - |
Leached sewage sludge char | 550 °C, 30 min | HNO3—1 M, 10:1, 1 h, 80 °C | - |
Activated leached sewage sludge char | 550 °C, 30 min | HNO3—1 M, 10:1, 1 h, 80 °C | CO2, 0.25 L/min, 1 h, 800 °C |
Digestate char | 550 °C, 60 min | - | - |
Leached digestate char | 550 °C, 60 min | HNO3—1 M, 10:1, 1 h, 80 °C | - |
Activated leached digestate char | 550 °C, 60 min | HNO3—1 M, 10:1, 1 h, 80 °C | CO2, 0.25 L/min, 1 h, 800 °C |
Feedstock Name | Name of Process | ||
---|---|---|---|
Pyrolysis [wt.%] | Leaching [wt.%] | Activation [wt.%] | |
Wood | 25.5 | - | 95 |
Digestate | 43 | 77.6 | 75 |
Sewage sludge 1 | 56 | 57.8 | 79 |
Name of Catalyst | Fresh Catalyst | Spent Catalyst | ||||
---|---|---|---|---|---|---|
Total C (% d.b *). | Total H (% d.b). | Total N (% d.b). | Total C (% d.b). | Total H (% d.b). | Total N (% d.b). | |
Activated wood char | 88.39 | 1.10 | 0.63 | 89.3 | 0.55 | 0.17 |
Activated leached digestate char | 80.3 | 0.8 | 3.4 | 81.6 | 0.52 | 3.00 |
Activated leached sewage sludge char | 42.37 | 0.96 | 3.38 | 47.13 | 0.5 | 2.19 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mirkarimi, S.M.R.; Salimbeni, A.; Bensaid, S.; Negro, V.; Chiaramonti, D. Hydrogen Production Through Methane Decomposition over Waste-Derived Carbon-Based Catalysts. Energies 2025, 18, 5162. https://doi.org/10.3390/en18195162
Mirkarimi SMR, Salimbeni A, Bensaid S, Negro V, Chiaramonti D. Hydrogen Production Through Methane Decomposition over Waste-Derived Carbon-Based Catalysts. Energies. 2025; 18(19):5162. https://doi.org/10.3390/en18195162
Chicago/Turabian StyleMirkarimi, Seyed Mohamad Rasool, Andrea Salimbeni, Samir Bensaid, Viviana Negro, and David Chiaramonti. 2025. "Hydrogen Production Through Methane Decomposition over Waste-Derived Carbon-Based Catalysts" Energies 18, no. 19: 5162. https://doi.org/10.3390/en18195162
APA StyleMirkarimi, S. M. R., Salimbeni, A., Bensaid, S., Negro, V., & Chiaramonti, D. (2025). Hydrogen Production Through Methane Decomposition over Waste-Derived Carbon-Based Catalysts. Energies, 18(19), 5162. https://doi.org/10.3390/en18195162