Energy Optimization of Motor-Driven Systems Using Variable Frequency Control, Soft Starters, and Machine Learning Forecasting
Abstract
1. Introduction
2. Power Consumption Modeling
2.1. Variable-Frequency Power Controls
2.2. Impact of Soft Starters on Power Consumption
3. Power Consumption Forecasting and Optimization
3.1. Optimization for Variable Frequency Controls
3.2. Physics-Guided Forecasting Using Machine Learning
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Nomenclature
Latin Symbols | |
power factor | |
E | electrical energy, J |
rated electrical energy, J | |
normalized electrical energy, | |
I | electric current, A |
K | number of discretization intervals |
k | steepness parameter |
L | mechanical load, W |
normalized mechanical load, | |
average normalized mechanical load, | |
N | number of motors |
n | number of modulation cycles |
P | electrical power, W |
rated electrical power, W | |
normalized electrical power, | |
total rated electrical power, | |
scenario probability | |
normalized motor speed, | |
sinusoidal speed profile | |
tanh-based speed profile | |
T | total runtime, s |
motor shaft torque, | |
t | time, s |
V | electric voltage, V |
W | mechanical energy demand, W |
angular velocity, rad· | |
Greek Symbols | |
torque deviation factor | |
normalized speed dip | |
scenario index | |
electromechanical efficiency | |
power factor angle | |
normalized time, | |
Subscripts | |
0 | constant-speed baseline (full speed) |
r | nameplate value |
s | soft-start |
soft-start only (no variable frequency) | |
start | startup phase |
References
- Kermeli, K.; Graus, W.; Worrell, E. Energy efficiency improvement potentials and a low energy demand scenario for the global industrial sector. Energy Effic. 2014, 7, 987–1011. [Google Scholar] [CrossRef]
- ISO 50001:2018; Energy Management Systems—Requirements with Guidance for Use. International Organization for Standardization. ISO: Geneva, Switzerland, 2018.
- Saidur, R.; Mekhilef, S.; Ali, M.; Safari, A.; Mohammed, H. Applications of variable speed drive (VSD) in electrical motors energy savings. Renew. Sustain. Energy Rev. 2012, 16, 543–550. [Google Scholar] [CrossRef]
- Tytiuk, V.; Rozhnenko, Z.; Baranovska, M.; Berdai, A.; Chornyi, O.; Saravas, V. Soft Starters of Powerful Electric Motors and Economic Aspects of Their Application. In Proceedings of the 2020 IEEE Problems of Automated Electrodrive. Theory and Practice (PAEP), Kremenchuk, Ukraine, 21–25 September 2020; pp. 1–4. [Google Scholar] [CrossRef]
- Salama, M.A.E.; El-Naggar, N.M.; Abu-Zaid, S. Energy saving analysis for pump-motor set in water purification plant using variable speed drive. Sci. Rep. 2024, 14, 27728. [Google Scholar] [CrossRef] [PubMed]
- Agamloh, E.B. Power and efficiency measurement of motor-variable-frequency drive systems. IEEE Trans. Ind. Appl. 2016, 53, 766–773. [Google Scholar] [CrossRef]
- Barie, E.Z.; Chang, C.k. Application of variable frequency drive on the condensate pump motors of APR1400 nuclear power plants for energy savings. J. Int. Counc. Electr. Eng. 2018, 8, 179–189. [Google Scholar] [CrossRef]
- Oshurbekov, S.; Kazakbaev, V.; Prakht, V.; Dmitrievskii, V.; Gevorkov, L. Energy Consumption Comparison of a Single Variable-Speed Pump and a System of Two Pumps: Variable-Speed and Fixed-Speed. Appl. Sci. 2020, 10, 8820. [Google Scholar] [CrossRef]
- Rezek, A.; Coelho, C.; Cortez, J.; Vicente, J.; Abreu, J.; Ramos, C.; Megalhaes, C.; Da Silva, V. Energy conservation with use of soft-starter. In Proceedings of the Ninth International Conference on Harmonics and Quality of Power, Orlando, FL, USA, 1–4 October 2000; Volume 1, pp. 354–359. [Google Scholar] [CrossRef]
- Blaabjerg, F.; Pedersen, J.K.; Rise, S.; Hansen, H.H.; Trzynadlowski, A.M. Can Soft-Starters Help Save Energy? IEEE Ind. Appl. Mag. 1997, 3, 56–66. [Google Scholar] [CrossRef]
- Xu, X.; Wu, X.; Jordan, M.; Dong, P.; Liu, Y. Coordinated Engine-Start Control of Single-Motor P2 Hybrid Electric Vehicles with Respect to Different Driving Situations. Energies 2018, 11, 207. [Google Scholar] [CrossRef]
- Wang, G. Data-driven energy models for existing VFD-motor-pump systems. Sci. Technol. Built Environ. 2019, 25, 732–742. [Google Scholar] [CrossRef]
- Wang, Y.; Eldeeb, H.; Zhao, H.; Mohammed, O. Sectional Variable Frequency and Voltage Regulation Control Strategy for Energy Saving in Beam Pumping Motor Systems. IEEE Access 2019, 7, 92456–92464. [Google Scholar] [CrossRef]
- De Keulenaer, H. Energy efficient motor driven systems. Energy Environ. 2004, 15, 873–905. [Google Scholar] [CrossRef]
- Yang, Z.; Cui, W.; Zhang, W.; Wang, Z.; Zhang, B.; Chen, Y.; Hu, N.; Bi, X.; Hu, W. A new performance optimization method for linear motor feeding system. Actuators 2023, 12, 233. [Google Scholar] [CrossRef]
- Diao, K.; Sun, X.; Lei, G.; Guo, Y.; Zhu, J. Multiobjective system level optimization method for switched reluctance motor drive systems using finite-element model. IEEE Trans. Ind. Electron. 2020, 67, 10055–10064. [Google Scholar] [CrossRef]
- Cheng, M.; Zhao, X.; Dhimish, M.; Qiu, W.; Niu, S. A review of data-driven surrogate models for design optimization of electric motors. IEEE Trans. Transp. Electrif. 2024, 10, 8413–8431. [Google Scholar] [CrossRef]
- Nath, K.; Meng, X.; Smith, D.J.; Karniadakis, G.E. Physics-informed neural networks for predicting gas flow dynamics and unknown parameters in diesel engines. Sci. Rep. 2023, 13, 13683. [Google Scholar] [CrossRef]
- Vo, V.T.; Noeiaghdam, S.; Sidorov, D.; Dreglea, A.; Wang, L. Solving Nonlinear Energy Supply and Demand System Using Physics-Informed Neural Networks. Computation 2025, 13, 13. [Google Scholar] [CrossRef]
- Lv, X.; Basem, A.; Hasani, M.; Sun, P.; Zhang, J. The potential of combined robust model predictive control and deep learning in enhancing control performance and adaptability in energy systems. Sci. Rep. 2025, 15, 11187. [Google Scholar] [CrossRef]
- Bai, H.; Chen, Y.; Bai, H.; Liu, M.; Fan, Y. Energy Optimization and Efficiency Improvement Model for Enterprise Production Process Based on Deep Learning Under the Background of Carbon Peak and Carbon Neutrality. Int. J. Comput. Intell. Syst. 2025, 18, 169. [Google Scholar] [CrossRef]
- Niranjani, V.; Haldorai, A. Improved deep learning model for accurate energy demand prediction and conservation in electric vehicles integrated with cognitive radio networks. Sci. Rep. 2025, 15, 11621. [Google Scholar] [CrossRef]
- Lai, C.; Wang, Y.; Zhu, J.; Zhou, X. Deep Learning-Based Energy Consumption Prediction Model for Green Industrial Parks. Appl. Artif. Intell. 2025, 39, 2462375. [Google Scholar] [CrossRef]
- Demir, E.; Gunal, S. Short-term electricity consumption forecasting with deep learning. J. Supercomput. 2025, 81, 1108. [Google Scholar] [CrossRef]
- Hussain, I.; Ching, K.B.; Uttraphan, C.; Tay, K.G.; Noor, A. Evaluating machine learning algorithms for energy consumption prediction in electric vehicles: A comparative study. Sci. Rep. 2025, 15, 16124. [Google Scholar] [CrossRef]
- Aslam, S.; Aung, P.P.; Rafsanjani, A.S.; Majeed, A.P.P.A. Machine learning applications in energy systems: Current trends, challenges, and research directions. Energy Inform. 2025, 8, 16124. [Google Scholar] [CrossRef]
- Benti, N.E.; Chaka, M.D.; Semie, A.G. Forecasting Renewable Energy Generation with Machine Learning and Deep Learning: Current Advances and Future Prospects. Sustainability 2023, 15, 7087. [Google Scholar] [CrossRef]
- Le, T.T.H.; Prihatno, A.T.; Oktian, Y.E.; Kang, H.; Kim, H. Exploring Local Explanation of Practical Industrial AI Applications: A Systematic Literature Review. Appl. Sci. 2023, 13, 5809. [Google Scholar] [CrossRef]
- Casadei, D.; Serra, G.; Tani, A. Implementation of a Direct Torque Control Algorithm for Induction Motors Based on Discrete Space Vector Modulation. IEEE Trans. Power Electron. 2000, 15, 769–777. [Google Scholar] [CrossRef]
- Hasrouri, M.; Charrouf, O.; Betka, A.; Abdeddaim, S. Experimental validation of a real-time energy management system using four frequency-based approaches. J. Energy Storage 2024, 79, 110139. [Google Scholar] [CrossRef]
- Ahmed, H. Formulation of two-stage stochastic programming with fixed recourse. Br. Int. Exact Sci. (BIoEx) J. 2019, 1, 18–21. [Google Scholar] [CrossRef]
- Birge, J.R.; Louveaux, F. Introduction to Stochastic Programming; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2011. [Google Scholar] [CrossRef]
- Hausmann, S.B.; Vargas, A.M.; Mathis, A.; Mathis, M.W. Measuring and modeling the motor system with machine learning. Curr. Opin. Neurobiol. 2021, 70, 11–23. [Google Scholar] [CrossRef]
- Morcillo-Jimenez, R.; Mesa, J.; Gómez-Romero, J.; Vila, M.A.; Martin-Bautista, M.J. Deep learning for prediction of energy consumption: An applied use case in an office building. Appl. Intell. 2024, 54, 5813–5825. [Google Scholar] [CrossRef]
- Wesselkamp, M.; Chantry, M.; Pinnington, E.; Choulga, M.; Boussetta, S.; Kalweit, M.; Bödecker, J.; Dormann, C.F.; Pappenberger, F.; Balsamo, G. Advances in land surface forecasting: A comparison of LSTM, gradient boosting, and feed-forward neural networks as prognostic state emulators in a case study with ecLand. Geosci. Model Dev. 2025, 18, 921–937. [Google Scholar] [CrossRef]
- Wang, T.; Guo, D.; Sun, X.M. Contrastive Generative Replay Method of Remaining Useful Life Prediction for Rolling Bearings. IEEE Sens. J. 2023, 23, 23893–23902. [Google Scholar] [CrossRef]
- Ren, X.; Qin, Y.; Li, B.; Wang, B.; Yi, X.; Jia, L. A core space gradient projection-based continual learning framework for remaining useful life prediction of machinery under variable operating conditions. Reliab. Eng. Syst. Saf. 2024, 252, 110428. [Google Scholar] [CrossRef]
0.75 | 0.80 | 0.85 | 0.90 | 0.95 | 1.00 | |
---|---|---|---|---|---|---|
0.9138 | 0.9138 | 0.9137 | 0.9136 | 0.9136 | 0.9135 | |
Savings (%) | 8.62 | 8.63 | 8.63 | 8.64 | 8.64 | 8.65 |
Model | Layers | Sinusoidal Profile, | Tanh-Based Profile, | ||||
---|---|---|---|---|---|---|---|
MSE | MAE | RMSE | MSE | MAE | RMSE | ||
MLP | L1 | 0.000249 | 0.008488 | 0.011453 | 0.000162 | 0.005402 | 0.006852 |
L2 | 0.000069 | 0.004686 | 0.007968 | 0.000023 | 0.002810 | 0.004218 | |
L3 | 0.000103 | 0.006054 | 0.009778 | 0.000025 | 0.002924 | 0.004800 | |
LSTM | L1 | 0.000068 | 0.003931 | 0.005989 | 0.000130 | 0.006437 | 0.009632 |
L2 | 0.000040 | 0.002877 | 0.003813 | 0.000032 | 0.003008 | 0.004009 | |
L3 | 0.000015 | 0.002258 | 0.003586 | 0.000010 | 0.001749 | 0.002928 | |
GRU | L1 | 0.000073 | 0.004095 | 0.005975 | 0.000046 | 0.003282 | 0.004705 |
L2 | 0.000024 | 0.002577 | 0.003686 | 0.000028 | 0.003118 | 0.004755 | |
L3 | 0.000072 | 0.003996 | 0.005007 | 0.000059 | 0.003782 | 0.004835 | |
XGBoost | – | — | 0.000144 | 0.000218 | — | 0.000093 | 0.000145 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahmed, H.; Cárdenas-Lailhacar, C.; Sherif, S.A. Energy Optimization of Motor-Driven Systems Using Variable Frequency Control, Soft Starters, and Machine Learning Forecasting. Energies 2025, 18, 5135. https://doi.org/10.3390/en18195135
Ahmed H, Cárdenas-Lailhacar C, Sherif SA. Energy Optimization of Motor-Driven Systems Using Variable Frequency Control, Soft Starters, and Machine Learning Forecasting. Energies. 2025; 18(19):5135. https://doi.org/10.3390/en18195135
Chicago/Turabian StyleAhmed, Hashnayne, Cristián Cárdenas-Lailhacar, and S. A. Sherif. 2025. "Energy Optimization of Motor-Driven Systems Using Variable Frequency Control, Soft Starters, and Machine Learning Forecasting" Energies 18, no. 19: 5135. https://doi.org/10.3390/en18195135
APA StyleAhmed, H., Cárdenas-Lailhacar, C., & Sherif, S. A. (2025). Energy Optimization of Motor-Driven Systems Using Variable Frequency Control, Soft Starters, and Machine Learning Forecasting. Energies, 18(19), 5135. https://doi.org/10.3390/en18195135