Numerical Study and Design Optimization of Geometry Parameters of Tesla Valve Flow Fields for Proton Exchange Membrane Fuel Cell
Abstract
1. Introduction
2. Numerical Simulation
2.1. Flow Field Model
2.2. Numerical Model
2.2.1. Mass and Momentum Conservation Equation
2.2.2. Energy Conservation Equation
2.2.3. Gas Species Conservation Equation
2.2.4. Maxwell–Stefan Multi-Component Diffusion Equations
2.2.5. Butler–Volmer Equation
2.2.6. Current Conservation Equation
2.2.7. Gas–Liquid Pressure Equation
2.3. Boundary Conditions
2.4. Grid Independence Verification
2.5. Model Validation
3. Influence of Geometry Parameters on PEMFC Performance
3.1. Influence of Loop Radius
3.2. Influence of Channel Angle
3.3. Influence of Channel Height
4. Design Optimization of Geometry Parameters
4.1. Surrogate Model
4.2. Parameter Optimization and Results
4.3. Analysis of Net Power
5. Comparison with Conventional Flow Fields
6. Conclusions
- (1)
- A moderate increase in the loop radius (within 0.5–0.7 mm) and channel angle (40–50°) brings an increase in the current density and oxygen flux, while either a small or a large channel height leads to a decrease in current density and oxygen flux.
- (2)
- A smaller loop radius results in an abrupt flow direction change in the loop channel, and a smaller channel angle leads to a more concentrated flow in the loop channels. Variation in channel angle also affects the formation of stagnation zones in the flow channel. Channel height has a major effect on the velocity streamline density and pressure distribution.
- (3)
- Optimization results confirm that an optimal combination of loop radius and channel angle exists that could improve the output current density, power density, and distribution of oxygen flux.
- (4)
- The optimized TV-R and TV-F exhibit a better performance in terms of current density and total oxygen flux compared with CPFF and CSFF, albeit with a larger pressure drop due to the single-channel comparison. The parallel flow field implementation is expected to make the optimized Tesla valves more advantageous for practical engineering applications.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Nomenclature
Dgl | gas–liquid interfacial area per unit volume, 1/m | s | saturation of liquid water |
P | pressure, Pa | hreaction | explicit reaction enthalpy heat, W/m−3 |
F | Faraday’s constant, 96,485 C/mol | psat | Saturation vapor pressure, Pa |
R | universal gas constant, 8.314 J/(mol·K) | pwv | vapor partial pressure, Pa |
EW | equivalent weight, kg/mol | pp | gas-phase pressure, Pa |
K | absolute permeability, m2 | pc | capillary pressure, Pa |
Kr | relative permeability | μl | dynamic viscosity of liquid water, Pa/s |
Keff | effective thermal conductivity, J/(K·m·s) | velocity, m/s | |
Ck | volume fraction | gravitational acceleration vector, m/s2 | |
Deff | effective diffusion coefficient, m2/s | Δp | pressure drop, Pa |
Djk | binary diffusivity of components j and k, m2/s | cp | specific heat capacity, J/(kg·K) |
Wnet | net power, W | z | number of electrons |
Wp | parasitic power, W | uin | inlet velocity, m/s |
Ach | cathode inlet cross-sectional area, m2 | xj | mole fractions of component j |
Sm | Mass source term | i | current density, A/cm2 |
Su | Momentum source term | i0 | exchange current density, A/cm2 |
ST | Energy source term | αc, αa | Cathode/anode charge transfer coefficient |
Sk | Species source term | η | over-potential, V |
Sgl | Gas–liquid pressure source term | σ | Conductivity, S/m |
Sld | Gas–liquid pressure source term | Φ | Potential, V |
molar mass of hydrogen, kg/mol−1 | λ | membrane water content | |
molar mass of oxygen, kg/mol | condensation coefficient, 1/s | ||
molar mass of water, kg/mol | evaporation coefficient, 1/s | ||
Rohm | Ohmic resistivity, Ω | ξ | compression efficiency |
Ran | anode reaction rate | ε | porosity |
Rca | cathode reaction rate | ρ | density, kg/m3 |
T | temperature, K | ω | mass fraction |
References
- Lim, B.-H.; Majlan, E.-H.; Daud, W.R.W.; Rosli, M.; Husaini, T. Three-dimensional study of stack on the performance of the proton exchange membrane fuel cell. Energy 2019, 169, 338–343. [Google Scholar] [CrossRef]
- Yang, B.; Li, D.; Zeng, C.; Chen, Y.; Guo, Z.; Wang, J.; Shu, H.; Yu, T.; Zhu, J. Parameter extraction of PEMFC via Bayesian regularization neural network based meta-heuristic algorithms. Energy 2021, 228, 120592. [Google Scholar] [CrossRef]
- Deng, B.; Huang, W.; Jian, Q. An open-cathode PEMFC efficiency optimization strategy based on exergy analysis and data-driven modeling. Energy 2023, 264, 126148. [Google Scholar] [CrossRef]
- Kandidayeni, M.; Macias, A.; Khalatbarisoltani, A.; Boulon, L.; Kelouwani, S. Benchmark of proton exchange membrane fuel cell parameters extraction with metaheuristic optimization algorithms. Energy 2019, 183, 912–925. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, J.; Yao, Z. Recent development of fuel cell core components and key materials: A review. Energies 2023, 16, 2099. [Google Scholar] [CrossRef]
- Tawalbeh, M.; Alarab, S.; Al-Othman, A.; Javed, R.M.N. The operating parameters, structural composition, and fuel sustainability aspects of PEM fuel cells: A mini review. Fuels 2022, 3, 449–474. [Google Scholar] [CrossRef]
- Chen, Y.; Liu, Y.; Xu, Y.; Guo, X.; Cao, Y.; Ming, W. Modeling and simulation of membrane Electrode material structure for proton exchange membrane fuel cells. Coatings 2022, 12, 1145. [Google Scholar] [CrossRef]
- Okonkwo, P.C.; Otor, C. A review of gas diffusion layer properties and water management in proton exchange membrane fuel cell system. Int. J. Energy Res. 2021, 45, 3780–3800. [Google Scholar] [CrossRef]
- Chen, C.-Y.; Su, S.-C. Development and performance evaluation of a high temperature proton exchange membrane fuel cell with stamped 304 stainless steel bipolar plates. Int. J. Hydrogen Energy 2018, 43, 13430–13439. [Google Scholar] [CrossRef]
- Zhang, P.; Hao, C.; Han, Y.; Du, F.; Wang, H.; Wang, X.; Sun, J. Electrochemical behavior and surface conductivity of NbC modified Ti bipolar plate for proton exchange membrane fuel cell. Surf. Coat. Technol. 2020, 397, 126064. [Google Scholar] [CrossRef]
- Kim, M.; Lee, D.-G. Development of the anode bipolar plate/membrane assembly unit for air breathing PEMFC stack using silicone adhesive bonding. J. Power Sources 2016, 315, 86–95. [Google Scholar] [CrossRef]
- Shi, J.; Zhang, P.; Han, Y.; Wang, H.; Wang, X.; Yu, Y.; Sun, J. Investigation on electrochemical behavior and surface conductivity of titanium carbide modified Ti bipolar plate of PEMFC. Int. J. Hydrogen Energy 2020, 45, 10050–10058. [Google Scholar] [CrossRef]
- Liu, J.; Luo, Z.; Hu, J.; Cai, Y. Study on a novel self-adaptive cathode flow field with deformable baffles for proton exchange membrane fuel cell. Appl. Energy 2025, 377, 124395. [Google Scholar] [CrossRef]
- Shen, J.; Tu, Z.; Chan, S.H. Evaluation criterion of different flow field patterns in a proton exchange membrane fuel cell. Energy Convers. Manag. 2020, 213, 112841. [Google Scholar] [CrossRef]
- Zhou, Y.; Meng, K.; Chen, W.; Deng, Q.; Chen, B. Experimental performance of proton exchange membrane fuel cell with novel flow fields and numerical investigation of water-gas transport enhancement. Energy Convers. Manag. 2023, 281, 116865. [Google Scholar] [CrossRef]
- Anyanwu, I.S.; Xie, X.; Liu, Z.; Jiao, K. Experimental investigation and optimization of proton exchange membrane fuel cell using different flow fields. Energy 2021, 217, 119313. [Google Scholar] [CrossRef]
- Marappan, M.; Palaniswamy, K.; Velumani, T.; Chul, K.B.; Velayutham, R.; Shivakumar, P.; Sundaram, S. Performance studies of proton exchange membrane fuel cells with different flow field designs–review. Chem. Rec. 2021, 21, 663–714. [Google Scholar] [CrossRef]
- Yan, S.; Yang, M.; Sun, C.; Xu, S. Liquid water characteristics in the compressed gradient porosity gas diffusion layer of proton exchange membrane fuel cells using the Lattice Boltzmann Method. Energies 2023, 16, 6010. [Google Scholar] [CrossRef]
- Chen, X.; Chen, Y.; Liu, Q.; Xu, J.; Liu, Q.; Li, W.; Zhang, Y.; Wan, Z.; Wang, X. Performance study on a stepped flow field design for bipolar plate in PEMFC. Energy Rep. 2021, 7, 336–347. [Google Scholar] [CrossRef]
- Yang, C.; Wan, Z.; Chen, X.; Kong, X.; Zhang, J.; Huang, T.; Wang, X. Geometry optimization of a novel M-like flow field in a proton exchange membrane fuel cell. Energy Convers. Manag. 2021, 228, 113651. [Google Scholar] [CrossRef]
- Friess, B.-R.; Hoorfar, M. Development of a novel radial cathode flow field for PEMFC. Int. J. Hydrogen Energy 2012, 37, 7719–7729. [Google Scholar] [CrossRef]
- Jeon, D.H.; Greenway, S.; Shimpalee, S.; Van Zee, J.W. The effect of serpentine flow-field designs on PEM fuel cell performance. Int. J. Hydrogen Energy 2008, 33, 1052–1066. [Google Scholar] [CrossRef]
- Lim, B.-H.; Majlan, E.-H.; Daud, W.R.W.; Rosli, M.; Husaini, T. Numerical analysis of modified parallel flow field designs for fuel cells. Int. J. Hydrogen Energy 2017, 42, 9210–9218. [Google Scholar] [CrossRef]
- Kumar, A.; Reddy, R.G. Effect of channel dimensions and shape in the flow-field distributor on the performance of polymer electrolyte membrane fuel cells. J. Power Sources 2003, 113, 11–18. [Google Scholar] [CrossRef]
- He, W.; Yi, J.S.; Van Nguyen, T. Two-phase flow model of the cathode of PEM fuel cells using interdigitated flow fields. AIChE J. 2000, 46, 2053–2064. [Google Scholar] [CrossRef]
- Wang, Y.; Sun, Z.-Y.; Yang, L. Enhancement effects of the obstacle arrangement and gradient height distribution in serpentine flow-field on the performances of a PEMFC. Energy Convers. Manag. 2022, 252, 115077. [Google Scholar] [CrossRef]
- Chen, H.; Guo, H.; Ye, F.; Ma, C.F. A numerical study of baffle height and location effects on mass transfer of proton exchange membrane fuel cells with orientated-type flow channels. Int. J. Hydrogen Energy 2021, 46, 7528–7545. [Google Scholar] [CrossRef]
- Fan, L.; Niu, Z.; Zhang, G.; Jiao, K. Optimization design of the cathode flow channel for proton exchange membrane fuel cells. Energy Convers. Manag. 2018, 171, 1813–1821. [Google Scholar] [CrossRef]
- Ruan, H.; Wu, C.; Liu, S.; Chen, T. Design and simulation of novel flow field plate geometry for proton exchange membrane fuel cells. Heat Mass Transf. 2016, 52, 2167–2176. [Google Scholar] [CrossRef]
- Iranzo, A.; Arredondo, C.H.; Kannan, A.M.; Rosa, F. Biomimetic flow fields for proton exchange membrane fuel cells: A review of design trends. Energy 2020, 190, 116435. [Google Scholar] [CrossRef]
- Sun, Y.; Lin, Y.; Wang, Q.; Yang, C.; Yin, W.; Wan, Z.; Qiu, T. Novel design and numerical investigation of a windward bend flow field for proton exchange membrane fuel cell. Energy 2024, 290, 130142. [Google Scholar] [CrossRef]
- Sun, F.; Su, D.; Li, P.; Dong, X. A novel 3D fine-mesh flow field design and performance analysis for proton exchange membrane fuel cells. J. Power Sources 2023, 584, 233572. [Google Scholar] [CrossRef]
- Li, Z.; Wang, S.; Yao, S.; Wang, X.; Li, W.; Zhu, T.; Xie, X. Experimental and numerical study on improvement performance by wave parallel flow field in a proton exchange membrane fuel cell. Chin. J. Chem. Eng. 2022, 45, 90–102. [Google Scholar] [CrossRef]
- Yoshida, T.; Kojima, K. Toyota MIRAI fuel cell vehicle and progress toward a future hydrogen society. Electrochem. Soc. Interface 2015, 24, 45. [Google Scholar] [CrossRef]
- Cai, Y.; Fang, Z.; Chen, B.; Yang, T.; Tu, Z. Numerical study on a novel 3D cathode flow field and evaluation criteria for the PEM fuel cell design. Energy 2018, 161, 28–37. [Google Scholar] [CrossRef]
- Wang, P.; Hu, P.; Liu, L.; Xu, Z.; Wang, W.; Scheid, B. On the diodicity enhancement of multistage Tesla valves. Phys. Fluids 2023, 35, 052010. [Google Scholar] [CrossRef]
- Ni, T.; Si, J.; Li, F.; Pan, C.; Li, D.; Pan, M.; Guan, W. Performance analysis on the liquid cooling plate with the new Tesla valve capillary channel based on the fluid solid coupling simulation. Appl. Therm. Eng. 2023, 232, 120977. [Google Scholar] [CrossRef]
- Qian, J.; Chen, M.; Gao, Z.; Jin, Z.-J. Mach number and energy loss analysis inside multi-stage Tesla valves for hydrogen decompression. Energy 2019, 179, 647–654. [Google Scholar] [CrossRef]
- Liu, Z.; Shao, W.-Q.; Sun, Y.; Sun, B.-H. Scaling law of the one-direction flow characteristics of symmetric Tesla valve. Eng. Appl. Comput. Fluid Mech. 2022, 16, 441–452. [Google Scholar] [CrossRef]
- Gong, F.; Yang, X.; Zhang, X.; Mao, Z.; Gao, W.; Wang, C. The study of Tesla valve flow field on the net power of proton exchange membrane fuel cell. Appl. Energy 2023, 329, 120276. [Google Scholar] [CrossRef]
- Guo, H.; Tian, S.; Wang, L.; Xiao, C.; Yang, S. Numerical study of Tesla valve flow field on proton exchange membrane fuel cell performance. Int. J. Hydrogen Energy 2024, 50, 1573–1583. [Google Scholar] [CrossRef]
- Zhang, Y.; He, S.; Jiang, X.; Wang, Z.; Wang, Y.; Gu, M.; Yang, X.; Zhang, S.; Cao, J.; Fang, H.; et al. Performance and configuration optimization of proton exchange membrane fuel cell considering dual symmetric Tesla valve flow field. Energy 2024, 288, 129791. [Google Scholar] [CrossRef]
- Hu, P.; Wang, P.; Liu, L.; Ruan, X.; Zhang, L.; Xu, Z. Numerical investigation of Tesla valves with a variable angle. Phys. Fluids 2022, 34, 033603. [Google Scholar] [CrossRef]
- Bao, Y.; Wang, H. Numerical study on flow and heat transfer characteristics of a novel Tesla valve with improved evaluation method. Int. J. Hydrogen Energy 2022, 187, 122540. [Google Scholar] [CrossRef]
- Guo, H.; Tian, S.; Wang, L.; Xiao, C.; Pan, Y.; Xie, W.; Yang, S. Influence of Structural Parameters of Tesla Valve Flow Field on Performance of Fuel Cells. Energies 2024, 17, 4442. [Google Scholar] [CrossRef]
- Le, A.-D.; Zhou, B. A general model of proton exchange membrane fuel cell. J. Power Sources 2008, 182, 197–222. [Google Scholar] [CrossRef]
- Lobato, J.; Cañizares, P.; Rodrigo, M.A.; Pinar, F.J.; Mena, E.; Úbeda, D. Three-dimensional model of a 50 cm2 high temperature PEM fuel cell. Study of the flow channel geometry influence. Int. J. Hydrogen Energy 2010, 35, 5510–5520. [Google Scholar] [CrossRef]
- Mei, J.; Meng, X.; Tang, X.; Li, H.; Hasanien, H.; Alharbi, M.; Dong, Z.; Shen, J.; Sun, C.; Fan, F.; et al. An accurate parameter estimation method of the voltage model for proton exchange membrane fuel cells. Energies 2024, 17, 2917. [Google Scholar] [CrossRef]
- Cheng, R. Design and Optimization of Harp-Shaped Flow Field Structure for Proton Exchange Membrane Hydrogen Fuel Cell Bipolar Plates. Master’s Thesis, Northeast Agricultural University, Harbin, China, 2022. [Google Scholar]
- Meng, X.; Sun, C.; Mei, J.; Tang, X.; Hasanien, H.M.; Jiang, J.; Fan, F.; Song, K. Fuel cell life prediction considering the recovery phenomenon of reversible voltage loss. J. Power Sources 2025, 625, 235634. [Google Scholar] [CrossRef]
Parameter | Values | Units |
---|---|---|
Thickness of Membrane | 0.015 | mm |
Length × Width of Membrane | 50 × 8 | mm |
Thickness of GDL | 0.17 | mm |
Channel width W | 1 | mm |
Channel length L1 | 3 | mm |
Channel length L2 | 4 | mm |
Loop channel radius (inner) R | 0.8 | mm |
Channel angle β | 45 | ° |
Channel height H | 1 | mm |
Governing Equations | Source Terms |
---|---|
Mass source term | (Anode CL) (Cathode CL) (Other domains) |
Momentum source term | (GDLs, CLs) |
Energy source term | (All domains) |
Species source term | (Anode CL) (Cathode CL) |
Gas–liquid pressure source term | (CL) |
Parameter | Values | Units |
---|---|---|
Porosity of anode/cathode GDL [49] | 0.74 | - |
Electrolyte Volume Fraction in CL [49] | 0.3 | - |
Gas Porosity of CL [49] | 0.3 | - |
Permeability of GDL [49] | 1 × 1012 | m2 |
Permeability of CL [49] | 1 × 1013 | m2 |
Conductivity of GDL [49] | 1250 | S/m |
Conductivity of Membrane [49] | 9.825 | S/m |
Open-circuit voltage | 0.9 | V |
Surface/volume ratio of CL [49] | 1 × 105 | 1/m |
Relative humidity of anode/cathode [40] | 100%/100% | - |
Transfer coefficient Anode/cathode [40] | 0.5/1 | - |
Reference current density of anode/cathode | 10,000/0.1 | A/m2 |
Inlet velocity at Anode/cathode | 2/8.5 | m/s |
Operation pressure | 101,325 | Pa |
Operation temperature [49] | 333.15 | K |
Grid Number | Max Grid Size (m) | Current Density (A/cm2) | Relative Error | |
---|---|---|---|---|
Case 1 | 261,163 | 3 × 10−4 | 1.2395 | 1.43% |
Case 2 | 371,437 | 2.5 × 10−4 | 1.2572 | - |
Case 3 | 447,009 | 2.3 × 10−4 | 1.2599 | 0.21% |
Pressure Drop ΔP (Pa) | ΔP Change | Parasitic Power (W/cm2) | Net Power Density (W/cm2) | Net Power Change | |
---|---|---|---|---|---|
TV-R (before) | 1482.16 | — | 0.01800 | 0.48488 | — |
TV-R (after) | 1858.94 | +25.4% | 0.01354 | 0.55818 | +15.1% |
TV-F (before) | 846.06 | — | 0.01027 | 0.47453 | — |
TV-F (after) | 1165.49 | +37.8% | 0.00849 | 0.55631 | +17.2% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, J.; Huang, F.; Wang, W.; Yang, J.; Ruan, G. Numerical Study and Design Optimization of Geometry Parameters of Tesla Valve Flow Fields for Proton Exchange Membrane Fuel Cell. Energies 2025, 18, 5095. https://doi.org/10.3390/en18195095
Zhou J, Huang F, Wang W, Yang J, Ruan G. Numerical Study and Design Optimization of Geometry Parameters of Tesla Valve Flow Fields for Proton Exchange Membrane Fuel Cell. Energies. 2025; 18(19):5095. https://doi.org/10.3390/en18195095
Chicago/Turabian StyleZhou, Jianhua, Feineng Huang, Wenjun Wang, Jianbo Yang, and Guanqiang Ruan. 2025. "Numerical Study and Design Optimization of Geometry Parameters of Tesla Valve Flow Fields for Proton Exchange Membrane Fuel Cell" Energies 18, no. 19: 5095. https://doi.org/10.3390/en18195095
APA StyleZhou, J., Huang, F., Wang, W., Yang, J., & Ruan, G. (2025). Numerical Study and Design Optimization of Geometry Parameters of Tesla Valve Flow Fields for Proton Exchange Membrane Fuel Cell. Energies, 18(19), 5095. https://doi.org/10.3390/en18195095