Experimental Study on Direct and Indirect Carbonation of Fly Ash from Fluidized Bed Combustion of Lignite
Abstract
1. Introduction
2. Materials and Methods
2.1. Characteristics of Industrial Waste
2.2. Sample Pre-Treatment
2.3. The Indirect Carbonation Process Studies
Experimental Procedure
2.4. The Direct Carbonation Process Studies
3. Results and Discussion
3.1. Indirect Carbonation Process
3.2. Direct Carbonation Process
4. Conclusions
- The studies were conducted using a gas mixture reflecting the typical composition of coal-fired boiler exhaust gases at atmospheric pressure and ambient temperature (20 °C). The CO2 absorption efficiencies obtained were similar to those reported in the literature. However, it should be noted that most studies on carbon dioxide mineralization employed higher CO2 concentrations, gas pressures, and process temperatures.
- The indirect process achieved lower yields (from 55.5 ± 7.0 to 76.1 ± 7.1 g CO2 per kg of ash) than the direct process (from 79.9 ± 5.6 up to 95.1 ± 7.3 g/kg).
- Carrying out the process under ambient conditions allows for achieving satisfactory efficiency and better economics compared to methods using higher CO2 concentrations, pressure, and temperature often presented in the literature.
- The direct carbonation can be used to effectively remove free calcium oxide contained in FBC, enabling the use of this ash in the production of building materials.
- Mineralization is a method that combines the separation of CO2 from flue gases and its safe storage. Despite its limited storage capacity, its use, even on a limited scale, seems economically viable, especially when industrial waste is used.
- The research results will be used to develop a comprehensive model of the carbon dioxide mineralization process, which will enable the economics of the project to be assessed.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
LCK 353 | cuvette test for analyzing sulfate ion concentration |
LCK 388 | cuvette test for analyzing the total amount of dissolved CO2 |
PFD | fly ash from pulverized coal-fired boilers with desulfurization products |
FBC | fly ash from fluidized bed combustion |
References
- Lee, H.; Romero, J. (Eds.) Climate Change 2023: Synthesis Report. Sixth Assessment Report of the Intergovernmental Panel on Climate Change; IPCC: Geneva, Switzerland, 2023. [Google Scholar] [CrossRef]
- Metz, B.; Davidson, O.; de Coninck, H.; Loos, M.; Meyer, L. (Eds.) IPCC Special Report on Carbon Dioxide Capture and Storage; Cambridge University Press: New York, NY, USA, 2005; ISBN 13 978-0-521-68551-1. [Google Scholar]
- Seifritz, W. CO2 Disposal by Means of Silicates. Nature 1990, 345, 486. [Google Scholar] [CrossRef]
- Lackner, K.S.; Wendt, C.H.; Butt, D.P.; Joyce, E.L.; Sharp, D.H. Carbon Dioxide Disposal in Carbonate Minerals. Energy 1995, 20, 1153–1170. [Google Scholar] [CrossRef]
- Sanna, A.; Uibu, M.; Caramanna, G.; Kuusik, R.; Maroto-Valer, M.M. A Review of Mineral Carbonation Technologies to Sequester CO2. Chem. Soc. Rev. 2014, 43, 8049–8080. [Google Scholar] [CrossRef]
- Ji, L.; Yu, H. Carbon Dioxide Sequestration by Direct Mineralization of Fly Ash. In Carbon Dioxide Sequestration in Cementitious Construction Materials; Pacheco-Torgal, F., Shi, C., Sanchez, A.P., Eds.; Woodhead Publishing Series in Civil and Structural Engineering; Woodhead Publishing: Sawston, UK, 2018; Chapter 2; pp. 13–37. ISBN 978-0-08-102444-7. [Google Scholar]
- Jiang, L.; Cheng, L.; Zhang, Y.; Liu, G.; Sun, J. A Review on CO2 Sequestration via Mineralization of Coal Fly Ash. Energies 2023, 16, 6241. [Google Scholar] [CrossRef]
- Biava, G.; Zacco, A.; Zanoletti, A.; Sorrentino, G.P.; Capone, C.; Princigallo, A.; Depero, L.E.; Bontempi, E. Accelerated Direct Carbonation of Steel Slag and Cement Kiln Dust: An Industrial Symbiosis Strategy Applied in the Bergamo–Brescia Area. Materials 2023, 16, 4055. [Google Scholar] [CrossRef] [PubMed]
- Back, M.; Kuehn, M.; Stanjek, H.; Peiffer, S. Reactivity of Alkaline Lignite Fly Ashes Towards CO2 in Water. Environ. Sci. Technol. 2008, 42, 4520–4526. [Google Scholar] [CrossRef]
- Wehrung, Q.; Bernasconi, D.; Destefanis, E.; Caviglia, C.; Curetti, N.; Di Felice, S.; Bicchi, E.; Pavese, A.; Pastero, L. Aqueous Carbonation of Waste Incineration Residues: Comparing BA, FA, and APCr Across Production Scenarios. Minerals 2024, 14, 1269. [Google Scholar] [CrossRef]
- Renforth, P. The Negative Emission Potential of Alkaline Materials. Nat. Commun. 2019, 10, 1401. [Google Scholar] [CrossRef] [PubMed]
- Tamilselvi Dananjayan, R.R.; Kandasamy, P.; Andimuthu, R. Direct Mineral Carbonation of Coal Fly Ash for CO2 Sequestration. J. Clean. Prod. 2016, 112, 4173–4182. [Google Scholar] [CrossRef]
- Uibu, M.; Uus, M.; Kuusik, R. CO2 Mineral Sequestration in Oil-Shale Wastes from Estonian Power Production. J. Environ. Manag. 2009, 90, 1253–1260. [Google Scholar] [CrossRef]
- Pandian, N.S.; Krishna, K.C. California Bearing Ratio Behavior of Cement-Stabilized Fly Ash-Soil Mixes. J. Test. Eval. 2002, 30, 492–496. [Google Scholar] [CrossRef]
- Janowska-Renkas, E.; Kaliciak, A.; Janus, G.; Kowalska, J. Durability of Cement and Ash Mortars with Fluidized and Siliceous Fly Ashes Exposed to HCl Acid Environment over a Period of 2 Years. Materials 2021, 14, 3229. [Google Scholar] [CrossRef]
- Wang, Y.; Burris, L.; Hooton, R.D.; Shearer, C.R.; Suraneni, P. Effects of Unconventional Fly Ashes on Cementitious Paste Properties. Cem. Concr. Compos. 2022, 125, 104291. [Google Scholar] [CrossRef]
- Janowska-Renkas, E. Impact of Sulphate Ions Content on Performance of Maleic and Acrylic Superplasticizers in Cement Paste. Materials 2021, 14, 2683. [Google Scholar] [CrossRef]
- Reynolds, B.; Reddy, K.J.; Argyle, M.D. Field Application of Accelerated Mineral Carbonation. Minerals 2014, 4, 191–207. [Google Scholar] [CrossRef]
- Ji, L.; Yu, H.; Zhang, R.; French, D.; Grigore, M.; Yu, B.; Wang, X.; Yu, J.; Zhao, S. Effects of Fly Ash Properties on Carbonation Efficiency in CO2 Mineralisation. Fuel Process. Technol. 2019, 188, 79–88. [Google Scholar] [CrossRef]
- Colton, D. Carbon-Dioxide Mineral Sequestration Using Mine Waste. Patent WO 2011/047070 A1, 21 April 2011. [Google Scholar]
- Azadi, M.; Edraki, M.; Farhang, F.; Ahn, J. Opportunities for Mineral Carbonation in Australia’s Mining Industry. Sustainability 2019, 11, 1250. [Google Scholar] [CrossRef]
- Di Lorenzo, F.; Ruiz-Agudo, C.; Ibañez-Velasco, A.; Gil-San Millán, R.; Navarro, J.A.R.; Ruiz-Agudo, E.; Rodriguez-Navarro, C. The Carbonation of Wollastonite: A Model Reaction to Test Natural and Biomimetic Catalysts for Enhanced CO2 Sequestration. Minerals 2018, 8, 209. [Google Scholar] [CrossRef]
- Hills, C.D.; Tripathi, N.; Carey, P.J. Mineralization Technology for Carbon Capture, Utilization, and Storage. Front. Energy Res. 2020, 8, 142. [Google Scholar] [CrossRef]
- Palandri, J.L.; Kharaka, Y.K. A Compilation of Rate Parameters of Water-Mineral Interaction Kinetics for Application to Geochemical Modeling; US Geological Survey Open File Report 2004-1068; US Geological Survey: Reston, VA, USA, 2004. [Google Scholar]
- Jaschik, J.; Warmuziński, K.; Jaschik, M. Wykorzystanie talku w procesie mineralnej karbonatyzacji-badania doświadczalne rozpuszczalności. Inżynieria I Apar. Chem. 2010, 4, 28–29. [Google Scholar]
- Jaschik, J.; Jaschik, M.; Warmuziński, K. The use of alkaline industrial waste in the capture of carbon dioxide. In Proceedings of the 7th International Scientific Conference on Energy and Climate Change, Athens, Greece, 8–10 October 2014; pp. 83–88, ISBN 978-960-466-142-8. [Google Scholar]
- Jaschik, M.; Jaschik, J.; Warmuziński, K. The Utilisation of Fly Ash in CO2 Mineral Carbonation. Chem. Process Eng. 2016, 37, 29–39. [Google Scholar] [CrossRef]
- Huijgen, W.J.J.; Comans, R.N.J. Mineral CO2 Sequestration by Carbonation of Industrial Residues. Literature Overview and Selection of Residue; ECN-C-05-074. Report of ECN-Clean Fossil Fuels Environmental Risk Assessment; Energy Research Centre of the Netherlands (ECN): Petten, The Netherlands, 2005. [Google Scholar]
- Huijgen, W.J.J. Carbon Dioxide Sequestration by Mineral Carbonation. Ph.D. Thesis, Energy Research Centre of the Netherlands, Sint Maartensvlotbrug, The Netherlands, 2007. [Google Scholar]
- Direct Flue Gas Capture of CO2 and the Production of Aggregate for the Construction Industry. Available online: https://www.co2value.eu/wp-content/uploads/2021/02/2020-12-15-Carbon-8-Systems-Mineralization-Workshop-CO2-Value-Europe.pdf (accessed on 18 July 2025).
- Wehrung, Q.; Pastero, L.; Bernasconi, D.; Cotellucci, A.; Bruno, M.; Cavagna, S.; Destefanis, E.; Caviglia, C.; Pavese, A. Impact of Operational Parameters on the CO2 Absorption Rate in Ca(OH)2 Aqueous Carbonation─Implications for Process Efficiency. Energy Fuels 2024, 38, 16678–16691. [Google Scholar] [CrossRef]
- König, M.; Vaes, J.; Klemm, E.; Pant, D. Solvents and Supporting Electrolytes in the Electrocatalytic Reduction of CO2. iScience 2019, 19, 135–160. [Google Scholar] [CrossRef]
- Lagneau, V.; Pipart, A.; Catalette, H. Reactive Transportmodelling and Long Term Behaviour of CO2 Sequestration in Saline Aquifers. Oil Gas Sci. Technol.-Rev. IFP 2005, 60, 231–247. [Google Scholar] [CrossRef]
- Han, S.-J.; Yoo, M.; Kim, D.-W.; Wee, J.-H. Carbon Dioxide Capture Using Calcium Hydroxide Aqueous Solution as the Absorbent. Energy Fuels 2011, 25, 3825–3834. [Google Scholar] [CrossRef]
- Shao, X.; Qin, B.; Shi, Q.; Yang, Y.; Ma, Z.; Xu, Y.; Hao, M.; Jiang, Z.; Jiang, W. Study on the Sequestration Capacity of Fly Ash on CO2 and Employing the Product to Prevent Spontaneous Combustion of Coal. Fuel 2023, 334, 126378. [Google Scholar] [CrossRef]
- Montes-Hernandez, G.; Pérez-López, R.; Renard, F.; Nieto, J.M.; Charlet, L. Mineral Sequestration of CO2 by Aqueous Carbonation of Coal Combustion Fly-Ash. J. Hazard. Mater. 2009, 161, 1347–1354. [Google Scholar] [CrossRef] [PubMed]
Chemical Composition, wt.% | |||||||||
SiO2 | CaO | MgO | Al2O3 | Fe2O3 | Na2O | K2O | SO3 | P2O5 | TiO2 |
27.0 | 29.1 | 2.03 | 20.2 | 4.54 | 1.27 | 1.01 | 8.75 | 0.2 | 1.68 |
Phase Composition, wt.% | |||||||||
SiO2 | CaSO4 | CaO | Ca(OH)2 | CaCO3 | α-Fe2O3 | NaAlSi3O8 | Rozenite | Jarosite | Amorph. |
1.9 | 12.4 | 12.0 | 0.2 | 6.4 | 1.6 | 1.5 | 0.6 | 0.4 | 63.0 |
Particle Size Distribution, µm | Surface and Porosity | ||||||||
D0.1 | D0.5 | D0.9 | D[3,2] | D[4,3] | BET, m2 g−1 | Micropore Area, m2 g−1 | Total Pore Volume, mm3 g−1 | Micropore Volume, mm3 g−1 | Average Pore Size, nm |
3.96 | 24.64 | 87.36 | 8.94 | 36.79 | 6.664 | 0.588 | 37.1 | 0.260 | 14.24 |
Indirect Route | Direct Route | |
---|---|---|
Stirrer speed, min−1 | 300, 600, 1100 | 300, 600, 1100 |
Concentration of CO2, vol.% | 9.65, 12.76, 15.75 | 9.64, 12.69, 15.83 |
Ca+2 initial concentration, mol·dm−3 | 0.0212, 0.0363, 0.0536 | n.a. |
Ash-to-water weight ratio | n.a. | 1:100, 1:50, 1:20 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tańczyk, M.; Jaschik, J.; Kołodziej, A.; Pawlaczyk-Kurek, A.; Janusz-Cygan, A.; Hamryszak, Ł. Experimental Study on Direct and Indirect Carbonation of Fly Ash from Fluidized Bed Combustion of Lignite. Energies 2025, 18, 5059. https://doi.org/10.3390/en18195059
Tańczyk M, Jaschik J, Kołodziej A, Pawlaczyk-Kurek A, Janusz-Cygan A, Hamryszak Ł. Experimental Study on Direct and Indirect Carbonation of Fly Ash from Fluidized Bed Combustion of Lignite. Energies. 2025; 18(19):5059. https://doi.org/10.3390/en18195059
Chicago/Turabian StyleTańczyk, Marek, Jolanta Jaschik, Andrzej Kołodziej, Anna Pawlaczyk-Kurek, Aleksandra Janusz-Cygan, and Łukasz Hamryszak. 2025. "Experimental Study on Direct and Indirect Carbonation of Fly Ash from Fluidized Bed Combustion of Lignite" Energies 18, no. 19: 5059. https://doi.org/10.3390/en18195059
APA StyleTańczyk, M., Jaschik, J., Kołodziej, A., Pawlaczyk-Kurek, A., Janusz-Cygan, A., & Hamryszak, Ł. (2025). Experimental Study on Direct and Indirect Carbonation of Fly Ash from Fluidized Bed Combustion of Lignite. Energies, 18(19), 5059. https://doi.org/10.3390/en18195059