The Influence of Vine Rootstock Type on the Energy Potential of Differentiated Material Obtained from Wine Production
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Dogan, E.; Luni, T.; Majeed, M.T.; Tzeremes, P. The Nexus between Global Carbon and Renewable Energy Sources: A Step towards Sustainability. J. Clean. Prod. 2023, 416, 137927. [Google Scholar] [CrossRef]
- Parrado-Hernando, G.; Pfeifer, A.; Frechoso, F.; Miguel González, L.J.; Duić, N. A Novel Approach to Represent the Energy System in Integrated Assessment Models. Energy 2022, 258, 124743. [Google Scholar] [CrossRef]
- Lanjekar, P.R.; Panwar, N.L.; Agrawal, C.; Gupta, T.; Meena, K.K.; Meena, G.L.; Meena, S.S. A Review on Environmental Assessment of Thermochemical Conversion Technologies for Energy Generation from Crop Residue. Earth Energy Sci. 2024, S2950154724000011. [Google Scholar] [CrossRef]
- SDG 7 Ensure Access to Affordable, Reliable, Sustainable and Modern Energy for All. Available online: https://globalgoals.org/goals/7-affordable-and-clean-energy/ (accessed on 10 May 2025).
- Castillo-Díaz, F.J.; Belmonte-Ureña, L.J.; López-Serrano, M.J.; Camacho-Ferre, F. Assessment of the Sustainability of the European Agri-Food Sector in the Context of the Circular Economy. Sustain. Prod. Consum. 2023, 40, 398–411. [Google Scholar] [CrossRef]
- Polak, R.; Dziki, D.; Krzykowski, A.; Rudy, S.; Biernacka, B. RenewGeo: An Innovative Geothermal Technology Augmented by Solar Energy. Agric. Eng. 2025, 29, 49–62. [Google Scholar] [CrossRef]
- Wang, J.; Pei, F.; Kang, T.; Cheng, P.; Yang, K. Assessing the Bioenergy Potential of Abandoned Cropland in China: Toward an Optimal Distribution of Bioenergy Crops. Energy Sustain. Dev. 2024, 83, 101590. [Google Scholar] [CrossRef]
- Licata, M.; Farruggia, D.; Sgroi, F.; Salamone, F.; Leto, C.; Di Miceli, G. A Comparative Study to Assess the Production of Two Oilseed Crops (Brassica carinata A. Braun and Carthamus tinctorius L.) and the Energy Potential of Their Agricultural Biomass Residues. Heliyon 2024, 10, e38654. [Google Scholar] [CrossRef]
- Lazaroiu, G.; Mihaescu, L.; Ion, I.; Jarcu, E.-A.; Stoica, D. Biomass Utilization for Energy Production. In Energy Transition Holistic Impact Challenge (ETHIC): A New Environmental and Climatic Era; Lazaroiu, G.C., Roscia, M., Dancu, V.S., Eds.; Environmental Science and Engineering; Springer Nature: Cham, Switzerland, 2024; pp. 173–215. ISBN 978-3-031-55447-6. [Google Scholar]
- Kalak, T. Potential Use of Industrial Biomass Waste as a Sustainable Energy Source in the Future. Energies 2023, 16, 1783. [Google Scholar] [CrossRef]
- Kumar Sharma, A.; Kumar Ghodke, P.; Goyal, N.; Nethaji, S.; Chen, W.-H. Machine Learning Technology in Biohydrogen Production from Agriculture Waste: Recent Advances and Future Perspectives. Bioresour. Technol. 2022, 364, 128076. [Google Scholar] [CrossRef]
- Salcedo-Puerto, O.; Mendoza-Martinez, C.; Vakkilainen, E. Solid Residues from Cocoa Production Chain: Assessment of Thermochemical Valorization Routes. Renew. Sustain. Energy Rev. 2025, 208, 115048. [Google Scholar] [CrossRef]
- Yaashikaa, P.R.; Senthil Kumar, P.; Varjani, S. Valorization of Agro-Industrial Wastes for Biorefinery Process and Circular Bioeconomy: A Critical Review. Bioresour. Technol. 2022, 343, 126126. [Google Scholar] [CrossRef]
- Kassim, F.O.; Sohail, M.; Somorin, T.; Blanch, G.; Yaman, R.; Afolabi, O.O.D. Optimised Mixed Agri-Food Waste Simulant for Enhanced Bioenergy Production via Hydrothermal Carbonisation and Supercritical Plant Modelling. Energy Rep. 2025, 13, 184–195. [Google Scholar] [CrossRef]
- Adnane, I.; Taoumi, H.; Elouahabi, K.; Lahrech, K.; Oulmekki, A. Valorization of Crop Residues and Animal Wastes: Anaerobic Co-Digestion Technology. Heliyon 2024, 10, e26440. [Google Scholar] [CrossRef]
- Van Dijk, M.; Goedegebure, R.; Nap, J.-P. Public Acceptance of Biomass for Bioenergy: The Need for Feedstock Differentiation and Communicating a Waste Utilization Frame. Renew. Sustain. Energy Rev. 2024, 202, 114670. [Google Scholar] [CrossRef]
- Wang, C.; Zhang, W.; Qiu, X.; Xu, C. Hydrothermal Treatment of Lignocellulosic Biomass towards Low-Carbon Development: Production of High-Value-Added Bioproducts. EnergyChem 2024, 6, 100133. [Google Scholar] [CrossRef]
- Arora, J.; Ramawat, K.G.; Mérillon, J.-M. (Eds.) Disposal of Agricultural Waste and Its Effects on the Environment, Production of Useful Metabolites and Energy: Potential and Challenges. In Agricultural Waste: Environmental Impact, Useful Metabolites and Energy Production; Sustainable Development and Biodiversity; Springer Nature: Singapore, 2023; Volume 31, pp. 3–20. ISBN 978-981-19877-3-1. [Google Scholar]
- Skoutida, S.; Malamakis, A.; Geroliolios, D.; Karkanias, C.; Melas, L.; Batsioula, M.; Banias, G.F. The Latent Potential of Agricultural Residues in Circular Economy: Quantifying Their Production Destined for Prospective Energy Generation Applications. BioEnergy Res. 2024, 18, 11. [Google Scholar] [CrossRef]
- Tsiapali, O.I.; Ayfantopoulou, E.; Tzourouni, A.; Ofrydopoulou, A.; Letsiou, S.; Tsoupras, A. Unveiling the Utilization of Grape and Winery By-Products in Cosmetics with Health Promoting Properties. Appl. Sci. 2025, 15, 1007. [Google Scholar] [CrossRef]
- Ferrer, J.R.; García-Cortijo, M.C.; Pinilla, V.; Castillo-Valero, J.S. The Business Model and Sustainability in the Spanish Wine Sector. J. Clean. Prod. 2022, 330, 129810. [Google Scholar] [CrossRef]
- Siller-Sánchez, A.; Luna-Sánchez, K.A.; Bautista-Hernández, I.; Chávez-González, M.L. Use of Grape Pomace from the Wine Industry for the Extraction of Valuable Compounds with Potential Use in the Food Industry. Curr. Food Sci. Technol. Rep. 2024, 2, 7–16. [Google Scholar] [CrossRef]
- Kokkinomagoulos, E.; Kandylis, P. Grape Pomace, an Undervalued by-Product: Industrial Reutilization within a Circular Economy Vision. Rev. Environ. Sci. Biotechnol. 2023, 22, 739–773. [Google Scholar] [CrossRef]
- EN-ISO 18122:2022; Solid Biofuels. Determination of Ash Content. ISO: Geneva, Switzerland, 2022.
- EN-ISO 18123:2023; Solid Fuels—Determination of Volatile Matter. ISO: Geneva, Switzerland, 2023.
- EN-ISO 18134-1:2023; Solid Biofuels—Determination of Moisture Content Part 1: Reference Method. ISO: Geneva, Switzerland, 2022.
- Choudhury, N.D.; Saha, N.; Phukan, B.R.; Kataki, R. Characterization and Evaluation of Energy Properties of Pellets Produced from Coir Pith, Saw Dust and Ipomoea Carnea and Their Blends. Energy Sources Part A Recovery Util. Environ. Eff. 2021, 47, 4517–4534. [Google Scholar] [CrossRef]
- EN-ISO 16948:2015-07; Solid Biofuels—Determination of Total Content of Carbon, Hydrogen and Nitrogen. ISO: Geneva, Switzerland, 2015.
- ISO 16994:2016; Solid Biofuels—Determination of Total Content of Sulphur and Chlorine. ISO: Geneva, Switzerland, 2016.
- Alves, J.L.F.; da Silva, J.C.G.; Mumbach, G.D.; Domenico, M.D.; da Silva Filho, V.F.; de Sena, R.F.; Machado, R.A.F.; Marangoni, C. Insights into the Bioenergy Potential of Jackfruit Wastes Considering Their Physicochemical Properties, Bioenergy Indicators, Combustion Behaviors, and Emission Characteristics. Renew. Energy 2020, 155, 1328–1338. [Google Scholar] [CrossRef]
- Maj, G. Emission Factors and Energy Properties of Agro and Forest Biomass in Aspect of Sustainability of Energy Sector. Energies 2018, 11, 1516. [Google Scholar] [CrossRef]
- Kovacs, H.; Szemmelveisz, K.; Koós, T. Theoretical and Experimental Metals Flow Calculations during Biomass Combustion. Fuel 2016, 185, 524–531. [Google Scholar] [CrossRef]
- Paraschiv, L.S.; Serban, A.; Paraschiv, S. Calculation of Combustion Air Required for Burning Solid Fuels (Coal/Biomass/Solid Waste) and Analysis of Flue Gas Composition. Energy Rep. 2020, 6, 36–45. [Google Scholar] [CrossRef]
- Enes, T.; Aranha, J.; Fonseca, T.; Matos, C.; Barros, A.; Lousada, J. Residual Agroforestry Biomass–Thermochemical Properties. Forests 2019, 10, 1072. [Google Scholar] [CrossRef]
- Torreiro, Y.; Pérez, L.; Piñeiro, G.; Pedras, F.; Rodríguez-Abalde, A. The Role of Energy Valuation of Agroforestry Biomass on the Circular Economy. Energies 2020, 13, 2516. [Google Scholar] [CrossRef]
- Mateos, E.; Ormaetxea, L. Sustainable Renewable Energy by Means of Using Residual Forest Biomass. Energies 2019, 12, 13. [Google Scholar] [CrossRef]
- Malaťák, J.; Velebil, J.; Malaťáková, J.; Passian, L.; Bradna, J.; Tamelová, B.; Gendek, A.; Aniszewska, M. Reducing Emissions from Combustion of Grape Residues in Mixtures with Herbaceous Biomass. Materials 2022, 15, 7288. [Google Scholar] [CrossRef]
- Malaťák, J.; Bradna, J.; Velebil, J. The Dependence of COx and NOx Emission Concentrations on the Excess Air Coefficient during Combustion of Selected Agricultural Briquetted By-Products. Agron. Res. 2017, 15, 1084–1093. [Google Scholar]
Parameter | Method | Equipment |
---|---|---|
Energetic Properties | ||
Higher heating value (HHV; MJ·kg−1) | EN-ISO 1928:2020 [23] | isoperibolic calorimeter LECO AC 600 (Devon, UK) |
Lower heating value (LHV; MJ·kg−1) | ||
Proximate Analysis | ||
Ash (A; %) | EN-ISO 18122:2022 [24] | thermogravimetric analyser LECO TGA 701 (Devon, UK) |
Volatile matter (V; %) | EN-ISO 18123:2023 [25] | |
Moisture (MC; %) | EN-ISO 18134:2023 [26] | |
Fixed carbon (FC; %) | FC = 100 − V − A − M [27] | |
Ultimate Analysis | ||
Carbon (C; %) | EN-ISO 16948:2015 [28] | elemental analyser LECO CHNS 628 (Devon, UK) |
Hydrogen (H;%) | ||
Nitrogen (N; %) | ||
Sulphur (S; %) | EN-ISO 16994:2016 [29] | |
Oxygen (O; %) | O = 100 – A – H – C – S − N [30] |
Parameter | Method and Equipment |
---|---|
Carbon monoxide emission factor (Ec) of chemically pure coal (CO; kg·Mg−1) | , CO—carbon monoxide emission factor (kg·kg−1), — molar mass ratio of carbon monoxide and carbon, EC—emission factor of chemically pure coal (kg∙kg−1), C/CO—part of the carbon emitted as CO (for biomass 0.06). |
Carbon dioxide emission factor (CO2; kg·Mg−1) | —molar mass ratio of carbon and methane, ECH4—methane emission factor, ENMVOC—emission index of non-methane VOCs (for biomass 0.009). |
Sulphur dioxide emission factor (SO2; kg·Mg−1) | SO2—sulphur dioxide emission factor (kg∙kg−1), 2—molar mass ratio of SO2 and sulphur, S—sulphur content in fuel (%), r—coefficient determining the part of total sulphur retained in the ash. |
Emission factor calculated from (NOX; kg·Mg−1) | , NOx—NOx emission factor (kg∙kg−1), —molar mass ratio of nitrogen dioxide to nitrogen. The molar mass of nitrogen dioxide is considered due to the fact that nitrogen oxide in the air oxidizes very quickly into nitrogen dioxide. N/C—nitrogen to carbon ratio in biomass, NOx/N—part of nitrogen emitted as NOx (for biomass 0.122). |
Parameter | Method and Equipment |
---|---|
Theoretical oxygen demand ; Nm3·kg−1) | , where C—biomass carbon content (%), H—biomass hydrogen content (%), S—biomass sulphur content (%), O—biomass oxygen content (%). |
The stoichiometric volume of dry air required to burn 1 kg of biomass (Voa; Nm3·kg−1) | since the oxygen content in the air is 21%, which participates in the combustion process in the boiler, this is the stoichiometric volume of dry air required to burn 1 kg of biomass. |
Carbon dioxide content of the combustion products ; Nm3·kg−1) | |
Content of sulphur dioxide ; Nm3·kg−1) | , |
Water vapor content of the exhaust gas ; Nm3·kg−1) | , and the volume of moisture contained in the combustion air ; M—fuel moisture content (%), x—air absolute humidity (kg H2O·kg−1 dry air). |
The theoretical nitrogen content in the exhaust gas ; Nm3 kg−1) | , considering that the nitrogen in the exhaust comes from the fuel composition and the combustion air, and the nitrogen content in the air is 79%. |
The total stoichiometric volume of dry exhaust gas Nm3 kg−1) | |
The total volume of exhaust gases ; Nm3·kg−1) | Assuming that biomass combustion is carried out under stoichiometric conditions, i.e., using the minimum amount of air required for combustion (λ = 1), a minimum exhaust gas volume will be obtained. |
Name | HHV | LHV | MC | A | V | FC | |
---|---|---|---|---|---|---|---|
Variety (A) | 125AA | 16.97 ± 0.96 b | 15.83 ± 0.94 b | 6.02 ± 0.03 ab | 9.31 ± 1.42 b | 66.47 ± 1.11 a | 18.20 ± 0.53 b |
161-49 | 16.87 ± 0.96 c | 15.70 ± 0.96 c | 6.36 ± 0.19 ab | 7.52 ± 0.54 d | 66.46 ± 1.74 a | 19.66 ± 1.11 a | |
SO4 | 17.19 ± 1.82 a | 16.07 ± 1.82 a | 5.13 ± 1.63 b | 10.60 ± 1.52 a | 64.05 ± 0.19 c | 20.22 ± 3.14 a | |
Control | 16.60 ± 0.44 d | 15.43 ± 0.42 d | 6.68 ± 0.26 a | 8.07 ± 1.49 c | 65.66 ± 1.58 b | 19.59 ± 0.43 a | |
p-value | 0.0001 | 0.0001 | 0.0001 | 0.0001 | 0.0001 | 0.0001 | |
Material (B) | Stem | 15.95 ± 0.27 b | 14.81 ± 0.26 b | 6.41 ± 0.24 b | 9.99 ± 1.55 a | 64.68 ± 0.69 b | 18.93 ± 1.48 b |
Pomace | 17.86 ± 0.69 a | 16.70 ± 0.72 a | 5.69 ± 0.28 a | 7.76 ± 1.04 b | 66.65 ± 1.61 a | 19.90 ± 1.94 a | |
p-value | 0.0001 | 0.0001 | 0.0001 | 0.0001 | 0.0001 | 0.0001 | |
A*B | p-value | 0.0001 | 0.0001 | 0.0001 | 0.0001 | 0.0001 | 0.0001 |
Name | C | H | N | S | O | H/C | N/C | O/C | |
---|---|---|---|---|---|---|---|---|---|
Unit | % | ||||||||
Variety (A) | 125AA | 45.67 ± 1.91 b | 6.80 ± 0.42 a | 1.57 ± 0.16 a | 0.07 ± 0.02 a | 36.59 ± 1.15 b | 1.49 ± 0.03 b | 0.03 ± 0.00 a | 0.60 ± 0.04 b |
161-49 | 45.55 ± 1.6 bc | 6.83 ± 0.38 a | 1.46 ± 0.25 b | 0.07 ± 0.01 a | 38.58 ± 1.74 a | 1.50 ± 0.03 b | 0.03 ± 0.00 b | 0.64 ± 0.05 a | |
SO4 | 46.16 ± 3.13 a | 6.58 ± 0.18 b | 1.28 ± 0.10 d | 0.07 ± 0.02 a | 35.31 ± 1.78 c | 1.52 ± 0.07 a | 0.03 ± 0.00 c | 0.64 ± 0.02 a | |
Control | 45.17 ± 1.09 c | 6.86 ± 0.46 a | 1.36 ± 0.09 c | 0.06 ± 0.01 a | 38.48 ± 0.31 a | 1.43 ± 0.06 c | 0.03 ± 0.00 d | 0.58 ± 0.07 c | |
p-value | 0.0001 | 0.0001 | 0.0001 | 0.1841 | 0.0001 | 0.0001 | 0.0001 | 0.0001 | |
Material (B) | Stem | 43.90 ± 0.46 b | 6.44 ± 0.06 b | 1.36 ± 0.09 b | 0.05 ± 0.01 b | 38.26 ± 1.32 a | 1.47 ± 0.01 b | 0.03 ± 0.00 a | 0.65 ± 0.02 a |
Pomace | 47.38 ± 1.13 a | 7.09 ± 0.22 a | 1.47 ± 0.24 a | 0.08 ± 0.01 a | 36.22 ± 1.88 b | 1.50 ± 0.08 a | 0.03 ± 0.01 a | 0.57 ± 0.04 b | |
p-value | 0.0001 | 0.0001 | 0.0001 | 0.0001 | 0.0001 | 0.0001 | 0.0001 | 0.0001 | |
A*B | p-value | 0.0001 | 0.0001 | 0.0001 | 0.0001 | 0.0001 | 0.0001 | 0.0001 | 0.00 |
Name | CO | NOx | CO2 | SO2 | Dust | |
---|---|---|---|---|---|---|
Unit | kg Mg−1 | |||||
Variety (A) | 125AA | 56.27 ± 2.36 b | 5.52 ± 0.58 a | 1377.87 ± 57.76 b | ± 0.14 ± 0.03 a | 11.76 ± 1.79 b |
161-49 | 56.11 ± 1.97 bc | 5.14 ± 0.89 b | 1374.05 ± 48.19 bc | 0.14 ± 0.03 a | 9.50 ± 0.68 d | |
SO4 | 55.65 ± 1.34 c | 4.82 ± 0.31 c | 1362.64 ± 32.75 c | 0.11 ± 0.02 a | 10.19 ± 1.88 c | |
Control | 56.87 ± 3.86 a | 4.52 ± 0.35 d | 1392.64 ± 94.41 a | ± 0.13 ± 0.04 a | 13.39 ± 1.92 a | |
p-value | 0.0001 | 0.0001 | 0.0001 | 0.0001 | 0.0001 | |
Material (B) | Shank | 54.08 ± 0.57 b | 4.81 ± 0.33 b | 1324.30 ± 14.01 b | 0.11 ± 0.03 b | 12.61 ± 1.96 a |
Pomace | 58.37 ± 1.39 a | 5.18 ± 0.86 a | 1429.30 ± 33.95 a | 0.15 ± 0.01 a | 9.80 ± 1.32 b | |
p-value | 0.0001 | 0.0001 | 0.0001 | 0.0001 | 0.0001 | |
A*B | p-value | 0.0001 | 0.0001 | 0.0001 | 0.0001 | 0.0001 |
Name | Vo(O2) | Voa | VCO2 | VSO2 | VH2O | VN2 | Voga | Vogu | |
---|---|---|---|---|---|---|---|---|---|
Unit | Nm3·kg−1 | ||||||||
Variety (A) | 125AA | 0.98 ± 0.07 ab | 4.66 ± 0.32 ab | 0.85 ± 0.04 b | 0.00 ± 0.00 a | 0.84 ± 0.05 b | 4.93 ± 0.38 a | 7.37 ± 0.51 a | 5.79 ± 0.42 a |
161-49 | 0.96 ± 0.06 bc | 4.59 ± 0.3 bc | 0.85 ± 0.03 bc | 0.00 ± 0.00 a | 0.84 ± 0.04 ab | 4.79 ± 0.44 b | 7.22 ± 0.56 b | 5.64 ± 0.47 b | |
SO4 | 0.96 ± 0.05 c | 4.57 ± 0.22 c | 0.84 ± 0.02 c | 0.00 ± 0.00 a | 0.85 ± 0.06 a | 4.70 ± 0.11 b | 7.13 ± 0.22 b | 5.54 ± 0.13 b | |
Control | 0.98 ± 0.08 a | 4.69 ± 0.38 a | 0.86 ± 0.06 a | 0.00 ± 0.00 a | 0.80 ± 0.00 c | 4.73 ± 0.23 b | 7.15 ± 0.35 b | 5.59 ± 0.28 b | |
p-value | 0.0001 | 0.0001 | 0.0001 | 0.0001 | 0.0001 | 0.0001 | 0.0001 | 0.0001 | |
Material (B) | Stem | 0.91 ± 0.01 b | 4.35 ± 0.05 b | 0.82 ± 0.01 b | 0.00 ± 0.00 b | 0.80 ± 0.01 b | 4.53 ± 0.10 b | 6.85 ± 0.11 b | 5.35 ± 0.1 b |
Pulp | 1.03 ± 0.02 a | 4.90 ± 0.11 a | 0.88 ± 0.02 a | 0.00 ± 0.00 a | 0.87 ± 0.04 a | 5.05 ± 0.21 | 7.59 ± 0.22 a | 5.93 ± 0.21 a | |
p-value | 0.0001 | 0.0001 | 0.0001 | 0.0001 | 0.0001 | 0.0001 | 0.0001 | 0.0001 | |
A*B | p-value | 0.0001 | 0.0001 | 0.0001 | 0.0001 | 0.0001 | 0.0001 | 0.0001 | 0.0001 |
Name | Unit | Vitis vinifera (Sabor) [34] | Vitis vinifera (Ave) [34] | [20] | Pruning Vine [35] | ||
---|---|---|---|---|---|---|---|
energy parameters | HHV | MJ·kg−1 | 17.3 | 17.4 | 18.072 | ||
LHV | - | - | 18.19 | ||||
A | % | 7.2 | 6.8 | 9.6 | 2.6 | ||
V | - | - | 79 | ||||
FC | - | - | 11.4 | ||||
C | 44.2 | 42.6 | 47.09 | 44.62 | |||
H | 6.1 | 6.1 | 6.3 | 5.77 | |||
N | 1 | 0.9 | 0.1 | 0.7 | |||
S | 0.07 | 0.09 | 0.1 | 0.05 | |||
O | 43 | 41.9 | 46.42 | ||||
emission factors | Pinus radiata [36] | Eucalyptus globulus [36] | Jackfruit peels [30] | Jackfruit seeds [30] | Wheat straw [31] | ||
CO | kg Mg−1 | 63.52 | 61.75 | 50.28 | 51.46 | 50.57 | |
NOx | 5.63 | 4.52 | 4.66 | 8.71 | 1.83 | ||
CO2 | 1527.79 | 1484.34 | 1203.47 | 1232.43 | 1238.24 | ||
SO2 | 0.72 | 0.46 | 0.07 | 0.11 | 0.14 | ||
Dust | 3.69 | 5.2 | - | - | 10.56 | ||
amounts of air and of dry flue gases | Pure white grape pomace [37] | Pure red grape pomace [37] | Meadow hay [38] | Timothy grass [38] | |||
Voga | Nm3 kg−1 | 5.95 | 6.22 | 4.14 | 4.42 | ||
Vogu | 4.58 | 4.79 | 4.03 | 4.29 |
Pedicel | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
HHV | LHV | C | M | O% | A | V | FC | CO | H/C | O/C | CO2 | Dust | VCO2 | ||
Residues | HHV | −0.81 | −0.82 | −0.54 | 0.85 | −0.29 | 0.42 | −0.78 | −0.21 | −0.54 | 0.62 | −0.14 | −0.54 | 0.42 | −0.54 |
LHV | −0.81 | −0.82 | −0.54 | 0.85 | −0.30 | 0.43 | −0.78 | −0.21 | −0.54 | 0.62 | −0.15 | −0.54 | 0.43 | −0.54 | |
C | −0.81 | −0.81 | −0.49 | 0.88 | −0.40 | 0.49 | −0.76 | −0.28 | −0.49 | 0.58 | −0.27 | −0.49 | 0.49 | −0.49 | |
H | 0.91 | 0.91 | 0.74 | −0.68 | 0.47 | −0.63 | 0.68 | 0.45 | 0.74 | −0.73 | 0.27 | 0.74 | −0.63 | 0.74 | |
N | 0.66 | 0.62 | 0.70 | 0.19 | 0.80 | −0.88 | −0.03 | 0.91 | 0.70 | −0.49 | 0.64 | 0.70 | −0.88 * | 0.70 | |
S | 0.41 | 0.38 | 0.31 | 0.43 | 0.60 | −0.59 | −0.45 | 0.76 | 0.31 | −0.40 | 0.56 | 0.31 | −0.59 | 0.31 | |
M | 0.90 | 0.90 | 0.67 | −0.72 | 0.49 | −0.62 | 0.68 | 0.44 | 0.67 | −0.70 | 0.31 | 0.67 | −0.62 | 0.67 | |
O | 0.69 | 0.70 | 0.44 | −0.79 | 0.37 | −0.45 | 0.78 | 0.23 | 0.44 | −0.47 | 0.26 | 0.44 | −0.45 | 0.44 | |
A | −0.72 | −0.71 | −0.58 | 0.68 | −0.53 | 0.62 | −0.72 | −0.42 | −0.58 | 0.50 | −0.39 | −0.58 | 0.62 | −0.58 | |
V | 0.87 | 0.85 | 0.78 | −0.35 | 0.77 | −0.88 | 0.50 | 0.75 | 0.78 | −0.59 | 0.58 | 0.78 | −0.88 | 0.78 | |
FC | −0.93 | −0.92 | −0.78 | 0.40 | −0.68 | 0.81 | −0.48 | −0.69 | −0.78 | 0.68 | −0.48 | −0.78 | 0.81 | −0.78 | |
CO | −0.81 | −0.81 | −0.49 | 0.78 | −0.40 | 0.49 | −0.76 | −0.28 | −0.49 | 0.58 | −0.27 | −0.49 | 0.49 | −0.49 | |
NOx | 0.66 | 0.62 | 0.70 | 0.19 | 0.80 | −0.88 | −0.03 | 0.91 | 0.70 | −0.49 | 0.64 | 0.70 | −0.88 * | 0.70 | |
H/C | 0.88 | 0.88 | 0.64 | −0.75 | 0.44 | −0.57 | 0.74 | 0.37 | 0.64 | −0.67 | 0.27 | 0.64 | −0.57 | 0.64 | |
N/C | 0.73 | 0.69 | 0.73 | 0.10 | 0.82 | −0.91 | 0.06 | 0.90 | 0.73 | −0.53 | 0.66 | 0.73 | −0.91 * | 0.73 | |
O/C | 0.72 | 0.73 | 0.45 | −0.80 | 0.37 | −0.45 | 0.79 | 0.23 | 0.45 | −0.50 | 0.25 | 0.45 | −0.45 | 0.45 | |
CO2 | −0.81 | −0.81 | −0.49 | 0.78 | −0.40 | 0.49 | −0.76 | −0.28 | −0.49 | 0.58 | −0.27 | −0.49 | 0.49 | −0.49 | |
SO2 | 0.41 | 0.38 | 0.31 | 0.43 | 0.60 | −0.59 | −0.45 | 0.76 | 0.31 | −0.40 | 0.56 | 0.31 | −0.59 | 0.31 | |
Dust | −0.72 | −0.71 | −0.58 | 0.68 | −0.53 | 0.62 | −0.72 | −0.42 | −0.58 | 0.50 | −0.39 | −0.58 | 0.62 | −0.58 | |
VoO2 | −0.63 | −0.64 | −0.30 | 0.78 | −0.32 | 0.36 | −0.77 | −0.14 | −0.30 | 0.40 | −0.25 | −0.30 | 0.36 | −0.30 | |
Voa | −0.63 | −0.64 | −0.30 | 0.78 | −0.32 | 0.36 | −0.77 | −0.14 | −0.30 | 0.40 | −0.25 | −0.30 | 0.36 | −0.30 | |
VCO2 | −0.81 | −0.81 | −0.49 | 0.78 | −0.40 | 0.49 | −0.76 | −0.28 | −0.49 | 0.58 | −0.27 | −0.49 | 0.49 | −0.49 | |
VSO2 | 0.41 | 0.38 | 0.31 | 0.43 | 0.60 | −0.59 | −0.45 | 0.76 | 0.31 | −0.40 | 0.56 | 0.31 | −0.59 | 0.31 | |
V’H2O | 0.91 | 0.91 | 0.72 | −0.70 | 0.48 | −0.63 | 0.68 | 0.45 | 0.72 | −0.72 | 0.29 | 0.72 | −0.63 | 0.72 | |
VoH2O | 0.92 | 0.91 | 0.86 | −0.51 | 0.50 | −0.69 | 0.49 | 0.57 | 0.86 | −0.80 | 0.26 | 0.86 | −0.69 | 0.86 | |
VN2 | 0.34 | 0.30 | 0.53 | 0.51 | 0.61 | −0.67 | −0.35 | 0.79 | 0.53 | −0.28 | 0.50 | 0.53 | −0.67 | 0.53 | |
Voga | 0.36 | 0.32 | 0.55 | 0.49 | 0.59 | −0.67 | −0.34 | 0.78 | 0.55 | −0.31 | 0.47 | 0.55 | −0.67 | 0.55 | |
Vogu | 0.26 | 0.22 | 0.47 | 0.58 | 0.56 | −0.61 | −0.42 | 0.74 | 0.47 | −0.22 | 0.46 | 0.47 | −0.61 | 0.47 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Klimek, K.E.; Kapłan, M.; Maj, G.; Borkowska, A.; Buczyński, K. The Influence of Vine Rootstock Type on the Energy Potential of Differentiated Material Obtained from Wine Production. Energies 2025, 18, 5062. https://doi.org/10.3390/en18195062
Klimek KE, Kapłan M, Maj G, Borkowska A, Buczyński K. The Influence of Vine Rootstock Type on the Energy Potential of Differentiated Material Obtained from Wine Production. Energies. 2025; 18(19):5062. https://doi.org/10.3390/en18195062
Chicago/Turabian StyleKlimek, Kamila E., Magdalena Kapłan, Grzegorz Maj, Anna Borkowska, and Kamil Buczyński. 2025. "The Influence of Vine Rootstock Type on the Energy Potential of Differentiated Material Obtained from Wine Production" Energies 18, no. 19: 5062. https://doi.org/10.3390/en18195062
APA StyleKlimek, K. E., Kapłan, M., Maj, G., Borkowska, A., & Buczyński, K. (2025). The Influence of Vine Rootstock Type on the Energy Potential of Differentiated Material Obtained from Wine Production. Energies, 18(19), 5062. https://doi.org/10.3390/en18195062