Pressure-Dependent Breakdown Voltage in SF6/Epoxy Resin Insulation Systems: Electric Field Enhancement Mechanisms and Interfacial Synergy
Abstract
1. Introduction
2. Test Platform and Samples
2.1. Test Platform
2.2. Samples
3. Results
3.1. Breakdown Voltage
3.2. Breakdown Electric Field Strength
3.3. Relationship Between Breakdown Voltage and Maximum Surface Electric Field Strength
4. Discussions
4.1. Influence of Solid Dielectric Surface on Electric Field Distributionn
4.2. Influence of the Solid Surface on the Critical Conditions for Gaseous Discharge
5. Conclusions
- (1)
- Under AC voltage conditions, the critical electric field for solid dielectric surface-initiated breakdown in SF6 gas is significantly lower than that of metal electrode surface-initiated breakdown under identical electric field distribution. Although the discharge mechanisms differ, the same disparity phenomenon is also observed under standard lightning impulse voltage.
- (2)
- The discharge process on dielectric surfaces demonstrates higher sensitivity to microscopic irregularities. According to the electrostatic field simulation results, while micro-protrusions significantly amplify the maximum electric field strength on the electrode surface, their influence on the electric field distribution in the adjacent gas region remains limited. In contrast, similar protrusions on a solid dielectric surface cause more extensive distortion of the electric field along the direction of the electric field lines.
- (3)
- From the perspective of discharge mechanisms, a qualitative analysis indicates that as gas pressure rises, the critical electric field strength required to initiate discharge at the gas–solid interface increases, and more free electrons are released from the solid dielectric surface. This is further promoted by the normal component of the electric field, as well as local electric field distortions due to surface defects, resulting in significantly lower discharge initiation thresholds compared to a pure gas gap.
- (4)
- These conclusions underscore the qualitative role of localized electric field distortion and material surface properties in discharge behavior. Further research employing partial discharge imaging and surface functionalization techniques is essential to quantitatively elucidate the proposed mechanisms and generalize these findings.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Koch, H. Gas Insulated Substations (GIS); Wiley-IEEE Press: Hoboken, NJ, USA, 2014; pp. 34–40. [Google Scholar]
- Li, B. SF6 High Voltage Apparatus, 6th ed.; China Machine Press: Ningbo, China, 2019; pp. 79–96. [Google Scholar]
- Han, X.C.; Sun, X.; Chen, H.B.; Qiu, N.; Lyu, D.; Wang, N.H.; Wang, X.N.; Zhang, J.L. The overview of development of UHV AC transmission technology in China. Proc. CSEE 2020, 40, 4237–4386. [Google Scholar] [CrossRef]
- Küchler, A. High Voltage Engineering; Springer: Berlin/Heidelberg, Germany, 2018; pp. 159–215. [Google Scholar]
- Niu, S.Y.; Zhao, Q.Y.; Niu, S.X.; Jian, L.N. A Comprehensive investigation of thermal risks in wireless ev chargers considering spatial misalignment from a dynamic perspective. IEEE J. Emerg. Sel. Top. Ind. Electron. 2024, 5, 1560–1571. [Google Scholar] [CrossRef]
- Nitta, T.; Shibuya, Y.; Fujiwara, Y.; Arahata, Y.; Takahashi, H.; Kuwahara, H. Factors controlling surface flashover in SF6 gas insulated systems. IEEE Trans. Power Appar. Syst. 1978, PAS-97, 959–968. [Google Scholar] [CrossRef]
- Laghari, J. Spacer flashover in compressed gases. Trans. Electr. Insul. 1985, 20, 83–92. [Google Scholar] [CrossRef]
- Sudarshan, T.; Dougal, R. Mechanisms of surface flashover along solid dielectrics in compressed gases: A review. IEEE Trans. Electr. Insul. 1986, 21, 727–746. [Google Scholar] [CrossRef]
- Xing, Y.Q.; Wang, Z.W.; Liu, L.; Xu, Y.; Yang, Y.; Liu, S.; Zhou, F.S.; He, S.; Li, C.Y. Defects and failure types of solid insulation in gas-insulated switchgear: In situ study and case analysis. High Volt. 2022, 7, 158–164. [Google Scholar] [CrossRef]
- Li, X.; Liu, W.D.; Xu, Y.; Chen, W.J.; Bi, J.G. Surface charge accumulation and pre-flashover characteristics induced by metal particles on the insulator surfaces of 1100 kV GILs under AC voltage. High Volt. 2020, 5, 134–142. [Google Scholar] [CrossRef]
- Verhaart, H.; Verhage, A. Insulator flashover in SF6 gas. Kema Sci. Technol. Rep. 1988, 6, 179–228. [Google Scholar]
- Jorgenson, R.E.; Warne, L.K.; Neuber, A.A.; Krile, J.; Dickens, J.; Krompholz, H.G. Effect of Dielectric Photoemission on Surface Breakdown an LRRD Report; Sandia National Laboratories: Livermore, CA, USA, 2003; p. 79. [Google Scholar]
- Chvyreva, A. Creeping Sparks: A Study on Surface Discharge Development-Electrodeless; Eindhoven University of Technology: Eindhoven, The Netherlands, 2016; pp. 40–45. [Google Scholar]
- Chvyreva, A.; Pancheshnyi, S.; Christen, T.; Pemen, A.J.M. Raether–Meek criterion for prediction of electrodeless discharge inception on a dielectric surface in different gases. J. Phys. D Appl. Phys. 2018, 51, 115202. [Google Scholar] [CrossRef]
- IEC 60296:2020; Fluids for Electrotechnical Applications—Mineral Insulating Oils for Electrical Equipment. International Electrotechnical Commission: Geneva, Switzerland, 2020.
- IEC 60243-1:2013; Electric Strength of Insulating Materials—Test Methods—Part 1: Tests at Power Frequencies. International Electrotechnical Commission: Geneva, Switzerland, 2013.
- Dawson, G.; Winn, W. A model for streamer propagation. Z. Phys. A Hadron. Nucl. 1965, 183, 159–171. [Google Scholar] [CrossRef]
- Gallimberti, I.; Wiegart, N. Streamer and leader formation in SF6 and SF6 mixtures under positive impulse conditions. I. Corona development. J. Phys. D Appl. Phys. 1986, 19, 2351–2361. [Google Scholar] [CrossRef]
- Gallimberti, I.; Wiegart, N. Streamer and leader formation in SF6 and SF6 mixtures under positive impulse conditions. II. Streamer to leader transition. J. Phys. D Appl. Phys. 1986, 19, 2363–2379. [Google Scholar] [CrossRef]
- Niemeyer, L.; Ullrich, L.; Wiegart, N. The mechanism of leader breakdown in electronegative gases. IEEE Trans. Electr. Insul. 1989, 24, 309–324. [Google Scholar] [CrossRef]
- Hayakawa, N.; Hatta, K.; Okabe, S.; Okubo, H. Streamer and leader discharge propagation characteristics leading to breakdown in electronegative gases. IEEE Trans. Dielectr. Electr. Insul. 2006, 13, 842–849. [Google Scholar] [CrossRef]
- Seeger, M.; Niemeyer, L.; Bujotzek, M. Partial discharges and breakdown at protrusions in uniform background fields in SF6. J. Phys. D Appl. Phys. 2008, 41, 185204. [Google Scholar] [CrossRef]
- Seeger, M.; Niemeyer, L.; Bujotzek, M. Leader propagation in uniform background fields in SF6. J. Phys. D Appl. Phys. 2009, 42, 185205. [Google Scholar] [CrossRef]
- Liu, L.; Li, X.A.; Wen, T.; Bo, Q.H.; Ma, J.T.; Zhang, Q.G. Criteria and propagation processes of electrode initiated and electrodeless-initiated discharge in SF6. Phys. Plasmas 2019, 26, 023512. [Google Scholar] [CrossRef]
- Pedersen, A. Criteria for spark breakdown in sulfur hexafluoride. IEEE Trans. Power Appar. Syst. 1970, 89, 2043–2048. [Google Scholar] [CrossRef]
- Govinda, R.; Dincer, M. Measurement of ionization and attachment coefficients in SF6 and SF6+N2. J. Phys. D Appl. Phys. 1982, 53, 8562–8567. [Google Scholar] [CrossRef]
- Zhang, Q.G.; Li, X.A.; Liu, L.; Wen, T.; Zhao, J.P. “One-Zero” phenomenon of discharge induced by defects in SF6 insulation systems in GIS. High Volt. Eng. 2019, 45, 2689–2698. [Google Scholar] [CrossRef]
- Liu, L.; Li, X.A.; Wen, T.; Zhang, R.; Wu, Z.C.; Zhao, J.P.; Zhang, Q.G. Investigations on the surface electric field distribution features related to insulator flashover in SF6 gas. IEEE Trans. Dielectr. Electr. Insul. 2019, 26, 1588–1595. [Google Scholar] [CrossRef]
- Loeb, L. Fundamental processes of electrical discharge in gases. Nature 1940, 146, 729–730. [Google Scholar] [CrossRef]
- Meek, J. A theory of spark discharge. Phys. Rev. 1940, 57, 722–728. [Google Scholar] [CrossRef]
- Raether, H. Electron Avalanches and Breakdown in Gases; Butterworths: Oxford, UK, 1964; pp. 15–22. [Google Scholar]
- Raju, G. Dielectrics in Electric Fields: Tables, Atoms, and Molecules, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2017; pp. 383–478. [Google Scholar]
- Raju, G.; Liu, J.F. Simulation of electrical discharges in gases. Nonuniform electric fields. IEEE Trans. Dielectr. Electr. Insul. 1995, 2, 1016–1041. [Google Scholar] [CrossRef]
- Li, Z.; Liu, J.; Ohki, Y.; Chen, G.; Li, S.T. Surface flashoverin 50 years: II. Material modification, structureoptimisation, and characteristics enhancement. High Volt. 2025, 10, 243–278. [Google Scholar] [CrossRef]
- Deng, J.B.; Matsuoka, S.; Kumada, A.; Hidaka, K. The influence of residual charge on surface discharge propagation. J. Phys. D Appl. Phys. 2010, 43, 495203. [Google Scholar] [CrossRef]
- Zhang, Q.G.; Wang, Z.F.; Gu, W.G.; Qiu, Y.C. Effect of surface charges on impulse flashover voltages of spacer in SF6. In Proceedings of the 1998 International Symposium on Electrical Insulating Materials, 1998 Asian International Conference on Dielectrics and Electrical Insulation, 30th Symposium on Electrical Insulating Materials, Toyohashi, Japan, 30 September 1998; pp. 445–448. [Google Scholar] [CrossRef]
- Li, C.Y.; Hu, J.; Lin, C.J.; Zhang, B.Y.; Zhang, G.X.; He, J.L. Surface charge migration and DC surface flashover of surface-modified epoxy-based insulators. J. Phys. D Appl. Phys. 2017, 50, 065301. [Google Scholar] [CrossRef]
Shielding Electrodes | Rod–Plate | Plate–Plate | ||||||
---|---|---|---|---|---|---|---|---|
Surface profile | Gas gap | Concave | Wave | Cylinder | Gas gap | Concave | Wave | Cylinder |
Sample ID | (a) | (b) | (c) | (d) | (e) | (f) | (g) | (h) |
Location of Emax | Electrode surface | Dielectric surface | ||||||
f | 5.29 | 3.08 | 3.18 | 3.52 | 1.61 | 2.82 | 2.60 | 1.71 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, L.; Zhang, Q.; Peng, X.; Li, X.; Wang, Z.; Yu, S. Pressure-Dependent Breakdown Voltage in SF6/Epoxy Resin Insulation Systems: Electric Field Enhancement Mechanisms and Interfacial Synergy. Energies 2025, 18, 5014. https://doi.org/10.3390/en18185014
Liu L, Zhang Q, Peng X, Li X, Wang Z, Yu S. Pressure-Dependent Breakdown Voltage in SF6/Epoxy Resin Insulation Systems: Electric Field Enhancement Mechanisms and Interfacial Synergy. Energies. 2025; 18(18):5014. https://doi.org/10.3390/en18185014
Chicago/Turabian StyleLiu, Lin, Qiaogen Zhang, Xiangyang Peng, Xiaoang Li, Zheng Wang, and Shihu Yu. 2025. "Pressure-Dependent Breakdown Voltage in SF6/Epoxy Resin Insulation Systems: Electric Field Enhancement Mechanisms and Interfacial Synergy" Energies 18, no. 18: 5014. https://doi.org/10.3390/en18185014
APA StyleLiu, L., Zhang, Q., Peng, X., Li, X., Wang, Z., & Yu, S. (2025). Pressure-Dependent Breakdown Voltage in SF6/Epoxy Resin Insulation Systems: Electric Field Enhancement Mechanisms and Interfacial Synergy. Energies, 18(18), 5014. https://doi.org/10.3390/en18185014