A Review of Methodologies for Photovoltaic Energy Generation Forecasting in the Building Sector
Abstract
1. Introduction
1.1. Motivation
1.2. Research Gap and Contributions
1.3. Paper Organization
2. Literature Review Methodology
3. Results
3.1. Building-Specific Peculiarities/Environment Affecting PV Performance
3.1.1. Physical and Environmental Factors
3.1.2. Technology Factors
3.2. The Role of High-Quality Data in PV Generation Forecasting in the Building Sector
3.3. Types of Forecasting Methods
3.3.1. Physical Methods
3.3.2. Statistical Methods
Artificial Neural Networks
Other Machine Learning Methods
3.3.3. Hybrid Approach
3.3.4. Ensemble Approach
3.4. Evaluation Approaches in PV Generation Forecasting for the Building Sector
3.4.1. Evaluation Metrics for PV Generation Forecasting in the Building Sector
- Mean Absolute Error (MAE) measures the average absolute difference between the predicted and actual values. It is primarily employed for model fitting, helping to select the optimal parameters for a given model. It is also utilized for model validation, model selection, comparing different models, and evaluating forecasts [126].
- Root Mean Squared Error (RMSE) measures the square root of the average squared difference between the predicted and actual values. RMSE is more sensitive to larger errors than MAE due to the squaring effect. When dealing with normally distributed errors, RMSE is a more suitable choice for evaluating model performance compared to MAE [126].
- Mean Absolute Percentage Error (MAPE) measures the average absolute percentage difference between the predicted and actual values. MAPE is a good metric due to its scale independency and interpretability. However, it can be problematic with zero actual values [127].
- Normalized Root Mean Squared Error (NRMSE) normalizes the RMSE by the range of the actual values, making it a more useful metric for comparing models with different scales of prediction [128].
- Coefficient of Determination (R2) measures the proportion of variance in the actual values that is explained by the model. R2 is a good measure of the model’s fit to the data [129], but it has limitations with nonlinear models [130]. It is often used to evaluate the effectiveness of energy efficiency measures, model stability, and reliability [131].
- Mean Bias Error (MBE) measures the average difference between the predicted and actual values. This metric helps to identify systematic errors in the model, indicating whether the model tends to overpredict or underpredict [132].
3.4.2. Post-Processing and Quantifying Uncertainty for PV Generation Forecasting in the Building Sector
3.5. An Analysis of Building Attached and Building Integrated Photovoltaic
3.5.1. Introduction to BAPV and BIPV
3.5.2. Challenges in Simulating BIPV and BAPV Systems
3.6. PV Generation Forecasting in the Building Sector
3.6.1. Review of BIPV Studies and Modeling Approaches
3.6.2. Review of BAPV Studies and Modeling Approaches
3.7. Real-World Use Cases of PV Forecasting in Buildings
3.8. Emerging Time Series Forecasting Technologies
3.9. Practical Implications of Forecasting Accuracy
4. Discussion
4.1. Outcomes
4.2. Gaps and Future Work
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| AI | Artificial Intelligence |
| ANN | Artificial Neural Networks |
| ARIMA | Autoregressive Integrated Moving Average |
| AML | Automatic Machine Learning |
| BiLSTM | Bidirectional Long Short-Term Memory |
| BAPV | Building Attached Photovoltaics |
| BEMS | Building Energy Management Systems |
| BIPV | Building Integrated Photovoltaics |
| CSO | Competitive Swarm Optimizer |
| CHAID | CHi-square Automatic Interaction Detection |
| CART | Classification And Regression Trees |
| CEEMDAN | Complete Ensemble Empirical Mode Decomposition with Adaptive Noise |
| CNN | Convolutional Neural Network |
| ConvLSTM | Convolutional Long Short-Term Memory |
| DTR | Decision Tree Regression |
| DTs | Decision Trees |
| DL | Deep Learning |
| DNN | Deep Neural Networks |
| DR | Demand Response programs |
| DSE-XGB | Improved generally applicable stacked ensemble algorithm |
| ESS | Energy Storage Systems |
| ETs | Extra-Trees |
| FL | Federated Learning |
| FFNN | Feed-Forward Neural Network |
| FCM | Fuzzy C-Means |
| GA | Genetic Algorithm |
| GNNs | Graph Neural Networks |
| GRU | Gated Recurrent Unit |
| GWO | Grey Wolf Optimizer |
| HVAC | Heating, Ventilation, and Air Conditioning |
| hSBFM | hierarchical Similarity-Based Forecasting Models |
| IGWO | Improved Gray Wolf Optimization |
| KNNs | K-Nearest Neighbors |
| KPIs | Key Performance Indicators |
| LASSO | Least Absolute Shrinkage and Selection Operator |
| LR | Linear Regression |
| LSTM | Long Short-Term Memory |
| ML | Machine Learning |
| MLPE | Module-Level Power Electronics |
| MPP | Maximum Power Point |
| MPPT | Maximum Power Point Tracking |
| MAE | Mean Absolute Error |
| MAPE | Mean Absolute Percentage Error |
| MBE | Mean Bias Error |
| MLP | Multi-Layer Perceptron |
| MVR | Multi-Variable Regression |
| MLR | Multiple Linear Regression |
| NARX | Nonlinear Autoregressive with exogenous input |
| NPV | Net Present Value |
| NRMSE | Normalized Root Mean Squared Error |
| NWP | Numerical Weather Prediction |
| PV | Photovoltaic |
| QSVM | Quadratic Support Vector Machine |
| QR | Quantile Regression |
| QRF | Quantile Regression Forests |
| QML | Quantum Machine Learning |
| RBF-ANN | Radial Basis Function Artificial Neural Networks |
| RFs | Random Forests |
| RNN | Recurrent Neural Networks |
| RMSE | Root Mean Squared Error |
| SAPM | Sandia Array Performance Model |
| SBFMs | Similarity-Based Forecasting Models |
| SC* | Sky Condition |
| SVF | Sky View Factor |
| SNN | Standard Neural Network |
| SVM | Support Vector Machine |
| SVR | Support Vector Regression |
| R2 | The Coefficient of Determination |
| TBATS | Trigonometric Seasonal, Box-Cox Transformation, Autoregressive Integrated Moving Average residuals, Trend, and Seasonality |
| VMD | Variational Mode Decomposition |
| WTEEMD | Wavelet Threshold Improvement Ensemble Empirical Mode Decomposition |
| XGBoost | Extreme Gradient Boost |
References
- Alanne, K. Study on Reducing the Grid Dependency of Urban Housing in Nordic Climate by Hybrid Renewable Energy Systems. Renew. Energy Focus 2023, 46, 1–15. [Google Scholar] [CrossRef]
- Emil, F.; Diab, A. Energy Rationalization for an Educational Building in Egypt: Towards a Zero Energy Building. J. Build. Eng. 2021, 44, 103247. [Google Scholar] [CrossRef]
- Belloni, E.; Fioriti, D.; Poli, D. Optimal Design of Renewable Energy Communities (RECs) in Italy: Influence of Composition, Market Signals, Buildings, Location, and Incentives. Electr. Power Syst. Res. 2024, 235, 110895. [Google Scholar] [CrossRef]
- Ullah, Z.; Qazi, H.S.; Rehman, A.U.; Hasanien, H.M.; Wang, S.; Elkadeem, M.R.; Badshah, F. Efficient Energy Management of Domestic Loads with Electric Vehicles by Optimal Scheduling of Solar-Powered Battery Energy Storage System. Electr. Power Syst. Res. 2024, 234, 110570. [Google Scholar] [CrossRef]
- Huseinbegović, S.; Smajkić, A.; Ahmethodžić, L.; Smaka, S.; Gajip, S. Optimal Building Integrated Photovoltaic Sizing Approach According to Load Profile under Zero Export Restrictions with Real Data Validation. Renew. Energy Focus 2024, 50, 100605. [Google Scholar] [CrossRef]
- Lee, J.; Shepley, M.M. Benefits of Solar Photovoltaic Systems for Low-Income Families in Social Housing of Korea: Renewable Energy Applications as Solutions to Energy Poverty. J. Build. Eng. 2020, 28, 101016. [Google Scholar] [CrossRef]
- Kurian, J.; Karthi, L. Building Integrated Photovoltaics-an Overview. Sustain. Agri Food Environ. Res. 2022, 10. [Google Scholar] [CrossRef]
- Kavlak, G.; McNerney, J.; Trancik, J.E. Evaluating the Causes of Cost Reduction in Photovoltaic Modules. Energy Policy 2018, 123, 700–710. [Google Scholar] [CrossRef]
- Building-integrated Photovoltaics Market Size, Share & Trends Analysis Report By Technology (Crystalline Silicon, Thin Film), by Application, by End-use, by Region, and Segment Forecasts, 2024–2030. Available online: https://www.grandviewresearch.com/industry-analysis/building-integrated-photovoltaics-bipv-market#:~:text=The%20global%20building%2Dintegrated%20photovoltaics,21.2%25%20from%202024%20to%202030. (accessed on 16 September 2025).
- New Report: Solar for the Masses as Global Solar Rooftops Skyrocket by 50%—SolarPower Europe. Available online: https://www.solarpowereurope.org/press-releases/new-report-solar-for-the-masses-as-global-solar-rooftops-skyrocket-by-50-2 (accessed on 4 December 2024).
- Global Market Outlook For Solar Power 2023–2027—SolarPower Europe. Available online: https://www.solarpowereurope.org/insights/outlooks/global-market-outlook-for-solar-power-2023-2027/detail (accessed on 4 December 2024).
- Emerging Solar Era: The Global Expansion of Solar PV and Energy Storage. Available online: https://www.rystadenergy.com/insights/solar-pv-and-energy-storage-outlook-emerging-solar-era (accessed on 4 December 2024).
- Nwaigwe, K.N.; Mutabilwa, P.; Dintwa, E. An Overview of Solar Power (PV Systems) Integration into Electricity Grids. Mater. Sci. Energy Technol. 2019, 2, 629–633. [Google Scholar] [CrossRef]
- Yi, C.; Peng, Y.; Su, S.; Li, B.; Wang, X.; Zhou, W.; Guo, X.; Yang, H.; Meng, W. Anomaly Detection of Photovoltaic Power Generation Based on Quantile Regression Recurrent Neural Network. Electr. Power Syst. Res. 2025, 238, 111132. [Google Scholar] [CrossRef]
- Xie, J.; Zhao, B.; Zhang, H.; Fu, Z.; Yang, T.; Li, R. Experimental Study on the Effect of Dust Particle Deposition on Photovoltaic Performance of Urban Buildings. Renew. Energy 2023, 219, 119424. [Google Scholar] [CrossRef]
- Wang, Z.; Liu, Z.; Huo, Y. A Distributionally Robust Optimization Approach of Multi-Park Integrated Energy Systems Considering Shared Energy Storage and Uncertainty of Demand Response. Electr. Power Syst. Res. 2025, 238, 111116. [Google Scholar] [CrossRef]
- Ranjan, M.; Shankar, R. A Literature Survey on Load Frequency Control Considering Renewable Energy Integration in Power System: Recent Trends and Future Prospects. J. Energy Storage 2022, 45, 103717. [Google Scholar] [CrossRef]
- Pedram, O.; Asadi, E.; Chenari, B.; Moura, P.; Gameiro da Silva, M. A Review of Methodologies for Managing Energy Flexibility Resources in Buildings. Energies 2023, 16, 6111. [Google Scholar] [CrossRef]
- Barreto, R.; Gonçalves, C.; Gomes, L.; Faria, P.; Vale, Z. Evaluation Metrics to Assess the Most Suitable Energy Community End-Users to Participate in Demand Response. Energies 2022, 15, 2380. [Google Scholar] [CrossRef]
- Silva, W.N.; Henrique, L.F.; Silva, A.F.P.d.C.; Dias, B.H.; Soares, T.A. Market Models and Optimization Techniques to Support the Decision-Making on Demand Response for Prosumers. Electr. Power Syst. Res. 2022, 210, 108059. [Google Scholar] [CrossRef]
- Massat, S.; Franke, G.; Rinderknecht, S. Exploring the Potential of a Cross-Sector Integration of Electric Vehicles in Residential Buildings as a Possible Energy Supply Source. J. Build. Eng. 2023, 77, 107486. [Google Scholar] [CrossRef]
- Ahmad, T.; Zhang, H.; Yan, B. A Review on Renewable Energy and Electricity Requirement Forecasting Models for Smart Grid and Buildings. Sustain. Cities Soc. 2020, 55, 102052. [Google Scholar] [CrossRef]
- Seyedzadeh, S.; Rahimian, F.P.; Glesk, I.; Roper, M. Machine Learning for Estimation of Building Energy Consumption and Performance: A Review. Vis. Eng. 2018, 6, 5. [Google Scholar] [CrossRef]
- Sharma, V.; Cortes, A.; Cali, U. Use of Forecasting in Energy Storage Applications: A Review. IEEE Access 2021, 9, 114690–114704. [Google Scholar] [CrossRef]
- Aguilar, J.; Garces-Jimenez, A.; R-Moreno, M.D.; García, R. A Systematic Literature Review on the Use of Artificial Intelligence in Energy Self-Management in Smart Buildings. Renew. Sustain. Energy Rev. 2021, 151, 111530. [Google Scholar] [CrossRef]
- Immonen, A.; Kiljander, J. Flexibility Services for Household Consumers in Finland: Requirements and Provided Properties. Renew. Energy Focus 2024, 49, 100567. [Google Scholar] [CrossRef]
- Jia, M.; Komeily, A.; Wang, Y.; Srinivasan, R.S. Adopting Internet of Things for the Development of Smart Buildings: A Review of Enabling Technologies and Applications. Autom. Constr. 2019, 101, 111–126. [Google Scholar] [CrossRef]
- Lee, H.-C.; Liu, H.-Y.; Lin, T.-C.; Lee, C.-Y. A Customized Energy Management System for Distributed PV, Energy Storage Units, and Charging Stations on Kinmen Island of Taiwan. Sensors 2023, 23, 5286. [Google Scholar] [CrossRef]
- Sumorek, M.; Idzkowski, A. Time Series Forecasting for Energy Production in Stand-Alone and Tracking Photovoltaic Systems Based on Historical Measurement Data. Energies 2023, 16, 6367. [Google Scholar] [CrossRef]
- Amabile, L.; Bresch-Pietri, D.; El Hajje, G.; Labbé, S.; Petit, N. Optimizing the Self-Consumption of Residential Photovoltaic Energy and Quantification of the Impact of Production Forecast Uncertainties. Adv. Appl. Energy 2021, 2, 100020. [Google Scholar] [CrossRef]
- Angenendt, G.; Zurmühlen, S.; Axelsen, H.; Sauer, D.U. Comparison of Different Operation Strategies for PV Battery Home Storage Systems Including Forecast-Based Operation Strategies. Appl. Energy 2018, 229, 884–899. [Google Scholar] [CrossRef]
- Durán, F.; Pavón, W.; Minchala, L.I. Forecast-Based Energy Management for Optimal Energy Dispatch in a Microgrid. Energies 2024, 17, 486. [Google Scholar] [CrossRef]
- Amasyali, K.; El-Gohary, N.M. A Review of Data-Driven Building Energy Consumption Prediction Studies. Renew. Sustain. Energy Rev. 2018, 81, 1192–1205. [Google Scholar] [CrossRef]
- Wei, Y.; Zhang, X.; Shi, Y.; Xia, L.; Pan, S.; Wu, J.; Han, M.; Zhao, X. A Review of Data-Driven Approaches for Prediction and Classification of Building Energy Consumption. Renew. Sustain. Energy Rev. 2018, 82, 1027–1047. [Google Scholar] [CrossRef]
- Ahmad, T.; Chen, H.; Guo, Y.; Wang, J. A Comprehensive Overview on the Data Driven and Large Scale Based Approaches for Forecasting of Building Energy Demand: A Review. Energy Build. 2018, 165, 301–320. [Google Scholar] [CrossRef]
- Chen, Y.; Guo, M.; Chen, Z.; Chen, Z.; Ji, Y. Physical Energy and Data-Driven Models in Building Energy Prediction: A Review. Energy Rep. 2022, 8, 2656–2671. [Google Scholar] [CrossRef]
- Panda, S.; Dhaka, R.K.; Panda, B.; Pradhan, A.; Jena, C.; Nanda, L. A Review on Application of Machine Learning in Solar Energy & Photovoltaic Generation Prediction. In Proceedings of the 2022 International Conference on Electronics and Renewable Systems (ICEARS), Tuticorin, India, 16–18 March 2022; pp. 1180–1184. [Google Scholar]
- Akhter, M.N.; Mekhilef, S.; Mokhlis, H.; Mohamed Shah, N. Review on Forecasting of Photovoltaic Power Generation Based on Machine Learning and Metaheuristic Techniques. IET Renew. Power Gener. 2019, 13, 1009–1023. [Google Scholar] [CrossRef]
- Erdener, B.C.; Feng, C.; Doubleday, K.; Florita, A.; Hodge, B.-M. A Review of Behind-the-Meter Solar Forecasting. Renew. Sustain. Energy Rev. 2022, 160, 112224. [Google Scholar] [CrossRef]
- Sobri, S.; Koohi-Kamali, S.; Rahim, N.A. Solar Photovoltaic Generation Forecasting Methods: A Review. Energy Convers. Manag. 2018, 156, 459–497. [Google Scholar] [CrossRef]
- de Freitas Viscondi, G.; Alves-Souza, S.N. A Systematic Literature Review on Big Data for Solar Photovoltaic Electricity Generation Forecasting. Sustain. Energy Technol. Assess. 2019, 31, 54–63. [Google Scholar] [CrossRef]
- Neuendorf, K.A. The Content Analysis Guidebook; 9. [print.].; Sage Publ: Thousand Oaks, CA, USA, 2010; ISBN 978-0-7619-1977-3. [Google Scholar]
- Li, G.; Guo, S.; Li, X.; Cheng, C. Short-Term Forecasting Approach Based on Bidirectional Long Short-Term Memory and Convolutional Neural Network for Regional Photovoltaic Power Plants. Sustain. Energy Grids Netw. 2023, 34, 101019. [Google Scholar] [CrossRef]
- Brecl, K.; Topič, M. Photovoltaics (PV) System Energy Forecast on the Basis of the Local Weather Forecast: Problems, Uncertainties and Solutions. Energies 2018, 11, 1143. [Google Scholar] [CrossRef]
- Mayer, M.J.; Gróf, G. Extensive Comparison of Physical Models for Photovoltaic Power Forecasting. Appl. Energy 2021, 283, 116239. [Google Scholar] [CrossRef]
- Başaran, K.; Bozyiğit, F.; Siano, P.; Yıldırım Taşer, P.; Kılınç, D. Systematic Literature Review of Photovoltaic Output Power Forecasting. IET Renew. Power Gener. 2020, 14, 3961–3973. [Google Scholar] [CrossRef]
- Alshahrani, A.; Omer, S.; Su, Y.; Mohamed, E.; Alotaibi, S. The Technical Challenges Facing the Integration of Small-Scale and Large-Scale PV Systems into the Grid: A Critical Review. Electronics 2019, 8, 1443. [Google Scholar] [CrossRef]
- Jiang, H.; Zhang, X.; Yao, L.; Lu, N.; Qin, J.; Liu, T.; Zhou, C. High-Resolution Analysis of Rooftop Photovoltaic Potential Based on Hourly Generation Simulations and Load Profiles. Appl. Energy 2023, 348, 121553. [Google Scholar] [CrossRef]
- Ming, B.; Liu, P.; Guo, S.; Zhang, X.; Feng, M.; Wang, X. Optimizing Utility-Scale Photovoltaic Power Generation for Integration into a Hydropower Reservoir by Incorporating Long- and Short-Term Operational Decisions. Appl. Energy 2017, 204, 432–445. [Google Scholar] [CrossRef]
- Mellit, A.; Massi Pavan, A.; Ogliari, E.; Leva, S.; Lughi, V. Advanced Methods for Photovoltaic Output Power Forecasting: A Review. Appl. Sci. 2020, 10, 487. [Google Scholar] [CrossRef]
- Nassereddine, M. A Novel Lightning Mast Layout to Eliminate Shading Effect on PV Panels. Electr. Power Syst. Res. 2024, 236, 110972. [Google Scholar] [CrossRef]
- Li, H.X.; Zhang, Y.; Edwards, D.; Hosseini, M.R. Improving the Energy Production of Roof-Top Solar PV Systems through Roof Design. Build. Simul. 2020, 13, 475–487. [Google Scholar] [CrossRef]
- Høiaas, I.; Grujic, K.; Imenes, A.G.; Burud, I.; Olsen, E.; Belbachir, N. Inspection and Condition Monitoring of Large-Scale Photovoltaic Power Plants: A Review of Imaging Technologies. Renew. Sustain. Energy Rev. 2022, 161, 112353. [Google Scholar] [CrossRef]
- Luthander, R.; Widén, J.; Nilsson, D.; Palm, J. Photovoltaic Self-Consumption in Buildings: A Review. Appl. Energy 2015, 142, 80–94. [Google Scholar] [CrossRef]
- Köker, N.I.; Manni, M.; Giorio, M.; Jelle, B.P.; Di Sabatino, M.; Lobaccaro, G. Defining Challenges of Solar Irradiance Modeling on Façades in Urban Environments: A Systematic Review. Energy Build. 2025, 347, 116137. [Google Scholar] [CrossRef]
- Zomer, C.; Custódio, I.; Antoniolli, A.; Rüther, R. Performance Assessment of Partially Shaded Building-Integrated Photovoltaic (BIPV) Systems in a Positive-Energy Solar Energy Laboratory Building: Architecture Perspectives. Sol. Energy 2020, 211, 879–896. [Google Scholar] [CrossRef]
- Gonçalves, J.E.; Montazeri, H.; van Hooff, T.; Saelens, D. Performance of Building Integrated Photovoltaic Facades: Impact of Exterior Convective Heat Transfer. Appl. Energy 2021, 287, 116538. [Google Scholar] [CrossRef]
- Building Integrated Photovoltaics (BIPV)|WBDG—Whole Building Design Guide. Available online: https://www.wbdg.org/resources/building-integrated-photovoltaics-bipv (accessed on 2 September 2025).
- Badran, G.; Dhimish, M. Comprehensive Study on the Efficiency of Vertical Bifacial Photovoltaic Systems: A UK Case Study. Sci. Rep. 2024, 14, 18380. [Google Scholar] [CrossRef]
- Viriyaroj, B.; Jouttijärvi, S.; Jänkälä, M.; Miettunen, K. Performance of Vertically Mounted Bifacial Photovoltaics under the Physical Influence of Low-Rise Residential Environment in High-Latitude Locations. Front. Built Environ. 2024, 10, 1343036. [Google Scholar] [CrossRef]
- Zabihi, A.; Sadeghkhani, I.; Fani, B. A Partial Shading Detection Algorithm for Photovoltaic Generation Systems. J. Sol. Energy Res. 2021, 6, 678–687. [Google Scholar] [CrossRef]
- IEA-PVPS (2023).Pdf. Available online: https://iea-pvps.org/wp-content/uploads/2023/10/PVPS_Trends_Report_2023_WEB.pdf (accessed on 16 September 2025).
- Kappler, T.; Starosta, A.S.; Munzke, N.; Schwarz, B.; Hiller, M. Detection of Shading for Short-Term Power Forecasting of Photovoltaic Systems Using Machine Learning Techniques. EPJ Photovolt. 2024, 15, 17. [Google Scholar] [CrossRef]
- Kappler, T.; Starosta, A.S.; Schwarz, B.; Munzke, N.; Hiller, M. Inclusion of Shading and Soiling With Physical and Data-Driven Algorithms for Solar Power Forecasting. PV-Symp. Proc. 2024, 1, 39. [Google Scholar] [CrossRef]
- Li, F.; Yuan, Z.; Wu, W. Experimental Investigation of Soiling Losses on Photovoltaic in High-Density Urban Environments. Appl. Energy 2024, 369, 123572. [Google Scholar] [CrossRef]
- Muniz-Gäal, L.P.; Pezzuto, C.C.; de Carvalho, M.F.H.; Mota, L.T.M. Urban Geometry and the Microclimate of Street Canyons in Tropical Climate. Build. Environ. 2020, 169, 106547. [Google Scholar] [CrossRef]
- Khalvandi, R.; Karimimoshaver, M. The Optimal Ratio in the Street Canyons: Comparison of Two Methods of Satellite Images and Simulation. Build. Environ. 2023, 229, 109927. [Google Scholar] [CrossRef]
- Dirksen, M.; Ronda, R.J.; Theeuwes, N.E.; Pagani, G.A. Sky View Factor Calculations and Its Application in Urban Heat Island Studies. Urban Clim. 2019, 30, 100498. [Google Scholar] [CrossRef]
- Rostami, E.; Nasrollahi, N.; Khodakarami, J. A Comprehensive Study of How Urban Morphological Parameters Impact the Solar Potential, Energy Consumption and Daylight Autonomy in Canyons and Buildings. Energy Build. 2024, 305, 113904. [Google Scholar] [CrossRef]
- Ismail, A.A.; El-Deib, A.A. DC/AC Conversion Topologies for Photovoltaic Applications. In Proceedings of the 2023 IEEE Conference on Power Electronics and Renewable Energy (CPERE), Luxor, Egypt, 19–21 February 2023; pp. 1–6. [Google Scholar]
- Sarwar, S.; Javed, M.Y.; Jaffery, M.H.; Ashraf, M.S.; Naveed, M.T.; Hafeez, M.A. Modular Level Power Electronics (MLPE) Based Distributed PV System for Partial Shaded Conditions. Energies 2022, 15, 4797. [Google Scholar] [CrossRef]
- He, W.; Baig, M.J.A.; Iqbal, M.T. An Internet of Things—Supervisory Control and Data Acquisition (IoT-SCADA) Architecture for Photovoltaic System Monitoring, Control, and Inspection in Real Time. Electronics 2025, 14, 42. [Google Scholar] [CrossRef]
- Current Weather and Forecast—OpenWeatherMap. Available online: https://openweathermap.org/ (accessed on 17 September 2024).
- POWER|DAV. Available online: https://power.larc.nasa.gov/data-access-viewer/ (accessed on 18 September 2024).
- COMMpla|Trust-IT Forecasts. Available online: https://www.ecmwf.int/en/forecasts (accessed on 18 September 2024).
- Home|Copernicus. Available online: https://atmosphere.copernicus.eu/ (accessed on 18 September 2024).
- National Weather Service. Available online: https://www.weather.gov/ (accessed on 18 September 2024).
- MesoWest Data. Available online: https://mesowest.utah.edu/ (accessed on 18 September 2024).
- Korea Meteorological Administration Weather Data Service. Available online: https://data.kma.go.kr/cmmn/main.do (accessed on 18 September 2024).
- Ladda Ner Meteorologiska Observationer SMHI. Available online: https://www.smhi.se/data/meteorologi/ladda-ner-meteorologiska-observationer#param=airtemperatureInstant,stations=core (accessed on 18 September 2024).
- Home Page|DKA Solar Centre. Available online: https://dkasolarcentre.com.au/ (accessed on 18 September 2024).
- NSRDB. Available online: https://nsrdb.nrel.gov/ (accessed on 18 September 2024).
- Global Solar Atlas. Available online: https://globalsolaratlas.info/map (accessed on 18 September 2024).
- PD: 3D Sun-Path. Available online: https://andrewmarsh.com/apps/staging/sunpath3d.html (accessed on 18 September 2024).
- PVGIS. Available online: https://pvgis.com (accessed on 17 September 2024).
- PVOutput. Available online: https://www.pvoutput.org/ (accessed on 18 September 2024).
- NREL Data Catalog l NREL. Available online: https://data.nrel.gov/ (accessed on 18 September 2024).
- Renewables.Ninja. Available online: https://www.renewables.ninja/ (accessed on 18 September 2024).
- Open Data Sets—IEEE PES Intelligent Systems Subcommittee. Available online: https://site.ieee.org/pes-iss/data-sets/ (accessed on 16 September 2025).
- Welcome to ENERGYDATA.INFO—ENERGYDATA.INFO. Available online: https://energydata.info/ (accessed on 18 September 2024).
- Healy, W.M.; Fanney, A.H.; Dougherty, B.P.; Ng, L.; Payne, V.; Ullah, T.; Omar, F. Performance Data from the NIST Net-Zero Energy Residential Test Facility. J. Res. Natl. Inst. Stan. 2017, 122, 14. [Google Scholar] [CrossRef]
- Dehury, C. Chinmaya-Dehury/Loc_Green_Energy_Availability_Pred 2022. Available online: https://github.com/chinmaya-dehury/Loc_Green_Energy_Availability_Pred/ (accessed on 16 September 2025).
- Global Wind Atlas. Available online: https://globalwindatlas.info (accessed on 17 September 2024).
- Abisoye, B.O.; Sun, Y.; Zenghui, W. A Survey of Artificial Intelligence Methods for Renewable Energy Forecasting: Methodologies and Insights. Renew. Energy Focus 2024, 48, 100529. [Google Scholar] [CrossRef]
- Si, Z.; Yang, M.; Yu, Y.; Ding, T. Photovoltaic Power Forecast Based on Satellite Images Considering Effects of Solar Position. Appl. Energy 2021, 302, 117514. [Google Scholar] [CrossRef]
- Böök, H.; Lindfors, A.V. Site-Specific Adjustment of a NWP-Based Photovoltaic Production Forecast. Sol. Energy 2020, 211, 779–788. [Google Scholar] [CrossRef]
- Liu, B.; Liu, M.; Cui, Y.; Shao, D.; Mao, Z.; Zhang, L.; Khan, S.; Luo, Y. Assessing Forecasting Performance of Daily Reference Evapotranspiration Using Public Weather Forecast and Numerical Weather Prediction. J. Hydrol. 2020, 590, 125547. [Google Scholar] [CrossRef]
- Schulz, B.; El Ayari, M.; Lerch, S.; Baran, S. Post-Processing Numerical Weather Prediction Ensembles for Probabilistic Solar Irradiance Forecasting. Sol. Energy 2021, 220, 1016–1031. [Google Scholar] [CrossRef]
- Bazionis, I.K.; Georgilakis, P.S. Review of Deterministic and Probabilistic Wind Power Forecasting: Models, Methods, and Future Research. Electricity 2021, 2, 13–47. [Google Scholar] [CrossRef]
- Jaber, M.; Abd Hamid, A.S.; Sopian, K.; Fazlizan, A.; Ibrahim, A. Prediction Model for the Performance of Different PV Modules Using Artificial Neural Networks. Appl. Sci. 2022, 12, 3349. [Google Scholar] [CrossRef]
- Pazikadin, A.R.; Rifai, D.; Ali, K.; Malik, M.Z.; Abdalla, A.N.; Faraj, M.A. Solar Irradiance Measurement Instrumentation and Power Solar Generation Forecasting Based on Artificial Neural Networks (ANN): A Review of Five Years Research Trend. Sci. Total Environ. 2020, 715, 136848. [Google Scholar] [CrossRef]
- Rao K, D.V.S.K.; Premalatha, M.; Naveen, C. Analysis of Different Combinations of Meteorological Parameters in Predicting the Horizontal Global Solar Radiation with ANN Approach: A Case Study. Renew. Sustain. Energy Rev. 2018, 91, 248–258. [Google Scholar] [CrossRef]
- Taye, M.M. Understanding of Machine Learning with Deep Learning: Architectures, Workflow, Applications and Future Directions. Computers 2023, 12, 91. [Google Scholar] [CrossRef]
- Zendehboudi, A.; Baseer, M.A.; Saidur, R. Application of Support Vector Machine Models for Forecasting Solar and Wind Energy Resources: A Review. J. Clean. Prod. 2018, 199, 272–285. [Google Scholar] [CrossRef]
- De Oliveira, R.A.; Bollen, M.H.J. Deep Learning for Power Quality. Electr. Power Syst. Res. 2023, 214, 108887. [Google Scholar] [CrossRef]
- Wazirali, R.; Yaghoubi, E.; Abujazar, M.S.S.; Ahmad, R.; Vakili, A.H. State-of-the-Art Review on Energy and Load Forecasting in Microgrids Using Artificial Neural Networks, Machine Learning, and Deep Learning Techniques. Electr. Power Syst. Res. 2023, 225, 109792. [Google Scholar] [CrossRef]
- Khosravi, B.; Rouzrokh, P.; Faghani, S.; Moassefi, M.; Vahdati, S.; Mahmoudi, E.; Chalian, H.; Erickson, B.J. Machine Learning and Deep Learning in Cardiothoracic Imaging: A Scoping Review. Diagnostics 2022, 12, 2512. [Google Scholar] [CrossRef]
- Pombo, D.V.; Bindner, H.W.; Spataru, S.V.; Sørensen, P.E.; Bacher, P. Increasing the Accuracy of Hourly Multi-Output Solar Power Forecast with Physics-Informed Machine Learning. Sensors 2022, 22, 749. [Google Scholar] [CrossRef]
- Chen, L.; Han, B.; Wang, X.; Zhao, J.; Yang, W.; Yang, Z. Machine Learning Methods in Weather and Climate Applications: A Survey. Appl. Sci. 2023, 13, 12019. [Google Scholar] [CrossRef]
- Ciaburro, G.; Iannace, G. Machine Learning-Based Algorithms to Knowledge Extraction from Time Series Data: A Review. Data 2021, 6, 55. [Google Scholar] [CrossRef]
- Isah, A.; Shin, H.; Oh, S.; Oh, S.; Aliyu, I.; Um, T.; Kim, J. Digital Twins Temporal Dependencies-Based on Time Series Using Multivariate Long Short-Term Memory. Electronics 2023, 12, 4187. [Google Scholar] [CrossRef]
- Rajagukguk, R.A.; Ramadhan, R.A.A.; Lee, H.-J. A Review on Deep Learning Models for Forecasting Time Series Data of Solar Irradiance and Photovoltaic Power. Energies 2020, 13, 6623. [Google Scholar] [CrossRef]
- Fan, C.; Chen, M.; Wang, X.; Wang, J.; Huang, B. A Review on Data Preprocessing Techniques Toward Efficient and Reliable Knowledge Discovery From Building Operational Data. Front. Energy Res. 2021, 9, 652801. [Google Scholar] [CrossRef]
- Sundararajan, A.; Sarwat, A.I. Evaluation of Missing Data Imputation Methods for an Enhanced Distributed PV Generation Prediction. In Proceedings of the Future Technologies Conference (FTC) 2019; Arai, K., Bhatia, R., Kapoor, S., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 590–609. [Google Scholar]
- Garud, K.S.; Jayaraj, S.; Lee, M.-Y. A Review on Modeling of Solar Photovoltaic Systems Using Artificial Neural Networks, Fuzzy Logic, Genetic Algorithm and Hybrid Models. Int. J. Energy Res. 2021, 45, 6–35. [Google Scholar] [CrossRef]
- Zhang, J.M.; Harman, M.; Ma, L.; Liu, Y. Machine Learning Testing: Survey, Landscapes and Horizons. IEEE Trans. Softw. Eng. 2019, 48, 1–36. [Google Scholar] [CrossRef]
- Ren, Y.; Suganthan, P.N.; Srikanth, N. Ensemble Methods for Wind and Solar Power Forecasting—A State-of-the-Art Review. Renew. Sustain. Energy Rev. 2015, 50, 82–91. [Google Scholar] [CrossRef]
- Rahimi, N.; Park, S.; Choi, W.; Oh, B.; Kim, S.; Cho, Y.; Ahn, S.; Chong, C.; Kim, D.; Jin, C.; et al. A Comprehensive Review on Ensemble Solar Power Forecasting Algorithms. J. Electr. Eng. Technol. 2023, 18, 719–733. [Google Scholar] [CrossRef] [PubMed]
- Yang, D.; Wang, W.; Gueymard, C.A.; Hong, T.; Kleissl, J.; Huang, J.; Perez, M.J.; Perez, R.; Bright, J.M.; Xia, X.; et al. A Review of Solar Forecasting, Its Dependence on Atmospheric Sciences and Implications for Grid Integration: Towards Carbon Neutrality. Renew. Sustain. Energy Rev. 2022, 161, 112348. [Google Scholar] [CrossRef]
- Mienye, I.D.; Sun, Y. A Survey of Ensemble Learning: Concepts, Algorithms, Applications, and Prospects. IEEE Access 2022, 10, 99129–99149. [Google Scholar] [CrossRef]
- Liu, D.; Sun, K. Random Forest Solar Power Forecast Based on Classification Optimization. Energy 2019, 187, 115940. [Google Scholar] [CrossRef]
- Guermoui, M.; Melgani, F.; Gairaa, K.; Mekhalfi, M.L. A Comprehensive Review of Hybrid Models for Solar Radiation Forecasting. J. Clean. Prod. 2020, 258, 120357. [Google Scholar] [CrossRef]
- Wu, H.; Levinson, D. The Ensemble Approach to Forecasting: A Review and Synthesis. Transp. Res. Part C Emerg. Technol. 2021, 132, 103357. [Google Scholar] [CrossRef]
- Sina, L.B.; Secco, C.A.; Blazevic, M.; Nazemi, K. Hybrid Forecasting Methods—A Systematic Review. Electronics 2023, 12, 2019. [Google Scholar] [CrossRef]
- Zhou, J.; Gandomi, A.H.; Chen, F.; Holzinger, A. Evaluating the Quality of Machine Learning Explanations: A Survey on Methods and Metrics. Electronics 2021, 10, 593. [Google Scholar] [CrossRef]
- Karunasingha, D.S.K. Root Mean Square Error or Mean Absolute Error? Use Their Ratio as Well. Inf. Sci. 2022, 585, 609–629. [Google Scholar] [CrossRef]
- Kim, S.; Kim, H. A New Metric of Absolute Percentage Error for Intermittent Demand Forecasts. Int. J. Forecast. 2016, 32, 669–679. [Google Scholar] [CrossRef]
- Shcherbakov, M.V.; Brebels, A.; Shcherbakova, N.L.; Tyukov, A.P.; Janovsky, T.A.; Kamaev, V.A. A Survey of Forecast Error Measures. World Appl. Sci. J. 2013, 24, 171–176. [Google Scholar]
- Onyutha, C. From R-Squared to Coefficient of Model Accuracy for Assessing “Goodness-of-Fits”. Geosci. Model Dev. Discuss. 2020, 2020, 1–25. [Google Scholar] [CrossRef]
- Editor, M.B. Why Is There No R-Squared for Nonlinear Regression? Available online: https://blog.minitab.com/en/adventures-in-statistics-2/why-is-there-no-r-squared-for-nonlinear-regression (accessed on 17 May 2024).
- Panjapornpon, C.; Bardeeniz, S.; Hussain, M.A. Improving Energy Efficiency Prediction under Aberrant Measurement Using Deep Compensation Networks: A Case Study of Petrochemical Process. Energy 2023, 263, 125837. [Google Scholar] [CrossRef]
- Quej, V.H.; Almorox, J.; Ibrakhimov, M.; Saito, L. Empirical Models for Estimating Daily Global Solar Radiation in Yucatán Peninsula, Mexico. Energy Convers. Manag. 2016, 110, 448–456. [Google Scholar] [CrossRef]
- Samy, M.M.; Almamlook, R.E.; Elkhouly, H.I.; Barakat, S. Decision-Making and Optimal Design of Green Energy System Based on Statistical Methods and Artificial Neural Network Approaches. Sustain. Cities Soc. 2022, 84, 104015. [Google Scholar] [CrossRef]
- Zakari, A.; Khan, I.; Tan, D.; Alvarado, R.; Dagar, V. Energy Efficiency and Sustainable Development Goals (SDGs). Energy 2022, 239, 122365. [Google Scholar] [CrossRef]
- Touzani, S.; Granderson, J.; Fernandes, S. Gradient Boosting Machine for Modeling the Energy Consumption of Commercial Buildings. Energy Build. 2018, 158, 1533–1543. [Google Scholar] [CrossRef]
- Yang, D.; van der Meer, D. Post-Processing in Solar Forecasting: Ten Overarching Thinking Tools. Renew. Sustain. Energy Rev. 2021, 140, 110735. [Google Scholar] [CrossRef]
- Phan, Q.-T.; Wu, Y.-K.; Phan, Q.-D.; Lo, H.-Y. A Novel Forecasting Model for Solar Power Generation by a Deep Learning Framework With Data Preprocessing and Postprocessing. IEEE Trans. Ind. Appl. 2023, 59, 220–231. [Google Scholar] [CrossRef]
- Bakker, K.; Whan, K.; Knap, W.; Schmeits, M. Comparison of Statistical Post-Processing Methods for Probabilistic NWP Forecasts of Solar Radiation. Sol. Energy 2019, 191, 138–150. [Google Scholar] [CrossRef]
- Alvarenga, R.; Herbaux, H.; Linguet, L. Combination of Post-Processing Methods to Improve High-Resolution NWP Solar Irradiance Forecasts in French Guiana. Eng. Proc. 2022, 18, 27. [Google Scholar] [CrossRef]
- Das, U.K.; Tey, K.S.; Seyedmahmoudian, M.; Idna Idris, M.Y.; Mekhilef, S.; Horan, B.; Stojcevski, A. SVR-Based Model to Forecast PV Power Generation under Different Weather Conditions. Energies 2017, 10, 876. [Google Scholar] [CrossRef]
- Provan, G.; Buaudacháin, S.Ó. Sensor Calibration and Diagnostics Under Parameter Uncertainty: A Smart Building Application. IFAC Proc. Vol. 2012, 45, 409–414. [Google Scholar] [CrossRef]
- Hakami, A.M.; Hasan, K.N.; Alzubaidi, M.; Datta, M. A Review of Uncertainty Modelling Techniques for Probabilistic Stability Analysis of Renewable-Rich Power Systems. Energies 2023, 16, 112. [Google Scholar] [CrossRef]
- Siow, L.T.; Lee, J.R.; Ooi, E.H.; Lau, E.V. Application of Graphene and Graphene Derivatives in Cooling of Photovoltaic (PV) Solar Panels: A Review. Renew. Sustain. Energy Rev. 2024, 193, 114288. [Google Scholar] [CrossRef]
- Piccoli, E.; Dama, A.; Dolara, A.; Leva, S. Experimental Validation of a Model for PV Systems under Partial Shading for Building Integrated Applications. Sol. Energy 2019, 183, 356–370. [Google Scholar] [CrossRef]
- Li, Q.; Zhu, L.; Sun, Y.; Lu, L.; Yang, Y. Performance Prediction of Building Integrated Photovoltaics under No-Shading, Shading and Masking Conditions Using a Multi-Physics Model. Energy 2020, 213, 118795. [Google Scholar] [CrossRef]
- Polo, J.; Martín-Chivelet, N.; Alonso-Abella, M.; Alonso-García, C. Photovoltaic Generation on Vertical Façades in Urban Context from Open Satellite-Derived Solar Resource Data. Sol. Energy 2021, 224, 1396–1405. [Google Scholar] [CrossRef]
- Hao, W.; Tablada, A.; Shi, X.; Wang, L.; Meng, X. Efficiency Analysis of the Photovoltaic Shading and Vertical Farming System by Employing the Artificial Neural Network (ANN) Method. Buildings 2024, 14, 94. [Google Scholar] [CrossRef]
- Nguyen, D.C.; Ishikawa, Y. Artificial Neural Network for Predicting Annual Output Energy of Building-Integrated Photovoltaics Based on the 2-Terminal Perovskite/Silicon Tandem Cells under Realistic Conditions. Energy Rep. 2022, 8, 10819–10832. [Google Scholar] [CrossRef]
- De Paiva, G.M.; Pimentel, S.P.; Marra, E.G.; de Alvarenga, B.P.; Mussetta, M.; Leva, S. Intra-Day Forecasting of Building-Integrated PV Systems for Power Systems Operation Using ANN Ensemble. In Proceedings of the 2019 IEEE Milan PowerTech, Milan, Italy, 23–27 June 2019; pp. 1–5. [Google Scholar]
- Polo, J.; Martín-Chivelet, N.; Sanz-Saiz, C. BIPV Modeling with Artificial Neural Networks: Towards a BIPV Digital Twin. Energies 2022, 15, 4173. [Google Scholar] [CrossRef]
- Lee, H.; Kang, E.; Kim, D.; Yoon, J. Development of the Estimation Model for the Maximum Power Point of Building-Applied Photovoltaic Systems Based on Machine Learning. J. Build. Eng. 2023, 76, 107285. [Google Scholar] [CrossRef]
- Dimd, B.D.; Völler, S.; Midtgård, O.-M.; Cali, U.; Sevault, A. Quantification of the Impact of Azimuth and Tilt Angle on the Performance of a PV Output Power Forecasting Model for BIPVs. IEEE J. Photovolt. 2024, 14, 194–200. [Google Scholar] [CrossRef]
- Dimd, B.D.; Völler, S.; Midtgård, O.-M.; Sevault, A. The Effect of Mixed Orientation on the Accuracy of a Forecast Model for Building Integrated Photovoltaic Systems. Energy Rep. 2023, 9, 202–207. [Google Scholar] [CrossRef]
- Jeong, J.; Lee, D.; Chae, Y.T. A Novel Approach for Day-Ahead Hourly Building-Integrated Photovoltaic Power Prediction by Using Feature Engineering and Simple Weather Forecasting Service. Energies 2023, 16, 7477. [Google Scholar] [CrossRef]
- Shin, W.-G.; Shin, J.-Y.; Hwang, H.-M.; Park, C.-H.; Ko, S.-W. Power Generation Prediction of Building-Integrated Photovoltaic System with Colored Modules Using Machine Learning. Energies 2022, 15, 2589. [Google Scholar] [CrossRef]
- de Queiroz Corrêa, L.; Bagnis, D.; Rabelo Melo Franco, P.; Ferreira da Costa Junior, E.; Oliveira Souza da Costa, A. Evaluating Energy Generation of a Building-Integrated Organic Photovoltaic Vertical Façade: A Case Study of Latin America’s Pioneering Installation. Renew. Energy 2024, 220, 119662. [Google Scholar] [CrossRef]
- Fara, L.; Diaconu, A.; Craciunescu, D.; Fara, S. Forecasting of Energy Production for Photovoltaic Systems Based on ARIMA and ANN Advanced Models. Int. J. Photoenergy 2021, 2021, e6777488. [Google Scholar] [CrossRef]
- Luo, X.J.; Oyedele, L.O.; Ajayi, A.O.; Akinade, O.O. Comparative Study of Machine Learning-Based Multi-Objective Prediction Framework for Multiple Building Energy Loads. Sustain. Cities Soc. 2020, 61, 102283. [Google Scholar] [CrossRef]
- Kabilan, R.; Chandran, V.; Yogapriya, J.; Karthick, A.; Gandhi, P.P.; Mohanavel, V.; Rahim, R.; Manoharan, S. Short-Term Power Prediction of Building Integrated Photovoltaic (BIPV) System Based on Machine Learning Algorithms. Int. J. Photoenergy 2021, 2021, e5582418. [Google Scholar] [CrossRef]
- Dourhmi, M.; Benlamine, K.; Abouelaziz, I.; Zghal, M.; Masrour, T.; Jouane, Y. Improved Hourly Prediction of BIPV Photovoltaic Power Building Using Artificial Learning Machine: A Case Study. In Proceedings of the Emerging Trends in Intelligent Systems & Network Security; Ben Ahmed, M., Abdelhakim, B.A., Ane, B.K., Rosiyadi, D., Eds.; Springer International Publishing: Cham, Switzerland, 2023; pp. 270–280. [Google Scholar]
- Photogrammetry and Deep Learning for Energy Production Prediction and Building-Integrated Photovoltaics Decarbonization|Building Simulation. Available online: https://link.springer.com/article/10.1007/s12273-023-1089-y (accessed on 26 August 2024).
- Lee, D.; Jeong, J.; Yoon, S.H.; Chae, Y.T. Improvement of Short-Term BIPV Power Predictions Using Feature Engineering and a Recurrent Neural Network. Energies 2019, 12, 3247. [Google Scholar] [CrossRef]
- Jouane, Y.; Sow, M.C.; Oussous, O.; Vontobel, N.; Zghal, M. Forecasting Photovoltaic Energy for a Winter House Using a Hybrid Deep Learning Model. In Proceedings of the 2023 12th International Conference on Renewable Energy Research and Applications (ICRERA), Oshawa, ON, Canada, 29 August–1 September 2023; pp. 1–5. [Google Scholar]
- Sow, M.C.; Jouane, Y.; Oussous, O.; Vontobel, N.; Zghal, M. Very Short-Term Prediction of Photovoltaic Energy in the Winter Building for an Automatic Energy Management System. In Proceedings of the 2023 IEEE International Conference on Energy Technologies for Future Grids (ETFG), Wollongong, Australia, 3–6 December 2023; pp. 1–5. [Google Scholar]
- Sarkar, S.; Karthick, A.; Kumar Chinnaiyan, V.; Patil, P.P. Energy Forecasting of the Building-Integrated Photovoltaic Façade Using Hybrid LSTM. Environ. Sci. Pollut. Res. 2023, 30, 45977–45985. [Google Scholar] [CrossRef]
- Polo, J.; Martín-Chivelet, N.; Alonso-Abella, M.; Sanz-Saiz, C.; Cuenca, J.; de la Cruz, M. Exploring the PV Power Forecasting at Building Façades Using Gradient Boosting Methods. Energies 2023, 16, 1495. [Google Scholar] [CrossRef]
- Zhi, Y.; Sun, T.; Yang, X. A Physical Model with Meteorological Forecasting for Hourly Rooftop Photovoltaic Power Prediction. J. Build. Eng. 2023, 75, 106997. [Google Scholar] [CrossRef]
- Massucco, S.; Mosaico, G.; Saviozzi, M.; Silvestro, F. A Hybrid Technique for Day-Ahead PV Generation Forecasting Using Clear-Sky Models or Ensemble of Artificial Neural Networks According to a Decision Tree Approach. Energies 2019, 12, 1298. [Google Scholar] [CrossRef]
- Reynolds, J.; Ahmad, M.W.; Rezgui, Y.; Hippolyte, J.-L. Operational Supply and Demand Optimisation of a Multi-Vector District Energy System Using Artificial Neural Networks and a Genetic Algorithm. Appl. Energy 2019, 235, 699–713. [Google Scholar] [CrossRef]
- Gheouany, S.; Ouadi, H.; El Bakali, S. Optimal Active and Reactive Energy Management for a Smart Microgrid System under the Moroccan Grid Pricing Code. Energy 2024, 306, 132462. [Google Scholar] [CrossRef]
- Sabzehgar, R.; Amirhosseini, D.Z.; Rasouli, M. Solar Power Forecast for a Residential Smart Microgrid Based on Numerical Weather Predictions Using Artificial Intelligence Methods. J. Build. Eng. 2020, 32, 101629. [Google Scholar] [CrossRef]
- Kaffash, M.; Bruninx, K.; Deconinck, G. Data-Driven Forecasting of Local PV Generation for Stochastic PV-Battery System Management. Int. J. Energy Res. 2021, 45, 15962–15979. [Google Scholar] [CrossRef]
- Kaffash, M.; Deconinck, G. Ensemble Machine Learning Forecaster for Day Ahead PV System Generation. In Proceedings of the 2019 IEEE 7th International Conference on Smart Energy Grid Engineering (SEGE), Oshawa, ON, Canada, 12–14 August 2019; pp. 92–96. [Google Scholar]
- Chung, M.H. Estimating Solar Insolation and Power Generation of Photovoltaic Systems Using Previous Day Weather Data. Adv. Civ. Eng. 2020, 2020, e8701368. [Google Scholar] [CrossRef]
- Cordeiro-Costas, M.; Villanueva, D.; Eguía-Oller, P.; Granada-Álvarez, E. Intelligent Energy Storage Management Trade-off System Applied to Deep Learning Predictions. J. Energy Storage 2023, 61, 106784. [Google Scholar] [CrossRef]
- Ghenai, C.; Ahmad, F.F.; Rejeb, O.; Bettayeb, M. Artificial Neural Networks for Power Output Forecasting from Bifacial Solar PV System with Enhanced Building Roof Surface Albedo. J. Build. Eng. 2022, 56, 104799. [Google Scholar] [CrossRef]
- Parvez, I.; Sarwat, A.; Debnath, A.; Olowu, T.; Dastgir, M.G.; Riggs, H. Multi-Layer Perceptron Based Photovoltaic Forecasting for Rooftop PV Applications in Smart Grid. In Proceedings of the 2020 SoutheastCon, Raleigh, NC, USA, 28–29 March 2020; pp. 1–6. [Google Scholar]
- Sarmas, E.; Strompolas, S.; Marinakis, V.; Santori, F.; Bucarelli, M.A.; Doukas, H. An Incremental Learning Framework for Photovoltaic Production and Load Forecasting in Energy Microgrids. Electronics 2022, 11, 3962. [Google Scholar] [CrossRef]
- Meteier, Q.; El Kamali, M.; Angelini, L.; Abou Khaled, O. A Recommender System for Increasing Energy Efficiency of Solar-Powered Smart Homes. Sensors 2023, 23, 7974. [Google Scholar] [CrossRef]
- Piotrowski, P.; Parol, M.; Kapler, P.; Fetliński, B. Advanced Forecasting Methods of 5-Minute Power Generation in a PV System for Microgrid Operation Control. Energies 2022, 15, 2645. [Google Scholar] [CrossRef]
- Hosseini, P.; Taheri, S.; Akhavan, J.; Razban, A. Privacy-Preserving Federated Learning: Application to behind-the-Meter Solar Photovoltaic Generation Forecasting. Energy Convers. Manag. 2023, 283, 116900. [Google Scholar] [CrossRef]
- Kim, T.; Kim, J. A Regional Day-Ahead Rooftop Photovoltaic Generation Forecasting Model Considering Unauthorized Photovoltaic Installation. Energies 2021, 14, 4256. [Google Scholar] [CrossRef]
- Trigo-González, M.; Cortés-Carmona, M.; Marzo, A.; Alonso-Montesinos, J.; Martínez-Durbán, M.; López, G.; Portillo, C.; Batlles, F.J. Photovoltaic Power Electricity Generation Nowcasting Combining Sky Camera Images and Learning Supervised Algorithms in the Southern Spain. Renew. Energy 2023, 206, 251–262. [Google Scholar] [CrossRef]
- VanDeventer, W.; Jamei, E.; Thirunavukkarasu, G.S.; Seyedmahmoudian, M.; Soon, T.K.; Horan, B.; Mekhilef, S.; Stojcevski, A. Short-Term PV Power Forecasting Using Hybrid GASVM Technique. Renew. Energy 2019, 140, 367–379. [Google Scholar] [CrossRef]
- Bird, M.; Acha, S.; Brun, N.L.; Shah, N. Assessing the Modelling Approach and Datasets Required for Fault Detection in Photovoltaic Systems. In Proceedings of the 2019 IEEE Industry Applications Society Annual Meeting, Baltimore, MD, USA, 29 September–3 October 2019; pp. 1–6. [Google Scholar]
- Scott, C.; Ahsan, M.; Albarbar, A. Machine Learning for Forecasting a Photovoltaic (PV) Generation System. Energy 2023, 278, 127807. [Google Scholar] [CrossRef]
- Teixeira, B.; Pinto, T.; Faria, P.; Vale, Z. PV Generation Forecasting Model for Energy Management in Buildings. In Proceedings of the Progress in Artificial Intelligence; Marreiros, G., Melo, F.S., Lau, N., Lopes Cardoso, H., Reis, L.P., Eds.; Springer International Publishing: Cham, Switzerland, 2021; pp. 176–182. [Google Scholar]
- Tavares, I.; Manfredini, R.; Almeida, J.; Soares, J.; Ramos, S.; Foroozandeh, Z.; Vale, Z. Comparison of PV Power Generation Forecasting in a Residential Building Using ANN and DNN. IFAC-PapersOnLine 2022, 55, 291–296. [Google Scholar] [CrossRef]
- Duhirwe, P.N.; Hwang, J.K.; Ngarambe, J.; Kim, S.; Kim, K.; Song, K.; Yun, G.Y. A Novel Deep Learning-Based Integrated Photovoltaic, Energy Storage System and Electric Heat Pump System: Optimising Energy Usage and Costs. Int. J. Energy Res. 2021, 45, 9306–9325. [Google Scholar] [CrossRef]
- Shivam, K.; Tzou, J.-C.; Wu, S.-C. A Multi-Objective Predictive Energy Management Strategy for Residential Grid-Connected PV-Battery Hybrid Systems Based on Machine Learning Technique. Energy Convers. Manag. 2021, 237, 114103. [Google Scholar] [CrossRef]
- Kazem, H.A.; Yousif, J.; Chaichan, M.T.; Al-Waeli, A.H.A. Experimental and Deep Learning Artificial Neural Network Approach for Evaluating Grid-Connected Photovoltaic Systems. Int. J. Energy Res. 2019, 43, 8572–8591. [Google Scholar] [CrossRef]
- Park, M.K.; Lee, J.M.; Kang, W.H.; Choi, J.M.; Lee, K.H. Predictive Model for PV Power Generation Using RNN (LSTM). J. Mech. Sci. Technol. 2021, 35, 795–803. [Google Scholar] [CrossRef]
- Son, N.; Jung, M. Analysis of Meteorological Factor Multivariate Models for Medium- and Long-Term Photovoltaic Solar Power Forecasting Using Long Short-Term Memory. Appl. Sci. 2021, 11, 316. [Google Scholar] [CrossRef]
- Xu, X.; Xu, Y.; Wang, M.-H.; Li, J.; Xu, Z.; Chai, S.; He, Y. Data-Driven Game-Based Pricing for Sharing Rooftop Photovoltaic Generation and Energy Storage in the Residential Building Cluster Under Uncertainties. IEEE Trans. Ind. Inform. 2021, 17, 4480–4491. [Google Scholar] [CrossRef]
- Alden, R.E.; Gong, H.; Jones, E.S.; Ababei, C.; Ionel, D.M. Artificial Intelligence Method for the Forecast and Separation of Total and HVAC Loads With Application to Energy Management of Smart and NZE Homes. IEEE Access 2021, 9, 160497–160509. [Google Scholar] [CrossRef]
- Wen, L.; Zhou, K.; Yang, S.; Lu, X. Optimal Load Dispatch of Community Microgrid with Deep Learning Based Solar Power and Load Forecasting. Energy 2019, 171, 1053–1065. [Google Scholar] [CrossRef]
- Lateko, A.A.H.; Yang, H.-T.; Huang, C.-M.; Aprillia, H.; Hsu, C.-Y.; Zhong, J.-L.; Phương, N.H. Stacking Ensemble Method with the RNN Meta-Learner for Short-Term PV Power Forecasting. Energies 2021, 14, 4733. [Google Scholar] [CrossRef]
- Iao, H.-W.; Lao, K.-W.; Kang, J. Learning-Based Solar Power and Load Forecasting in DC Net-Zero Energy Building with Incomplete Data. In Proceedings of the 2022 7th International Conference on Power and Renewable Energy (ICPRE), Shanghai, China, 23–26 September 2022; pp. 583–589. [Google Scholar]
- Iao, H.-W.; Lao, K.-W. Integrated Load Consumption and PV Output Forecasting of Net-Zero Energy Buildings Considering KNN-GAN Data Augmentation. In Proceedings of the 2023 International Conference on Power Energy Systems and Applications (ICoPESA), Nanjing, China 24–26 February 2023; pp. 399–406. [Google Scholar]
- Hu, Z.; Gao, Y.; Ji, S.; Mae, M.; Imaizumi, T. Improved Multistep Ahead Photovoltaic Power Prediction Model Based on LSTM and Self-Attention with Weather Forecast Data. Appl. Energy 2024, 359, 122709. [Google Scholar] [CrossRef]
- Hernandez-Robles, I.A.; González-Ramírez, X.; Antonio Álvarez-Jaime, J. Effectiveness of Forecasters Based on Neural Networks for Energy Management in Zero Energy Buildings. Energy Build. 2024, 316, 114372. [Google Scholar] [CrossRef]
- Cordeiro-Costas, M.; Labandeira-Pérez, H.; Villanueva, D.; Pérez-Orozco, R.; Eguía-Oller, P. NSGA-II Based Short-Term Building Energy Management Using Optimal LSTM-MLP Forecasts. Int. J. Electr. Power Energy Syst. 2024, 159, 110070. [Google Scholar] [CrossRef]
- Li, Q.; Xu, Y.; Chew, B.S.H.; Ding, H.; Zhao, G. An Integrated Missing-Data Tolerant Model for Probabilistic PV Power Generation Forecasting. IEEE Trans. Power Syst. 2022, 37, 4447–4459. [Google Scholar] [CrossRef]
- de Carvalho Costa, R.L. Convolutional-LSTM Networks and Generalization in Forecasting of Household Photovoltaic Generation. Eng. Appl. Artif. Intell. 2022, 116, 105458. [Google Scholar] [CrossRef]
- Sarmas, E.; Spiliotis, E.; Stamatopoulos, E.; Marinakis, V.; Doukas, H. Short-Term Photovoltaic Power Forecasting Using Meta-Learning and Numerical Weather Prediction Independent Long Short-Term Memory Models. Renew. Energy 2023, 216, 118997. [Google Scholar] [CrossRef]
- Guo, X.; Mo, Y.; Yan, K. Short-Term Photovoltaic Power Forecasting Based on Historical Information and Deep Learning Methods. Sensors 2022, 22, 9630. [Google Scholar] [CrossRef]
- Pan, K.; Xie, C.; Lai, C.S.; Wang, D.; Lai, L.L. Photovoltaic Output Power Estimation and Baseline Prediction Approach for a Residential Distribution Network with Behind-the-Meter Systems. Forecasting 2020, 2, 470–487. [Google Scholar] [CrossRef]
- Sangrody, H.; Zhou, N.; Zhang, Z. Similarity-Based Models for Day-Ahead Solar PV Generation Forecasting. IEEE Access 2020, 8, 104469–104478. [Google Scholar] [CrossRef]
- Tripathy, D.S.; Rajanarayan Prusty, B.; Jena, D.; Sahu, M.K. Multi-Time Instant Probabilistic PV Generation Forecasting Using Quantile Regression Forests. In Proceedings of the 2020 IEEE 9th Power India International Conference (PIICON), Sonepat, India, 28 February–1 March 2020; pp. 1–6. [Google Scholar]
- Tripathy, D.S.; Prusty, B.R.; Bingi, K. A K-Nearest Neighbor-Based Averaging Model for Probabilistic PV Generation Forecasting. Int. J. Numer. Model. Electron. Netw. Devices Fields 2022, 35, e2983. [Google Scholar] [CrossRef]
- Kabir, F.; Yu, N.; Yao, W.; Yang, R.; Zhang, Y. Estimation of Behind-the-Meter Solar Generation by Integrating Physical with Statistical Models. In Proceedings of the 2019 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm), Beijing, China, 21–23 October 2019; pp. 1–6. [Google Scholar]
- Kabir, F.; Yu, N.; Yao, W.; Yang, R.; Zhang, Y. Joint Estimation of Behind-the-Meter Solar Generation in a Community. IEEE Trans. Sustain. Energy 2021, 12, 682–694. [Google Scholar] [CrossRef]
- Allouhi, A. Solar PV Integration in Commercial Buildings for Self-Consumption Based on Life-Cycle Economic/Environmental Multi-Objective Optimization. J. Clean. Prod. 2020, 270, 122375. [Google Scholar] [CrossRef]
- Kallio, S.; Siroux, M. Photovoltaic Power Prediction for Solar Micro-Grid Optimal Control. Energy Rep. 2023, 9, 594–601. [Google Scholar] [CrossRef]
- Capotosto, T.; Rita Di Fazio, A.; Perna, S.; Conte, F.; Iannello, G.; De Falco, P. Day-Ahead Forecast of PV Systems and End-Users in the Contest of Renewable Energy Communities. In Proceedings of the 2022 AEIT International Annual Conference (AEIT), Rome, Italy, 3–5 October 2022; pp. 1–6. [Google Scholar]
- Jiranantacharoen, P.; Benjapolakul, W. Photovoltaic Power Generation Forecast by Using Estimator Model and Kalman Filter. In Proceedings of the 2019 International Conference on Power, Energy and Innovations (ICPEI), Pattaya, Thailand, 16–18 October 2019; pp. 12–15. [Google Scholar]
- Gellert, A.; Fiore, U.; Florea, A.; Chis, R.; Palmieri, F. Forecasting Electricity Consumption and Production in Smart Homes through Statistical Methods. Sustain. Cities Soc. 2022, 76, 103426. [Google Scholar] [CrossRef]
- Lee, S.; Park, S.; Kang, B.; Choi, M.; Jang, H.; Shmilovitz, D.; Park, S. Enhancing Zero-Energy Building Operations for ESG: Accurate Solar Power Prediction through Automatic Machine Learning. Buildings 2023, 13, 2050. [Google Scholar] [CrossRef]
- Furusawa, H.; Horita, Y. Effect Verification of Training Period for Prediction of Photovoltaic Power Generation Using ML. In Proceedings of the 2023 IEEE 12th Global Conference on Consumer Electronics (GCCE), Nara, Japan, 10–13 October 2023; pp. 293–295. [Google Scholar]
- Lee, M.; Park, J.; Na, S.-I.; Choi, H.S.; Bu, B.-S.; Kim, J. An Analysis of Battery Degradation in the Integrated Energy Storage System with Solar Photovoltaic Generation. Electronics 2020, 9, 701. [Google Scholar] [CrossRef]
- Bottieau, J.; De Grève, Z.; Piraux, T.; Dubois, A.; Vallée, F.; Toubeau, J.-F. A Cross-Learning Approach for Cold-Start Forecasting of Residential Photovoltaic Generation. Electr. Power Syst. Res. 2022, 212, 108415. [Google Scholar] [CrossRef]
- Zhang, R.; Ma, H.; Hua, W.; Saha, T.K.; Zhou, X. Data-Driven Photovoltaic Generation Forecasting Based on a Bayesian Network With Spatial–Temporal Correlation Analysis. IEEE Trans. Ind. Inform. 2020, 16, 1635–1644. [Google Scholar] [CrossRef]
- Bot, K.; Santos, S.; Laouali, I.; Ruano, A.; da Graça Ruano, M. Design of Ensemble Forecasting Models for Home Energy Management Systems. Energies 2021, 14, 7664. [Google Scholar] [CrossRef]
- Yang, Z.; Mourshed, M.; Liu, K.; Xu, X.; Feng, S. A Novel Competitive Swarm Optimized RBF Neural Network Model for Short-Term Solar Power Generation Forecasting. Neurocomputing 2020, 397, 415–421. [Google Scholar] [CrossRef]
- Sun, F.; Li, L.; Bian, D.; Ji, H.; Li, N.; Wang, S. Short-Term PV Power Data Prediction Based on Improved FCM with WTEEMD and Adaptive Weather Weights. J. Build. Eng. 2024, 90, 109408. [Google Scholar] [CrossRef]
- Peng, T.; Fu, Y.; Wang, Y.; Xiong, J.; Suo, L.; Nazir, M.S.; Zhang, C. An Intelligent Hybrid Approach for Photovoltaic Power Forecasting Using Enhanced Chaos Game Optimization Algorithm and Locality Sensitive Hashing Based Informer Model. J. Build. Eng. 2023, 78, 107635. [Google Scholar] [CrossRef]
- Khan, W.; Walker, S.; Zeiler, W. Improved Solar Photovoltaic Energy Generation Forecast Using Deep Learning-Based Ensemble Stacking Approach. Energy 2022, 240, 122812. [Google Scholar] [CrossRef]
- Etxegarai, G.; Zapirain, I.; Camblong, H.; Ugartemendia, J.; Hernandez, J.; Curea, O. Photovoltaic Energy Production Forecasting in a Short Term Horizon: Comparison between Analytical and Machine Learning Models. Appl. Sci. 2022, 12, 12171. [Google Scholar] [CrossRef]
- Kaffash, M.; Ceusters, G.; Deconinck, G. Interval Optimization to Schedule a Multi-Energy System with Data-Driven PV Uncertainty Representation. Energies 2021, 14, 2739. [Google Scholar] [CrossRef]
- Hatamian, M.; Panigrahi, B.; Dehury, C.K. Location-Aware Green Energy Availability Forecasting for Multiple Time Frames in Smart Buildings: The Case of Estonia. Meas. Sens. 2023, 25, 100644. [Google Scholar] [CrossRef]
- Di Giovanni, G.; Rotilio, M.; Giusti, L.; Ehtsham, M. Exploiting Building Information Modeling and Machine Learning for Optimizing Rooftop Photovoltaic Systems. Energy Build. 2024, 313, 114250. [Google Scholar] [CrossRef]
- Cordeiro-Costas, M.; Villanueva, D.; Eguía-Oller, P.; Granada-Álvarez, E. Machine Learning and Deep Learning Models Applied to Photovoltaic Production Forecasting. Appl. Sci. 2022, 12, 8769. [Google Scholar] [CrossRef]
- Mohana, M.; Saidi, A.S.; Alelyani, S.; Alshayeb, M.J.; Basha, S.; Anqi, A.E. Small-Scale Solar Photovoltaic Power Prediction for Residential Load in Saudi Arabia Using Machine Learning. Energies 2021, 14, 6759. [Google Scholar] [CrossRef]
- Abdulrazzaq, A.J. Performance Assessment of Rooftop Photovoltaic Systems Using Real-World Weather Data and Machine Learning-Based Prediction. J. Eng. Comput. Sci. 2025, 4, 905–911. [Google Scholar]
- Kut, P.; Pietrucha-Urbanik, K. Forecasting Short-Term Photovoltaic Energy Production to Optimize Self-Consumption in Home Systems Based on Real-World Meteorological Data and Machine Learning. Energies 2025, 18, 4403. [Google Scholar] [CrossRef]
- D’Agostino, D.; Minelli, F.; D’Urso, M.; Minichiello, F. Fixed and Tracking PV Systems for Net Zero Energy Buildings: Comparison between Yearly and Monthly Energy Balance. Renew. Energy 2022, 195, 809–824. [Google Scholar] [CrossRef]
- D’Agostino, D.; Minelli, F.; Minichiello, F. An Innovative Multi-Stakeholder Decision Methodology for the Optimal Energy Retrofit of Shopping Mall Buildings. Energy Build. 2025, 344, 115958. [Google Scholar] [CrossRef]
- Michalakopoulos, V.; Sarantinopoulos, E.; Sarmas, E.; Marinakis, V. Empowering Federated Learning Techniques for Privacy-Preserving PV Forecasting. Energy Rep. 2024, 12, 2244–2256. [Google Scholar] [CrossRef]
- Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention Is All You Need. In Proceedings of the 31st International Conference on Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017; Curran Associates Inc.: Red Hook, NY, USA, 2017; pp. 6000–6010. [Google Scholar]
- Husein, M.; Gago, E.J.; Hasan, B.; Pegalajar, M.C. Towards Energy Efficiency: A Comprehensive Review of Deep Learning-Based Photovoltaic Power Forecasting Strategies. Heliyon 2024, 10, e33419. [Google Scholar] [CrossRef] [PubMed]
- Oliveira Santos, V.; Marinho, F.P.; Costa Rocha, P.A.; Thé, J.V.G.; Gharabaghi, B. Application of Quantum Neural Network for Solar Irradiance Forecasting: A Case Study Using the Folsom Dataset, California. Energies 2024, 17, 3580. [Google Scholar] [CrossRef]
- Kumar K, K.; Nutakki, M.; Koduru, S.; Mandava, S. Quantum Support Vector Machine for Forecasting House Energy Consumption: A Comparative Study with Deep Learning Models. J. Cloud Comput. 2024, 13, 105. [Google Scholar] [CrossRef]
- Khan, S.Z.; Muzammil, N.; Ghafoor, S.; Khan, H.; Zaidi, S.M.H.; Aljohani, A.J.; Aziz, I. Quantum Long Short-Term Memory (QLSTM) vs. Classical LSTM in Time Series Forecasting: A Comparative Study in Solar Power Forecasting. Front. Phys. 2024, 12, 1439180. [Google Scholar] [CrossRef]
- Ayasi, B.; Vázquez, I.X.; Saleh, M.; Garcia-Vico, A.M.; Carmona, C.J. Application of Spiking Neural Networks and Traditional Artificial Neural Networks for Solar Radiation Forecasting in Photovoltaic Systems in Arab Countries. Neural Comput. Applic. 2025, 37, 9095–9127. [Google Scholar] [CrossRef]
- Thangaraj, V.k.; Nachimuthu, D.S.; Francis, V.A.R. Wind Speed Forecasting at Wind Farm Locations with an Unique Hybrid PSO-ALO Based Modified Spiking Neural Network. Energy Syst. 2025, 16, 713–741. [Google Scholar] [CrossRef]
- Chen, B.; Li, H.; Han, K. Short-Term Photovoltaic Power Forecasting Method Based on K-Means Algorithm and Spiking Neural Networks. In Proceedings of the 8th Renewable Power Generation Conference (RPG 2019), Shanghai, China, 24–25 October 2019. [Google Scholar] [CrossRef]
- Hu, Y.; Cheng, X.; Wang, S.; Chen, J.; Zhao, T.; Dai, E. Times Series Forecasting for Urban Building Energy Consumption Based on Graph Convolutional Network. Appl. Energy 2022, 307, 118231. [Google Scholar] [CrossRef]
- Zhu, N.; Wang, Y.; Yuan, K.; Yan, J.; Li, Y.; Zhang, K. GGNet: A Novel Graph Structure for Power Forecasting in Renewable Power Plants Considering Temporal Lead-Lag Correlations. Appl. Energy 2024, 364, 123194. [Google Scholar] [CrossRef]
- Yang, C.; Li, S.; Gou, Z. Spatiotemporal Prediction of Urban Building Rooftop Photovoltaic Potential Based on GCN-LSTM. Energy Build. 2025, 334, 115522. [Google Scholar] [CrossRef]
- Boukaf, M.; Fadli, F.; Meskin, N. A Comprehensive Review of Digital Twin Technology in Building Energy Consumption Forecasting. IEEE Access 2024, 12, 187778–187799. [Google Scholar] [CrossRef]
- Kandemir, E.; Hasan, A.; Kvamsdal, T.; Abdel-Afou Alaliyat, S. Predictive Digital Twin for Wind Energy Systems: A Literature Review. Energy Inf. 2024, 7, 68. [Google Scholar] [CrossRef]
- Olayiwola, O.; Cali, U.; Elsden, M.; Yadav, P. Enhanced Solar Photovoltaic System Management and Integration: The Digital Twin Concept. Solar 2025, 5, 7. [Google Scholar] [CrossRef]
- El-Baz, W.; Tzscheutschler, P.; Wagner, U. Day-Ahead Probabilistic PV Generation Forecast for Buildings Energy Management Systems. Sol. Energy 2018, 171, 478–490. [Google Scholar] [CrossRef]
- MILP Optimized Management of Domestic PV-Battery Using Two Days-Ahead Forecasts. Available online: https://ieeexplore.ieee.org/abstract/document/9732432 (accessed on 7 September 2025).
- Impacts of Forecast Accuracy on Grid Integration of Renewable Energy Sources. Available online: https://ieeexplore.ieee.org/document/6652486 (accessed on 9 September 2025).






| Classification | Range | Application |
|---|---|---|
| Very short-term | Seconds to minutes | Control and management of PV systems, electricity market operations, and microgrid control |
| Short-term | Up to 72 h | Control of power system operations, unit commitment, and economic dispatch |
| Medium-term | A few days to a week | Planning maintenance and operations of solar power plants |
| Long-term | Months to a year | Planning maintenance and operations of solar power plants |
| Data Focusing on | Region/Explanation | References |
|---|---|---|
| Weather data | Global | [73,74,75,76] |
| The USA | [77,78] | |
| Korea | [79] | |
| Swedish Meteorological and Hydrological Institute (SMHI) | [80] | |
| - Desert Knowledge Australia Solar Center (DKASC) - Quality data and knowledge related to solar power | [81] | |
| Solar data | Global | [82,83,84] |
| PV generation data | Global | [85,86] |
| Weather variables and PV generation data | Global | [87,88] |
| Global level + Other data sets related to power systems | [89] | |
| Global level + Other data sets related to energy | [90] | |
| A case study + Other related data sets | [91,92] | |
| Wind data | Global | [93] |
| Aspect | Ensemble Methods | Hybrid Methods |
|---|---|---|
| Definition | Combine multiple instances of the same or similar models [123] (e.g., RFs (ensemble of DTs)) | Combine different types of models (e.g., Physical model + ML) [124] |
| Focus | Combine similar model outputs to create a stronger predictive model [123] | Captures different aspects of the problem (e.g., physical + stochastic patterns) [124] |
| Use in PV Forecasting | Effective for improving overall prediction accuracy | Modeling complex environmental and system interactions |
| Metric | Abbreviation | Formula | Explanation |
|---|---|---|---|
| Maximum Error | MaxE | The maximum error between the predicted and actual values | |
| Minimum Error | MinE | The minimum error between predicted and actual values | |
| Absolute Error | The absolute difference between predicted and actual values | ||
| Maximum Absolute Error | MaxAE | The maximum of absolute errors | |
| Minimum Absolute Error | MinAE | The minimum absolute error | |
| Maximum Absolute Percentage Error | MaxAPE | The maximum percentage error relative to actual values | |
| Relative Error | The error relative to actual values | ||
| Mean Relative Error | MRE | The average of relative errors | |
| Relative Absolute Error | RAE | The error relative to the absolute deviation from the mean of actuals | |
| Mean Absolute Error | MAE | The average of absolute errors | |
| Normalized Mean Absolute Error | NMAE | Normalizes MAE by the range of actual values | |
| Mean Absolute Percentage Error | MAPE | The average of absolute percentage errors | |
| Mean Squared Error | MSE | Average of squared errors | |
| Root Mean Square Error | RMSE | The square root of MSE | |
| Root Mean Squared Percentage Error | RMSPE | The square root of the mean squared percentage error | |
| Normalized Root Mean Square Error | NRMSE | Normalizes RMSE by the range of actual values | |
| Relative Root Mean Squared Error | RRMSE | RMSE relative to the actual mean | |
| Coefficient of Variation | CV | Measures the variability of actual values relative to their mean | |
| Coefficient of Variation of Root Mean Squared Error | CVRMSE | Normalizes RMSE relative to the mean of actuals | |
| Mean Absolute Scaled Error | MASE | Scales MAE using the mean absolute error from a naive prediction model | |
| Coefficient of Determination | R2 | The proportion of variance in actual values explained by predictions | |
| Mean Bias Error | MBE | The average bias between predictions and actuals | |
| Normalized Mean Bias Error | NMBE | or | Normalizes the mean bias error by either the range or mean of actuals |
| Mean Absolute Deviation | MAD | The average deviation of actual values from their mean |
| Models | Methodologies/Techniques | Refs. | |
|---|---|---|---|
| Physical Models | - | Simplified electrical mathematical model considering multi-physics | [145] |
| SAPM | [146] | ||
| Statistical Models | NN | ANN | [147,148,149,150,151,157,158,159,160,161,162] |
| LSTM | [152,153,158,163,164] | ||
| NARX | [154] | ||
| Regression Neural Network | [155] | ||
| CNN | [161,163,164] | ||
| RNN | [162] | ||
| ML | LR | [156,160,161] | |
| ARIMA | [157] | ||
| SVM | [158,162] | ||
| QSVM | [159] | ||
| DT | [159,161] | ||
| DTR | [160] | ||
| SVR | [160,161] | ||
| CART | [162] | ||
| CHAID | [162] | ||
| Hybrid Models | - | CNN-LSTM | [163,164] |
| RF-LSTM-CEEMDAN | [165] | ||
| Ensemble Models | - | RF | [160,161,162,166] |
| Adaptive Boosting | [161] | ||
| XGBoost | [166] |
| Models | Methodologies/Techniques | Refs. | |
|---|---|---|---|
| Physical Models | - | An equivalent circuit model | [167] |
| Clear-Sky Model | [168] | ||
| Corrected Clear-Sky Model | [168] | ||
| OpenModelica | [228] | ||
| Statistical Models | NN | ANN | [169,170,171,183,185,186,187,188,214] |
| FFNN | [172,174,228,229] | ||
| SNN | [175,232] | ||
| NARX | [176,228] | ||
| MLP | [177,178,179,180,201,230] | ||
| DNN | [188,189,233] | ||
| Residual Dilated Causal Convolutional Network | [190] | ||
| RNN | [191,232] | ||
| Time Lagged Recurrent Networks | [191] | ||
| LSTM | [192,193,194,195,199,201,204] | ||
| BiLSTM | [198,201] | ||
| Deep Recurrent Neural Network-LSTM | [196] | ||
| GRU | [198,201] | ||
| Transformer models | [199] | ||
| Recursive LSTM | [203] | ||
| CNN | [204,232] | ||
| ML | Persistence model | [180,215,229] | |
| LR | [180,186,233] | ||
| KNN | [180,207,230,231] | ||
| SVM | [180,183,185,186,187,233] | ||
| SVR | [182,228,229,230,231,232] | ||
| ARIMA | [187,215,217] | ||
| SBFMs based on KNN | [208] | ||
| QRF | [209] | ||
| Quantile K-Nearest Neighbors Regression Averaging | [210] | ||
| Markov model regression | [211,212] | ||
| MLR | [213,214,215] | ||
| TBATS | [217] | ||
| AML | [218,219] | ||
| Autoregressive model | [220] | ||
| cross-learning | [221] | ||
| Bayesian Network With Spatial-Temporal Correlation Analysis | [222] | ||
| Simple Moving Average | [229] | ||
| DTs | [231] | ||
| LASSO | [229,233] | ||
| Polynomial Regression | [233] | ||
| Hybrid Models | - | Connection of three MLP models | [180] |
| MLP-based FL | [181] | ||
| GA-SVM | [184] | ||
| LSTM with self-attention mechanisms | [200] | ||
| LSTM-MLP | [202] | ||
| CNN-LSTM | [198,204] | ||
| Singular Spectrum Analysis + BiLSTM + Bayesian Optimization | [206] | ||
| ARIMA combined with the Kalman filter | [216] | ||
| CSO-RBF | [224] | ||
| WTEEMD-FCM-IGWO-LSTM | [225] | ||
| VMD-Enhanced Chaos Game Optimization-Locality Sensitive Hashing Attention-Informer model | [226] | ||
| Ensemble Models | - | Basic Ensemble Method of NNs | [168] |
| Ensembles of FFNN and SVM | [173] | ||
| ETs | [179] | ||
| Gradient-Boosted Trees | [180] | ||
| RFs | [180,185,186,187,230,231,232,233] | ||
| Weighted Averaging Ensemble | [180] | ||
| Ensemble Method with the RNN Meta-Learner | [197] | ||
| Meta-learning used four models of LSTM | [205] | ||
| RBF-ANN | [223] | ||
| DSE-XGB | [227] | ||
| XGBoost | [230,232,233] |
| Methods | Forecasting Accuracy | Tips | Deployment Types | Geographical Location | Ref. |
|---|---|---|---|---|---|
| Simplified electrical mathematical model considering multi-physics | MSE & RMSE Illustrated on fig. | - Shading - Masking | University BIPV lab | Tianjin/China | [145] |
| SAPM | R2 for each façade East = 0.73 South = 0.89 West = 0.90 | Shading | University campus | Madrid/Spain | [146] |
| ANN | R2 = from 0.63 to 0.88 | Vertical Farming | Residential | Singapore | [147] |
| ANN | MSE = 1.26 | _ | Rooftop | Gifu/Japan | [148] |
| ANN | For 15-min MAE = 34.17 W/m2 RMSE = 60.08 W/m2 | _ | Engineering School | Goiania/Brazil | [149] |
| ANN | Based on the different façades MRE ranged approximately from 6% to 15% | Partial shading | University area | Madrid/Spain | [150] |
| ANN | R2 = 0.9768 CvRMSE (%) = 35.22 | Partial shading | _ | Republic of Korea | [151] |
| LSTM | RMSE (kW) = 2.24 MAE (kW) = 1.12 WAPE (%) = 4.66 | _ | ZEB laboratory | Trondheim/Norway | [152] |
| LSTM | RMSE (kW) = 2.242 WAPE (%) = 4.664 | _ | ZEB laboratory | Trondheim/Norway | [153] |
| NARX | For Partially Cloudy days MAPE = 11.55% R2 = 0.95 | _ | Office | Seoul/Korea | [154] |
| Regression Neural Network | RMSE (kW) = 0.0754 MAE (kW) = 0.0372 | - Colored PV - Shading | _ | Daejeon/Korea | [155] |
| Mathematical modeling with multiple regression | R2 = 0.81 | Organic PV | _ | São Paulo/Brazil | [156] |
| ARIMA + ANN | Monthly: rRMSE (%) = from 6.2 and 53 | _ | University lab | Bucharest/Romania | [157] |
| ANN | MPE (%) = 6.29 | Shading | Office building | The UK | [158] |
| ANN | RMSE = 4.42% R2 = 0.8833 | _ | Residential buildings | Kovilpatti/India | [159] |
| CNN | MSE (kW) = 0.046 R2 = 0.96 | - Several models examined | Campus building | Strasbourg/France | [161] |
| RNN | MAPE (%) = 23.79 | _ | Office building | South Korea | [162] |
| CNN + LSTM | MSE & RMSE Illustrated on fig. | _ | Winter house | Poschiavo/Switzerland | [163] |
| CNN + LSTM | MAE = 4.98 RMSE = 14.06 | _ | Winter house | Poschiavo/Switzerland | [164] |
| CEEMDAN + RF + LSTM | For a Flat roof: RMSE = 2.97 MAE = 2.475 | _ | Institute of Engineering | India | [165] |
| XGBoost | RMSE = 0.89 and 0.21 kW for south and east | Shading | Office | Madrid/Spain | [166] |
| Maximum Power Point Tracking algorithm | MAE =15.9% MRE = 18.1% | _ | Household | Ruicheng/China | [167] |
| Hybrid Tree | RMSE (kW) = 1.5583 nRMSE = 0.3892 | Shading | University/Economics School | Genova/Italy | [168] |
| Back-propagation ANN | R2 (Train) = 0.9489 R2 (Test) = 0.9412 | _ | Several types | Cardiff/The UK | [169] |
| Stacking-based ANN | Short-term: NRMSE (%) = 6.49 NMAE (%) = 3.68 | _ | Residential | Morocco | [170] |
| NN-based NWP | MAPE = 45.30% | _ | Residential | San Diego/The USA | [171] |
| FFNN | MRE = 9.15% | _ | Research center | Genk/Belgium | [172] |
| FFNN + SVM + RF | NRMSE (%) = 11.89 | _ | Research center | Genk/Belgium | [173] |
| Multilayer FFNN | RMSE (kWh) = 1.421 MAE (kWh) = 1.133 | _ | _ | Seoul/Korea | [174] |
| SNN | nRMSE = 7.15% nMBE = −0.21% | _ | University Campus | Vigo/Spain | [175] |
| NARX | For Albedo α = 0.8 nMSE = 6.06634 × 10−1 | Bifacial PV | _ | Sharjah/UAE | [176] |
| MLP | MAE = 0.0809 nRMSE = 0.0054 | _ | Smart home (NREL Database) | USA | [177] |
| MLP | MAE = 6.697 RMSE = 13.260 nRMSE = 0.527 | _ | Headquarters | Terni/Italy | [178] |
| MLP | R2 = 84.81 RMSE = 0.36 | _ | Smart Home | Swiss | [179] |
| MLP | RMSE (w) = 61.633 nMAPE (%) = 0.805 | _ | University PV Laboratory | Warsaw/Poland | [180] |
| MLP-based FL | Case 1 Average: RMSE (%) = 9.72 MAPE (%) = 12.88 | Behind-the-meter | Several residences | New Mexico/USA | [181] |
| SVR | nMAE (%) = 2.95% nRMSE (%) = 5.41% | Behind-the-meter | Utility | Sydney/Australia | [182] |
| ANN | nRMSE (%) range from 7.71 to 21.43 | - Several conditions of the sky | Solar Energy Research Centre | Almería/Spain | [183] |
| GA-based SVM | RMSE (W) = 11.226 MAPE (%) = 1.7052 | _ | Deakin University, Engineering Dep. | Victoria/Australia | [184] |
| RF | MRE (%) = 2.7 | _ | Several commercial rooftops | The UK | [185] |
| RF | RMSE = 32 | _ | A non-domestic building | The UK | [186] |
| ANN | MAPE from 0.1868 to 0.2073 | _ | GECAD research group building | Porto/Portugal | [187] |
| ANN | MAE (kW) = 0.09223 SMAPE = 0.04947 WAPE = 0.09894 nRMSE = 0.06213 | _ | A Residential Building (15 apartments) | Due to restrictions, it’s not possible to tell the location | [188] |
| 4-layer DNN | R2 = 0.95 | _ | Retail shop | Korea | [189] |
| - Residual Dilated Causal Convolutional Network | R2 = 0.9308 MAPE = 3.4819 SMAPE = 1.2003 NRMSE = 0.0589 | _ | Residential | Tainan/Taiwan | [190] |
| - Time Lagged Recurrent Networks and RNNs | MAPE (%) = 1.5032 | _ | Solar energy lab, Sohar University | Oman | [191] |
| Multi-layer-LSTM | Cv(RMSE) = 13.2 % | _ | _ | Jincheon/Korea | [192] |
| - LSTM - 22 multivariate models (combining solar radiation, sunlight, etc.) | Medium-term No. RMSE = 5.42 MAE = 3.21 Long-term No. RMSE = 9.23 MAE = 5.83 | - 22 multivariate models (combining solar radiation, sunlight, etc.) | An industrial building | Gyeonggi-do/Korea | [193] |
| LSTM | _ | _ | - 6 apartments Each has 60 households | Australia | [194] |
| LSTM | Daily: CVRMSE (%) = 11.1 | _ | Smart home | Florida/USA | [195] |
| DRNN-LSTM | RMSE = 7.536 MAE = 4.369 MAPE (%) = 15.87 | _ | Residential | Yulara/Australia | [196] |
| Stacking ensemble models with RNN | MRE (%) = 4.29% nRMSE (%) = 6.16 MAE (kW) = 8.59 R2 = 0.86 | _ | Industrial Co. | Taiwan | [197] |
| BiLSTM with KNN | RMSE (kW) = 1.984 | _ | NZEB Institute of Building Research | Shenzhen/China | [198] |
| GAN + KNN + LSTM + Transformer | Average reduction of RMSE (kW) = 4.603 in each LSTM-based | _ | NZEB Institute of Building Research | Shenzhen/China | [199] |
| LSTM + self-attentions | RMSE (kW) = 0.651 MAE (kW) = 0.306 R2 = 0.934 | _ | Houses | Urayasu/Japan | [200] |
| Dual-layer LSTM | RMSE = 0.0542 | - Under cloudiness - Under solar intermittency | ZEB | Salamanca/Mexico | [201] |
| LSTM-MLP-NSGA II | NRMSE (%) = 5.5 | _ | University Campus | Vigo/Spain | [202] |
| Recursive LSTM | Singapore: nRMSE (%) =15.25 WMAPE (%) = 68.47 Australia: nRMSE (%) =15.12 WMAPE (%) = 38.95 | - Under the missing data condition | - University Campus - University building | Queensland/Australia Nanyang/Singapore | [203] |
| Convolutional-LSTM | For Half an hour: MAE = 2.9 RMSE = 5.2 NRMSE = 0.03 | _ | Household | Sydney/Australia | [204] |
| Meta-learning + LSTM variants | Joao’s location: RMSE = 2.273 Forecast skill index = 0.5 | _ | - Institution of social solidarity - Dental medicine unit - Elementary school | Lisbon/Portugal | [205] |
| Singular Spectrum Analysis + BiLSTM + Bayesian Optimization | 15 Min-Ahead, Dataset 1: MAE = 9.44 RMSE = 12.29 R2 = 0.971 | _ | Real-world rooftop stations | Eastern China | [206] |
| Utilizing the KNN algorithm | Spring season: RAE (%) = 30.61 MAE (kW) = 27.79 | - Behind the Meter - Temperature Correction | Residential | Australia | [207] |
| hSBFM + KNN | MAE (W) = 826.2 MRE (%) = 15.3 nRMSE (%) = 10.8 | _ | University building | New York/The USA | [208] |
| QRF | First PV system: MAE = 0.666 RMSE = 0.924 | _ | Three nearby locations, rooftop PV | The USA | [209] |
| - Quantile KNN Regression Averaging | First PV system: MAE = 0.587 RMSE = 0.884 | _ | Three nearby locations, rooftop PV | The USA | [210] |
| - Hidden Markov Model Regression | MSE = 0.23 MASE = 3.08 CV = 0.62 | Behind the Meter | Street | Austin/The USA | [211] |
| - Mixed Hidden Markov Model Regression | MSE = 0.13 MASE = 2.13 CV = 0.47 | Behind the Meter | Street | Austin/The USA | [212] |
| MLR + GA | NRMSE = 0.943 MSE = 0.0049 NMSE = 0.9967 | Soiling losses | - Commercial Buildings | Morocco | [213] |
| ANN | Overall: MAE = 13.34 MSE = 1517 RMSE = 38.96 R2 = 0.935 | Microinverter | - INSA ICUBE Laboratory | Strasbourg/France | [214] |
| MLR | Hour-Ahead: MAE (kW) = 1.42 MAPE (%) = 21.30 NMAE (%) = 4.37 | _ | - A residential - A public building | Rome/Italy | [215] |
| ARIMA + Kalman filter | RMSE = 0.135 nRMSE = 0.1688 Skill Score = 0.788 | _ | - Three PV rooftops located near each other | Thailand | [216] |
| TBATS | MAE (W) = 73.62 | _ | Smart homes | Romania | [217] |
| AML | Bayesian Ridge, PV1: MAE = 0.207 R2 = 0.997 | AML employs 5 algorithms | - ZEB - Energy Institute | South Korea | [218] |
| AML | ET regressor, Dec. MAE = 1.48 RMSE = 2.197 R2 = 0.857 | AML employs 18 algorithms | University Campus | Toyama/Japan | [219] |
| Autoregressive model | Sunny days: MAPE = 0.167 Cloudy days: MAPE = 0.327 | - Under sky conditions | _ | Korea | [220] |
| - Improved ensembled cross-learning forecasting | Sites Average (GBRT model): NRMSE (%) = 10.67 | - Several models examined | Residential | - Western Belgium - Northern France | [221] |
| - Spatial-Temporal Correlation Analysis + Bayesian Network | 15 min ahead: RMSE = 0.04 | - 5 models examined | - More than 20 buildings | Australia | [222] |
| RBF-ANN + GA | Model 4: RMSE = 1.69 | _ | Residence | Algarve, Portugal | [223] |
| RBF-ANN + CSO | System 1: RMSE = 4.988 × 10−3 | _ | - A community of building | Netherlands | [224] |
| WTEEMD + FCM + IGWO + LSTM | Average: MAE = 1.7915 RMSE = 2.1542 R2 = 0.9915 | - Several models examined | ZEB | Alice Springs/Australia | [225] |
| VMD + Informer + Enhanced Chaos Game Optimization | April: MSE (kW) = 224.21 MAE (kW) = 10.246 RMSE (kW) = 14.97 R2 = 0.9732 | - Several models examined | - Steel Structure Engineering Co. | Nantong/China | [226] |
| DSE-XGB | Case study (II): MAE (kWh) = 0.59 RMSE (kWh) = 0.78 R2 = 0.96 | _ | Commercial Buildings | Netherlands | [227] |
| SVR | July: R2 = 0.934 RMSE = 252.46 MAE = 141.81 | - Four distinct models comparison | University building | Bidart/France | [228] |
| LASSO | NRMSE (%) = 14.24 NMAE (%) = 10.68 R2 = 0.57 | - 5 models examined | Industrial | Germany | [229] |
| RF | 30 min: MAPE = 5.27 MSE = 0.032 RMSE = 0.110 R2 = 0.987 | - Several models examined | Smart buildings | Estonia | [230] |
| RF | MAPE (%) = 28.34 RMSE (kWh/d) = 139.10 | - Shading - 4 models examined | Office and warehouse | Abruzzo/Italy | [231] |
| RF | nMBE (%) = 0.41 nRMSE (%) = 1.88 R2 = 0.99 | - Several models examined | - A single-family dwelling | Maryland/USA | [232] |
| PR | MSE is illustrated in the figure. | - Several models examined | Residential | Saudi Arabia | [233] |
| Methods | Forecasting Accuracy | Case Studies | Geographical Location | Ref. |
|---|---|---|---|---|
| SAPM | R2 for each façade East = 0.73 South = 0.89 West = 0.90 | University campus | Madrid/Spain | [146] |
| ANN | R2 = from 0.63 to 0.88 | Residential | Singapore | [147] |
| ANN | R2 = 0.9768 | _ | Korea | [151] |
| NARX | R2 = 0.95 | Office | Seoul/Korea | [154] |
| Mathematical modeling with multiple regression | R2 = 0.81 | _ | São Paulo/Brazil | [156] |
| ANN | R2 = 0.8833 | Residential buildings | Kovilpatti/India | [159] |
| CNN | R2 = 0.96 | Campus building | Strasbourg/France | [161] |
| Back-propagation ANN | R2 = 0.9489 | Several types | Cardiff/The UK | [169] |
| MLP | R2 = 0.8481 | Smart Home | Swiss | [179] |
| 4-layer DNN | R2 = 0.95 | Retail shop | Korea | [189] |
| - Residual Dilated Causal Convolutional Network | R2 = 0.9308 | Residential | Tainan/Taiwan | [190] |
| Stacking ensemble models with RNN | R2 = 0.86 | Industrial Co. | Taiwan | [197] |
| LSTM + self-attentions | R2 = 0.934 | Houses | Urayasu/Japan | [200] |
| Singular Spectrum Analysis + BiLSTM + Bayesian Optimization | R2 = 0.971 | Real-world rooftop stations | Eastern China | [206] |
| ANN | R2 = 0.935 | Laboratory | Strasbourg/France | [214] |
| AML | R2 = 0.997 | Energy Institute | South Korea | [218] |
| AML | R2 = 0.857 | University Campus | Toyama/Japan | [219] |
| WTEEMD + FCM + IGWO + LSTM | R2 = 0.9915 | ZEB | Alice Springs/Australia | [225] |
| VMD + Informer + Enhanced Chaos Game Optimization | R2 = 0.9732 | - Steel Structure Engineering Co. | Nantong/China | [226] |
| DSE-XGB | R2 = 0.96 | Commercial | Netherlands | [227] |
| SVR | R2 = 0.934 | University building | Bidart/France | [228] |
| LASSO | R2 = 0.57 | Industrial | Germany | [229] |
| RF | R2 = 0.987 | Smart buildings | Estonia | [230] |
| RF | R2 = 0.99 | - A single-family dwelling | Maryland/USA | [232] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pedram, O.; Soares, A.; Moura, P. A Review of Methodologies for Photovoltaic Energy Generation Forecasting in the Building Sector. Energies 2025, 18, 5007. https://doi.org/10.3390/en18185007
Pedram O, Soares A, Moura P. A Review of Methodologies for Photovoltaic Energy Generation Forecasting in the Building Sector. Energies. 2025; 18(18):5007. https://doi.org/10.3390/en18185007
Chicago/Turabian StylePedram, Omid, Ana Soares, and Pedro Moura. 2025. "A Review of Methodologies for Photovoltaic Energy Generation Forecasting in the Building Sector" Energies 18, no. 18: 5007. https://doi.org/10.3390/en18185007
APA StylePedram, O., Soares, A., & Moura, P. (2025). A Review of Methodologies for Photovoltaic Energy Generation Forecasting in the Building Sector. Energies, 18(18), 5007. https://doi.org/10.3390/en18185007

