Performance Modulation of AB2-Type Ti-Mn-Based Alloys for Compact Solid-State Hydrogen Storage Tank
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. Sample Characterization and Test
2.3. Hydrogen Storage Tank
- Pure-Alloy tank configuration: 3 kg alloy was directly filled into the tank.
- Alloy-EG tank configuration: 3 kg alloy was mixed with 22.5 g expanded graphite (EG) prior to tank filling.
- Alloy-AF tank configuration: 3 kg alloy was mixed with 150 g aluminum foam (AF) strips (10 mm in diameter).
3. Results
3.1. Effect of Ce Addition and Partial Substitution of Ti by Zr
3.2. Characterization of Batch-Prepared Alloys
3.3. Hydrogen Discharge Performance of Hydrogen Storage Tank
4. Conclusions
- (1)
- Doping a small amount of Ce significantly enhances the room-temperature activation properties of Ti-Mn-based alloys due to the in situ formation of catalytically active CeO2.
- (2)
- The mass-produced alloy Ti0.75Zr0.25 Cr1.15Mn0.85 + 1.5 wt.% Ce delivers excellent activation performance, a hydrogen storage capacity of 1.87 wt.%, and a hydrogen desorption pressure of 1.73 bar at 303 K.
- (3)
- A compact hydrogen storage tank containing 3 kg of alloy and 57.8 g of hydrogen was engineered by compositing the alloy with 5 wt.% aluminum foam, enabling complete hydrogen discharge under an output pressure limit of 1.5 bar. This tank is capable of supplying hydrogen to a 220 W PEMFC.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Qureshi, F.; Yusuf, M.; Ahmed, S.; Haq, M.; Alraih, A.M.; Hidouri, T.; Kamyab, H.; Vo, D.N.; Ibrahim, H. Advancements in sorption-based materials for hydrogen storage and utilization: A comprehensive review. Energy 2024, 309, 132855. [Google Scholar] [CrossRef]
- Kumar, A.; Muthukumar, P.; Sharma, P.; Kumar, E.A. Absorption based solid state hydrogen storage system: A review. Sustain. Energy Technol. Assess. 2022, 52, 102204. [Google Scholar] [CrossRef]
- Hissel, D.; Pera, M.C. Diagnostic & health management of fuel cell systems: Issues and solutions. Annu. Rev. Control 2016, 42, 201–211. [Google Scholar] [CrossRef]
- Ma, R.; Yang, T.; Breaz, E.; Li, Z.; Briois, P.; Gao, F. Data-driven proton exchange membrane fuel cell degradation predication through deep learning method. Appl. Energy 2018, 231, 102–115. [Google Scholar] [CrossRef]
- Lambert, H.; Hernàndez-Torres, D.; Retière, C.; Garnier, L.; Poirot-Crouvezier, J. X-in-the-Loop Methodology for Proton Exchange Membrane Fuel Cell Systems Design: Review of Advances and Challenges. Energies 2025, 18, 3774. [Google Scholar] [CrossRef]
- Fan, L.; Gao, J.; Shen, W.; Su, H.; Zhou, S.; Hou, Y. A Control Framework for the Proton Exchange Membrane Fuel Cell System Integrated the Degradation Information. Energies 2025, 18, 2438. [Google Scholar] [CrossRef]
- Foniok, K.; Drozdova, L.; Prokop, L.; Krupa, F.; Kedron, P.; Blazek, V. Mechanisms and Modelling of Effects on the Degradation Processes of a Proton Exchange Membrane (PEM) Fuel Cell: A Comprehensive Review. Energies 2025, 18, 2117. [Google Scholar] [CrossRef]
- Qasem, N.; Abdulrahman, G. A Recent Comprehensive Review of Fuel Cells: History, Types, and Applications. Int. J. Energy Res. 2024, 2024, 7271748. [Google Scholar] [CrossRef]
- Fan, L.; Tu, Z.; Chan, S.H. Recent development in design a state-of-art proton exchange membrane fuel cell from stack to system: Theory, integration and prospective. Int. J. Hydrogen Energy 2023, 48, 7828–7865. [Google Scholar] [CrossRef]
- Marcelli, L.; Chamoret, D.; François, X.; Meyer, Y.; Candusso, D. Mechanical models and simulations of PEMFCs: A comprehensive review. Int. J. Hydrogen Energy 2025, 136, 1086–1111. [Google Scholar] [CrossRef]
- Yan, Y.; Xu, Z.; Han, F.; Wang, Z.; Ni, Z. Energy control of providing cryo-compressed hydrogen for the heavy-duty trucks driving. Energy 2022, 242, 122817. [Google Scholar] [CrossRef]
- Fang, T.; Vairin, C.; von Jouanne, A.; Agamloh, E.; Yokochi, A. Review of Fuel-Cell Electric Vehicles. Energies 2024, 17, 2160. [Google Scholar] [CrossRef]
- Nguyen, H.; Lee, S.; Yu, S. A Comprehensive Review of Degradation Prediction Methods for an Automotive Proton Exchange Membrane Fuel Cell. Energies 2023, 16, 4772. [Google Scholar] [CrossRef]
- Liu, H.; Zhang, J.; Sun, P.; Zhou, C.; Liu, Y.; Fang, Z.Z. Effect of oxygen on the hydrogen storage properties of TiFe alloys. J. Energy Storage 2022, 55, 105543. [Google Scholar] [CrossRef]
- Lv, P.; Huot, J. Hydrogenation improvement of TiFe by adding ZrMn2. Energy 2017, 138, 375–382. [Google Scholar] [CrossRef]
- Xie, X.; Hou, C.; Chen, C.; Sun, X.; Pang, Y.; Zhang, Y.; Yu, R.; Wang, B.; Du, W. First-principles studies in Mg-based hydrogen storage Materials: A review. Energy 2020, 211, 118959. [Google Scholar] [CrossRef]
- Shao, H.Y.; He, L.Q.; Lin, H.J.; Li, H.W. Progress and Trends in Magnesium-Based Materials for Energy-Storage Research: A Review. Energy Technol-Ger. 2018, 6, 445–458. [Google Scholar] [CrossRef]
- Zhang, Y.H.; Li, C.; Zhang, W.; Wei, X.; Li, J.; Qi, Y.; Zhao, D.L. Research and application of Ti-Mn-based hydrogen storage alloys. J. Iron Steel Res. Int. 2023, 30, 611–625. [Google Scholar] [CrossRef]
- Wu, R.; Li, R.; Ke, D.; Zhao, X.; Hu, F.; Liu, J.; Zou, S.; Zhang, B.; Zhang, L. Insight into the effect of annealing treatment on hydrogen storage properties of a Ti–V–Mn alloy. J. Mater. Res. Technol. 2025, 36, 2118–2126. [Google Scholar] [CrossRef]
- Liu, X.; Jiang, L.; Li, Z.; Huang, Z.; Wang, S. Improve plateau property of Ti32Cr46V22 BCC alloy with heat treatment and Ce additive. J. Alloy Compd. 2009, 471, L36–L38. [Google Scholar] [CrossRef]
- Mi, J.; Lü, F.; Liu, X.; Jiang, L.; Li, Z.; Wang, S. Enhancement of cerium and hydrogen storage property of a low-cost Ti-V based BCC alloy prepared by commercial ferrovanadium. J. Rare Earth 2010, 28, 781–784. [Google Scholar] [CrossRef]
- Davids, M.W.; Lototskyy, M.; Malinowski, M.; van Schalkwyk, D.; Parsons, A.; Pasupathi, S.; Swanepoel, D.; van Niekerk, T. Metal hydride hydrogen storage tank for light fuel cell vehicle. Int. J. Hydrogen Energy 2019, 44, 29263–29272. [Google Scholar] [CrossRef]
- Bai, X.; Yang, W.; Tang, X.; Yang, F.; Jiao, Y.; Yang, Y. Optimization of tree-shaped fin structures towards enhanced absorption performance of metal hydride hydrogen storage device: A numerical study. Energy 2021, 220, 119738. [Google Scholar] [CrossRef]
- Bian, L.; Shao, L.; Wang, B.; Zhang, J.; Li, Y.; Hu, Z.; Zou, J.; Zhang, K.; Lin, X. Enhancing hydrogen sorption kinetics of Ti-based hydrogen storage alloy tanks through an optimized bulk-powder combination strategy. Chem. Eng. J. 2025, 507, 160799. [Google Scholar] [CrossRef]
- Piao, M.; Xiao, X.; Zhan, L.; Cao, Z.; Zhou, P.; Qi, J.; Lu, M.; Li, Z.; Jiang, L.; Fang, F.; et al. Laves phase double substitution alloy design and device filling modification for Ti-based metal hydride hydrogen compressors. Int. J. Hydrogen Energy 2024, 50, 1358–1368. [Google Scholar] [CrossRef]
- GB/T 11640-2021; Aluminum Alloy Seamless Gas Cylinder. Standards Press of China: Beijing, China, 2021; pp. 10–15.
- Yin, Y.; Li, B.; Yuan, Z.; Qi, Y.; Zhang, Y. Enhanced hydrogen storage performance of Mg-Cu-Ni system catalyzed by CeO2 additive. J. Rare Earth 2020, 38, 983–993. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, W.L.; Li, J.; Xiao, M.J. Metabolic Syndrome is Associated with White Matter Hyperintensity in Stroke Patients. Brain Impair. 2017, 18, 277–283. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, Z.; Xu, C.; Xing, X.; Wei, M.; Cao, B.; Liu, T. Ti/Cr regulated and strategic Ce doped V-Ti-Cr-Mn-Fe high-entropy alloys with extraordinary reversible hydrogen storage properties at ambient temperature. Chem. Eng. J. 2024, 499, 156643. [Google Scholar] [CrossRef]
- Xue, X.; Ma, C.; Liu, Y.; Wang, H.; Chen, Q. Impacts of Ce dopants on the hydrogen storage performance of Ti-Cr-V alloys. J. Alloy Compd. 2023, 934, 167947. [Google Scholar] [CrossRef]
- Zhou, L.; Li, W.; Hu, H.; Zeng, H.; Chen, Q. Ce-Doped TiZrCrMn Alloys for Enhanced Hydrogen Storage. Energy Fuel 2022, 36, 3997–4005. [Google Scholar] [CrossRef]
- Botta, W.J.; Zepon, G.; Ishikawa, T.T.; Leiva, D.R. Metallurgical processing of Mg alloys and MgH2 for hydrogen storage. J. Alloy Compd. 2022, 897, 162798. [Google Scholar] [CrossRef]
- Liu, R.; Jiang, X.; Wang, X.; Li, Z.; Yang, X.; Chen, J.; Liu, Y.; Cui, W.; Gao, F.; Gao, Y.; et al. Boosting the hydrogen storage performance of Mg-rich quaternary alloy hydrides via in-situ evolution of bidirectional catalytic phases. Chem. Eng. J. 2025, 511, 162071. [Google Scholar] [CrossRef]
- Fang, F.; Li, Y.; Zhang, Q.; Sun, L.; Shao, Z.; Sun, D. Hydrogen storage properties of TiMn1.5V0.2-based alloys for application to fuel cell system. J. Power Sources 2010, 195, 8215–8221. [Google Scholar] [CrossRef]
Category | Parameters |
---|---|
external diameter | 90 mm |
height | 415 mm |
wall thickness | 4.4 mm |
volume | 1.5 L |
weight of tank plus valve | 1560 g |
Alloys | Cell Volume/Å3 | Pa/bar | Pd/bar | Cm/wt.% | Rrev |
---|---|---|---|---|---|
Ti0.85Zr0.15Cr1.15Mn0.85 | 167.024 | 15.67 | 11.15 | 1.80 | 0.95 |
Ti0.85Zr0.15Cr1.15Mn0.85 + 1.5wt.% Ce | 167.205 | 12.92 | 9.47 | 1.83 | 0.91 |
Ti0.85Zr0.15Cr1.15Mn0.85 + 2.5wt.% Ce | 167.368 | 10.98 | 8.71 | 1.85 | 0.90 |
Ti0.85Zr0.15Cr1.15Mn0.85 + 3.5wt.% Ce | 167.474 | 9.76 | 7.83 | 1.87 | 0.89 |
Ti0.75Zr0.25Cr1.15Mn0.85 + 1.5wt.% Ce | 170.638 | 2.49 | 2.20 | 1.86 | 0.84 |
Ti0.80Zr0.20Cr1.15Mn0.85 + 1.5wt.% Ce | 168.350 | 6.49 | 4.33 | 1.85 | 0.88 |
Ti0.90Zr0.10Cr1.15Mn0.85 + 1.5wt.% Ce | 166.242 | 18.60 | 13.84 | 1.76 | 0.93 |
Category | Tanks | ||
---|---|---|---|
Pure-Alloy | Alloy-EG | Alloy-AF | |
Mass of the filled alloy | 3 kg | 3 kg | 3 kg |
Void volume at the top | ~40% | ~30% | ~20% |
Weight after vacuuming | 4553.9 g | 4575.5 g | 4716.2 g |
Hydrogen charging pressure | 50 bar | 50 bar | 50 bar |
Weight after charging | 4611.9 g | 4633.8 g | 4774 g |
hydrogen mass | 58 g | 58.3 g | 57.8 g |
Hydrogen density of tank | 1.26 wt.% | 1.26 wt.% | 1.21 wt.% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, Q.; Wang, H. Performance Modulation of AB2-Type Ti-Mn-Based Alloys for Compact Solid-State Hydrogen Storage Tank. Energies 2025, 18, 4980. https://doi.org/10.3390/en18184980
Zhao Q, Wang H. Performance Modulation of AB2-Type Ti-Mn-Based Alloys for Compact Solid-State Hydrogen Storage Tank. Energies. 2025; 18(18):4980. https://doi.org/10.3390/en18184980
Chicago/Turabian StyleZhao, Qi, and Hui Wang. 2025. "Performance Modulation of AB2-Type Ti-Mn-Based Alloys for Compact Solid-State Hydrogen Storage Tank" Energies 18, no. 18: 4980. https://doi.org/10.3390/en18184980
APA StyleZhao, Q., & Wang, H. (2025). Performance Modulation of AB2-Type Ti-Mn-Based Alloys for Compact Solid-State Hydrogen Storage Tank. Energies, 18(18), 4980. https://doi.org/10.3390/en18184980