Identification of Control Parameters in Doubly Fed Induction Generators via Adaptive Differential Evolution
Abstract
1. Introduction
2. Mathematical Model of DFIG and Converter
2.1. DFIG Mathematical Model
2.2. Converter Control Model
3. Identifiability of Control Parameters
Trajectory Sensitivity Analysis
4. Stepwise Identification Algorithm Based on Improved Differential Evolution
4.1. Differential Evolution Algorithm
- 1.
- Population Initialization: Generate N individuals satisfying the constraint conditions in the n-dimensional space:
- 2.
- For each vector xij in the K-th generation, three distinct individuals xp1, xp2, and xp3 are randomly selected. The mutant individual is generated through the mutation operation as follows:
- 3.
- To enhance population diversity, the crossover operation stochastically selects components from parent and mutant vectors using the crossover factor CR. The specific procedure is implemented as follows:
- 4.
- Based on the fitness function values, the quality of the trial individual and the current individual is compared, and the superior individual is selected to proceed to the next generation. This greedy selection mechanism ensures the evolutionary progress of the population:
4.2. Adaptive Differential Evolution Algorithm
4.2.1. Adaptive Control Parameters
4.2.2. Hybrid Multi-Strategy Mutation
4.2.3. Diversity Preservation Mechanism
4.3. Fitness Function
4.4. PI Controller Parameter Identification Procedure
- Using the trajectory sensitivity analysis method, the sensitivity of each parameter to be identified is calculated individually to evaluate its influence on the system response. Key parameters are selected, and the sequence of parameter identification is determined.
- Based on the standardized difference equation, the discrete-time model of the PI controller containing the parameters to be identified is derived, and a fitness function is designed.
- Using the adaptive differential evolution algorithm, the simulated data are incorporated into the identification process. Through mutation, crossover, selection, and iterative updating, the optimal solution is obtained.
- The identification results from Step 3 are substituted into the model, and the output is compared with the simulated external characteristics to validate the effectiveness of the algorithm.
5. Simulation Analysis
5.1. Example Test System
5.2. Parameter Identification Results
5.3. Identification Error Analysis
6. Conclusions
- A parameter identification framework integrating a trajectory sensitivity analysis and an adaptive differential evolution algorithm is proposed, which effectively balances global exploration and local convergence accuracy, demonstrating strong robustness and engineering applicability.
- High-precision parameter identification under small-disturbance conditions is achieved. Accurate parameter estimation can be accomplished with only a voltage dip to 0.9 p.u., overcoming the limitation of conventional methods that rely on moderate or severe symmetrical faults. The identification errors for all parameters, except a few, are controlled within 1%.
- An inverse correlation between the parameter identification accuracy and trajectory sensitivity is revealed, providing a theoretical basis for the optimization of the subsequent parameter identification strategies. The comprehensive advantages of the proposed method in terms of accuracy, efficiency, and robustness are validated under multiple operational scenarios.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhou, X.X.; Chen, S.Y.; Lu, Z.X.; Huang, Y.; Ma, S.; Zhao, Q. Technical characteristics of China’s new generation power system in the energy transition. Proc. CSEE 2018, 38, 1893–1904+2205. [Google Scholar]
- Jung, C. Recent Development and Future Perspective of Wind Power Generation. Energies 2024, 17, 5391. [Google Scholar] [CrossRef]
- Sun, H.D.; Xu, T.; Guo, Q.; Li, Y.; Lin, W.; Yi, J.; Li, W. Analysis on blackout in Great Britain power grid on August 9th, 2019 and its enlightenment to power grid in China. Proc. CSEE 2019, 39, 6183–6192. [Google Scholar] [CrossRef]
- Du, K.-J.; Ma, X.-P.; Zheng, Z.-X.; Li, C.-S.; Hu, W.-X.; Dong, K.-S. LVRT Capability Improvement of DFIG-based Wind Turbines with a Modified Bridge-resistive-type SFCL. IEEE Trans. Appl. Supercond. 2021, 31, 5603005. [Google Scholar] [CrossRef]
- Konuhova, M. Induction Motor Dynamics Regimes: A Comprehensive Study of Mathematical Models and Validation. Appl. Sci. 2025, 15, 1527. [Google Scholar] [CrossRef]
- Krishna, V.M.; Sandeep, V.; Murthy, S.; Yadlapati, K. Experimental investigation on performance comparison of self excited induction generator and permanent magnet synchronous generator for small scale renewable energy applications. Renew. Energy 2022, 195, 431–441. [Google Scholar] [CrossRef]
- Xu, H.S.; Zeng, X.J.; Zhang, X.J.; Li, Y.R.; Xue, F.; Huang, Y.Z.; Li, C.Y. Multi-Objective Stepwise Identification Method for Control Parameters of DFIG Grid-Side Converter Based on RT-LAB. Power Syst. Technol. 2025, 49, 771–780. [Google Scholar]
- Guo, Q.; Wang, H.; Nie, Y.H.; Gao, L. Decoupling identification method of low-voltage ride-through model parameters of direct drive power generation system considering recovery transient process. High Volt. Eng. 2021, 47, 3430–3440. [Google Scholar]
- Jin, Y.; Lu, C.; Ju, P.; Rehtanz, C.; Wu, F.; Pan, X. Probabilistic preassessment method of parameter identification accuracy with an application to identify the drive train parameters of DFIG. IEEE Trans. Power Syst. 2020, 35, 1769–1782. [Google Scholar] [CrossRef]
- Mitrovic, A.; Strezoski, L.; Loparo, K.A. Doubly Fed Induction Machine Models for Integration into Grid Management Software for Improved Post Fault Response Calculation Accuracy—A Short Review. Energies 2025, 18, 147. [Google Scholar] [CrossRef]
- Liu, J.H.; Chen, W. Online multi-parameter identification for surface-mounted permanent magnet synchronous motors under quasi-steady-state. Trans. China Electrotech. Soc. 2016, 31, 154–160. [Google Scholar] [CrossRef]
- Qin, J.S.; Jia, K.; Kong, F.Z.; Yang, B.; Wu, W.; Bi, T. Stepwise parameter identification of fault ride-through control parameters of PMSG grid-connected inverter based on optimization algorithm. Proc. CSEE 2021, 41, 59–69. [Google Scholar]
- Zhu, Y.; Cui, H.; Li, C.; Luo, C. Integrated parameter identification method for doubly-fed wind turbines based on frequency-domain universal modeling. Autom. Electric. Power Syst. 2024, 48, 92–101. [Google Scholar]
- Pan, X.P.; Gao, Y.; Jin, Y.Q.; He, J.; Hu, T.H. Parameter identification of drive system for fixed-speed wind power generation units. Power Syst. Technol. 2013, 37, 1990–1994. [Google Scholar]
- Pan, X.P.; Yin, Z.Y.; Ju, P.; Wu, F.; Ji, Y. Model parameter identification of DFIG based on short circuit current. Electric. Power Autom. Equip. 2017, 37, 27–31. [Google Scholar]
- Wu, L.; Liu, H.; Zhang, J.; Liu, C.; Sun, Y.; Li, Z.; Li, J. Identification of Control Parameters for Converters of Doubly Fed Wind Turbines Based on Hybrid Genetic Algorithm. Processes 2022, 10, 567. [Google Scholar] [CrossRef]
- Zhou, N.; Ma, H.; Chen, J.; Fang, Q.; Jiang, Z.; Li, C. Equivalent Modeling of LVRT Characteristics for Centralized DFIG Wind Farms Based on PSO and DBSCAN. Energies 2023, 16, 2551. [Google Scholar] [CrossRef]
- Han, R.; Zheng, J.; Zhu, S.; Sheng, C.; Zhang, J.; Xiao, X. Step identification of synchronous generator parameters based on sensitivity analysis. Electric. Power Autom. Equip. 2012, 32, 74–80. [Google Scholar]
- Wang, H.; Pan, X.P.; Ju, P. Parameter identification of three-mass drive-train system for fixed-speed wind turbine generator based on PSO algorithm. J. Hohai Univ. (Nat. Sci. Ed.) 2016, 44, 84–88. [Google Scholar]
- Xu, R.Q.; Peng, X.T.; Qin, S.Y.; Chen, R.; Wang, R.; Wang, J. Parameter identification of doubly-fed induction generator converter based on M-sequence. Power Syst. Technol. 2022, 46, 578–586. [Google Scholar]
- Ma, Y.; Zhao, H.; Wang, P.; Luo, J.; Zheng, W.; Wang, J. Parameter Identification and Stability Analysis of DFIG. In Proceedings of the 2022 International Conference on Power Energy Systems and Applications (ICO PESA), Nanjing, China, 25–27 November 2022; pp. 390–395. [Google Scholar] [CrossRef]
- Li, L.; Zheng, T.Y.; Huang, S.L. A parameters identification method of DFIG converter control system based on extended Kalman filter. Power Syst. Clean Energy 2022, 38, 50–60. [Google Scholar]
- Pan, X.P.; Wen, R.C.; Ju, P.; Jin, Y.Q.; Zhang, Y.T. A frequency-domain based method to identify parameters of grid side converter controller for doubly fed induction generators. Power Syst. Technol. 2015, 39, 634–638. [Google Scholar]
- Pan, X.; Ju, P.; Wen, R.; Wu, F.; Jin, Y. Decoupling estimation of parameters in rotor side controller of DFIG-based wind turbine by frequency domain method. Autom. Electric. Power Syst. 2015, 39, 19–25. [Google Scholar]
Control Parameter | Trajectory Sensitivity |
---|---|
kp1 | 16.02 |
ki1 | 4.99 |
kp2 | 1738.21 |
ki2 | 304.48 |
kp3 | 32.27 |
ki3 | 22.20 |
kp4 | 35.71 |
ki4 | 0.57 |
Control Parameter | Trajectory Sensitivity |
---|---|
kp5 | 132.98 |
ki5 | 7.390 |
kp6 | 154.82 |
ki6 | 26.85 |
kp7 | 183.41 |
ki7 | 98.42 |
Control Parameter | True Value | Identified Value | Average Error/% |
---|---|---|---|
kp1 | 0.1 | 0.10107 | 1.0711 |
ki1 | 20 | 20.0 | 0 |
kp2 | 3 | 3.0001 | 0.0018 |
ki2 | 10 | 9.9990 | −0.3954 |
kp3 | 0.2 | 0.20031 | 0.1535 |
ki3 | 10 | 10.0044 | 0.0440 |
kp4 | 3 | 2.9996 | −0.0135 |
ki4 | 10 | 10.1615 | −0.1147 |
Control Parameter | True Value | Identified Value | Average Error/% |
---|---|---|---|
kp5 | 3 | 3 | 0.0013 |
ki5 | 10 | 10.002 | 0.017 |
kp6 | 0.5 | 0.4998 | −0.040 |
ki6 | 5 | 5 | −0.0001 |
kp7 | 0.5 | 0.4999 | −0.020 |
ki7 | 10 | 10 | 0.0003 |
Control Parameter | True Value | Identified Value | Average Error/% |
---|---|---|---|
kp1 | 0.1 | 0.10107 | 1.0711 |
ki1 | 20 | 20.0178 | 0.5120 |
kp2 | 3 | 2.9869 | −0.4359 |
ki2 | 10 | 9.389 | −6.1101 |
kp3 | 0.2 | 0.19744 | −1.2802 |
ki3 | 10 | 9.9776 | −0.2239 |
kp4 | 3 | 3.0078 | 0.2609 |
ki4 | 10 | 10.384 | 3.8384 |
Control Parameter | True Value | Identified Value | Average Error/% |
---|---|---|---|
kp2 | 3 | 3 | 0.0015 |
ki2 | 10 | 9.9613 | −0.3873 |
kp4 | 3 | 2.9996 | −0.0132 |
ki4 | 10 | 9.9892 | −0.1077 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Deng, J.; Wang, Y.; Liu, Y.; Zheng, T.; Xia, N.; Li, Z.; Wang, T. Identification of Control Parameters in Doubly Fed Induction Generators via Adaptive Differential Evolution. Energies 2025, 18, 4979. https://doi.org/10.3390/en18184979
Deng J, Wang Y, Liu Y, Zheng T, Xia N, Li Z, Wang T. Identification of Control Parameters in Doubly Fed Induction Generators via Adaptive Differential Evolution. Energies. 2025; 18(18):4979. https://doi.org/10.3390/en18184979
Chicago/Turabian StyleDeng, Jun, Yu Wang, Yao Liu, Tianyue Zheng, Nan Xia, Ziang Li, and Tong Wang. 2025. "Identification of Control Parameters in Doubly Fed Induction Generators via Adaptive Differential Evolution" Energies 18, no. 18: 4979. https://doi.org/10.3390/en18184979
APA StyleDeng, J., Wang, Y., Liu, Y., Zheng, T., Xia, N., Li, Z., & Wang, T. (2025). Identification of Control Parameters in Doubly Fed Induction Generators via Adaptive Differential Evolution. Energies, 18(18), 4979. https://doi.org/10.3390/en18184979