The Role of Geographic Information Systems in Environmental Management and the Development of Renewable Energy Sources—A Review Approach
Abstract
1. Introduction
2. Environmental Management and the Development of Renewable Energy Sources
- –
- activities that impact the environment (e.g., emissions, energy consumption, waste generation) [17], as well as systematic evaluation of compliance with legal requirements and the organization’s environmental policy;
- –
- –
- implementation of an Environmental Management System (EMS) that includes planning, responsibilities, practices, procedures, processes, and resources aligned with the environmental policy [16];
- –
- ongoing monitoring and measurement of environmental impact, such as tracking emissions, resource use, and noise levels [20];
- –
- response to emergency situations, including the preparation of contingency plans for incidents that may have a negative environmental impact [21];
- –
- environmental reporting, for example, through sustainability or CSR/ESG reports, disclosing the organization’s environmental performance [22];
- –
- training and employee awareness, aimed at increasing knowledge and engagement in environmentally responsible practices [23];
- –
- internal and external communication, involving the dissemination of information regarding environmental policies, actions, and performance to stakeholders [24];
- –
- continuous improvement, for example, through application of the “plan–do–check–act” (PDCA) cycle [16].
3. Theoretical and Technological Foundations of Geographic Information Systems
3.1. Definition and Functions of Geographic Information Systems
3.2. Core Components of GIS Technology
3.3. Key Spatial Analysis Methods Include Multi-Criteria Analysis, Modeling, and Geostatistics
3.4. Integration of GIS with Modern Technologies
4. Geographic Information Systems as a Management Instrument
5. GIS in the Development and Siting of Renewable Energy Sources (RES)
5.1. GIS Applications in the Siting, Resource Analysis, and Potential Assessment of Wind Farms
5.1.1. Wind Farm Siting
5.1.2. Energy Resource Analysis
5.1.3. Wind Farm Potential Assessment
5.2. GIS Applications in the Siting, Resource Analysis, and Potential Assessment of Solar Farms
5.2.1. Solar Farm Siting
5.2.2. Energy Resource Analysis
5.2.3. Solar Farm Potential Assessment
5.3. GIS Applications in the Siting, Resource Analysis, and Potential Assessment of Biogas Plants
5.3.1. Siting of Biogas Plants
5.3.2. Energy Resource Analysis
5.3.3. Production and Investment Potential Assessment
5.4. GIS Applications in the Siting, Resource Analysis, and Potential Assessment of Hydropower Farms
5.4.1. Siting of Hydropower Farms
5.4.2. Energy Resource Analysis
5.4.3. Production and Investment Potential Assessment
5.5. Comparative Overview of GIS Methods for Renewable Energy Sources
6. Geographic Information Systems—Legal Framework
6.1. International Frameworks and Technological Standards for Spatial Data
6.2. The Legal Framework of the European Union
6.3. Polish Legislation and the Legislation of Other Countries
7. Conclusions and Directions for Further Research
Author Contributions
Funding
Conflicts of Interest
Abbreviations
Abbreviation | Definition |
AHP | Analytic Hierarchy Process |
AI | Artificial Intelligence |
AR | Augmented Reality |
BIM | Building Information Modeling |
CAD | Computer-Aided Design |
CFP | Corporate Financial Performance |
CNN | Convolutional Neural Network |
CSR | Corporate Social Responsibility |
DEM | Digital Elevation Model |
EM | Environmental Management |
EMS | Environmental Management System |
ESG | Environmental, Social and Governance |
EU | European Union |
GIS | Geographic Information System(s) |
GNSS | Global Navigation Satellite System |
HPC | High Performance Computing |
IEA | International Energy Agency |
INSPIRE | Infrastructure for Spatial Information in the European Community |
ISO | International Organization for Standardization |
ITS | Intelligent Transport Systems |
IoT | Internet of Things |
LCA | Life-Cycle Assessment |
LSTM | Long Short-Term Memory |
LiDAR | Laser Imaging Detection and Ranging |
MCDA | Multi-Criteria Decision Analysis |
OGC | Open Geospatial Consortium |
PDCA | Plan–Do–Check–Act |
PGIS | Participatory Geographic Information Systems |
PV | Photovoltaics |
PVGIS | Photovoltaic Geographical Information System |
RES | Renewable Energy Sources |
SAR | Synthetic Aperture Radar |
SDI | Spatial Data Infrastructure |
TOPSIS | Technique for Order Preference by Similarity to Ideal Solution |
UAV | Unmanned Aerial Vehicle |
VGI | Volunteered Geographic Information |
References
- Organisation for Economic Co-Operation and Development. Instrument Mixes for Environmental Policy: Executive Summary (OECD). Available online: https://www.oecd.org/env/tools-evaluation/39667944.pdf (accessed on 3 August 2025).
- Ciuła, J.; Sobiecka, E.; Zacłona, T.; Rydwańska, P.; Oleksy-Gębczyk, A.; Olejnik, T.P.; Jurkowski, S. Management of the Municipal Waste Stream: Waste into Energy in the Context of a Circular Economy—Economic and Technological Aspects for a Selected Region in Poland. Sustainability 2024, 16, 6493. [Google Scholar] [CrossRef]
- Zimmermann, N. Integrating Management and Sustainability Literature: Comment on the Paper by Gonçalves et al. Syst. Res. Behav. Sci. 2024, 41. in press. [Google Scholar] [CrossRef]
- Delbridge, R.; Helfen, M.; Pekarek, A.; Schüßler, E.; Zietsma, C. Organizing Sustainably: Introduction to the Special Issue. Organ. Stud. 2024, 45, 7–29. [Google Scholar] [CrossRef]
- Safari Bazargani, J.; Sadeghi-Niaraki, A.; Choi, S.-M. A Survey of GIS and IoT Integration: Applications and Architecture. Appl. Sci. 2021, 11, 10365. [Google Scholar] [CrossRef]
- Lourenço, M.; Oliveira, L.B.; Oliveira, J.P.; Mora, A.; Oliveira, H.; Santos, R. An Integrated Decision Support System for Improving Wildfire Suppression Management. ISPRS Int. J. Geo-Inf. 2021, 10, 497. [Google Scholar] [CrossRef]
- Levy, D.L. Environmental Management as Political Sustainability. Organ. Environ. 1997, 10, 126–147. [Google Scholar] [CrossRef]
- Khan, F.I.; Raveender, V.; Husain, T. Effective Environmental Management through Life Cycle Assessment. J. Loss Prev. Process Ind. 2002, 15, 455–466. Available online: https://www.sciencedirect.com/science/article/pii/S0950423002000517?via%3Dihub (accessed on 3 August 2025). [CrossRef]
- Zhang, Q.; Ma, Y.; Yin, Q. Environmental Management Breadth, Environmental Management Depth, and Manufacturing Performance. Int. J. Environ. Res. Public Health 2019, 16, 4628. [Google Scholar] [CrossRef]
- Seifert, C.; Damert, M.; Guenther, E. Environmental Management in German Hospitals—A Classification of Approaches. Sustainability 2020, 12, 4428. [Google Scholar] [CrossRef]
- Hazemba, M.; Halog, A. Systematic Review of How Environmental Management Policies Are Incorporated into National Development Plans in Order to Achieve Sustainable Development. Environ. Chall. 2021, 3, 100041. [Google Scholar] [CrossRef]
- Fernandez, V. Environmental Management: Implications for Business Performance, Innovation, and Financing. Technol. Forecast. Soc. Chang. 2022, 182, 121797. [Google Scholar] [CrossRef]
- ISO 14001:2015; Environmental Management Systems—Requirements with Guidance for Use. International Organization for Standardization: Geneva, Switzerland, 2015.
- International Organization for Standardization. The ISO 14000 Family of Standards. Available online: https://www.iso.org/standards/popular/iso-14000-family (accessed on 30 July 2025).
- Wu, R. Environmental Management, Environmental Innovation, and Productivity Growth: A Global Firm-Level Investigation. Environ. Dev. Econ. 2023, 28, 449–468. [Google Scholar] [CrossRef]
- Voinea, C.L.; Hoogenberg, B.-J.; Fratostiteanu, C.; Bin Azam Hashmi, H. The Relation between Environmental Management Systems and Environmental and Financial Performance in Emerging Economies. Sustainability 2020, 12, 5309. [Google Scholar] [CrossRef]
- Tourais, P.; Videira, N. Why, How and What Do Organizations Achieve with the Implementation of Environmental Management Systems?—Lessons from a Comprehensive Review on the Eco-Management and Audit Scheme. Sustainability 2016, 8, 283. [Google Scholar] [CrossRef]
- Ociepa-Kubicka, A.; Deska, I.; Ociepa, E. Organizations towards the Evaluation of Environmental Management Tools ISO 14001 and EMAS. Energies 2021, 14, 4870. [Google Scholar] [CrossRef]
- Chen, P.-K.; Lujan-Blanco, I.; Fortuny-Santos, J.; Ruiz-de-Arbulo-López, P. Lean Manufacturing and Environmental Sustainability: The Effects of Employee Involvement, Stakeholder Pressure and ISO 14001. Sustainability 2020, 12, 7258. [Google Scholar] [CrossRef]
- Silva, C.; Magano, J.; Moskalenko, A.; Nogueira, T.; Dinis, M.A.P.; Pedrosa e Sousa, H.F. Sustainable Management Systems Standards (SMSS): Structures, Roles, and Practices in Corporate Sustainability. Sustainability 2020, 12, 5892. [Google Scholar] [CrossRef]
- Kafel, P.; Nowicki, P. Circular Economy Implementation Based on ISO 14001 within SME Organization: How to Do It Best? Sustainability 2023, 15, 496. [Google Scholar] [CrossRef]
- Ab Aziz, N.H.A.; Alshdaifat, S.M. ESG Reporting: Impacts, Benefits and Challenges. In Sustainable Horizons for Business, Education, and Technology; Alshurafat, H., Hamdan, A., Sands, J., Eds.; Springer Nature Singapore: Cham, Switzerland, 2024; pp. 69–76. [Google Scholar] [CrossRef]
- Kang, Y.-C.; Hsiao, H.-S.; Ni, J.-Y. The Role of Sustainable Training and Reward in Influencing Employee Accountability Perception and Behavior for Corporate Sustainability. Sustainability 2022, 14, 11589. [Google Scholar] [CrossRef]
- Garard, J.; Kowarsch, M. Objectives for Stakeholder Engagement in Global Environmental Assessments. Sustainability 2017, 9, 1571. [Google Scholar] [CrossRef]
- Escobar-Pemberthy, N.; Ivanova, M. Implementation of Multilateral Environmental Agreements: Rationale and Design of the Environmental Conventions Index. Sustainability 2020, 12, 7098. [Google Scholar] [CrossRef]
- Mohamed, A.-M.O.; Mohamed, D.; Fayad, A.; Al Nahyan, M.T. Environmental Management and Decarbonization Nexus: A Pathway to the Energy Sector’s Sustainable Futures. World 2025, 6, 13. [Google Scholar] [CrossRef]
- Faizi, A.; AK, M.Z.; Shahzad, M.R.; Yüksel, S.; Toffanin, R. Environmental Impacts of Natural Resources, Renewable Energy, Technological Innovation, and Globalization: Evidence from the Organization of Turkic States. Sustainability 2024, 16, 9705. [Google Scholar] [CrossRef]
- Chyła, K.; Gaska, K.; Gronba-Chyła, A.; Generowicz, A.; Grąz, K.; Ciuła, J. Advanced Analytical Methods of the Analysis of Friction Stir Welding Process (FSW) of Aluminum Sheets Used in the Automotive Industry. Materials 2023, 16, 5116. [Google Scholar] [CrossRef]
- Tang, A.; Zhu, Y.; Gu, W.; Wang, C. Air Quality Benefits of Renewable Energy: Evidence from China’s Renewable Energy Heating Policy. Sustainability 2024, 16, 9268. [Google Scholar] [CrossRef]
- Sompolska-Rzechuła, A.; Bąk, I.; Becker, A.; Marjak, H.; Perzyńska, J. The Use of Renewable Energy Sources and Environmental Degradation in EU Countries. Sustainability 2024, 16, 10416. [Google Scholar] [CrossRef]
- Rabbi, M.F.; Popp, J.; Máté, D.; Kovács, S. Energy Security and Energy Transition to Achieve Carbon Neutrality. Energies 2022, 15, 8126. [Google Scholar] [CrossRef]
- Leal Filho, W.; Balogun, A.-L.; Surroop, D.; Salvia, A.L.; Narula, K.; Li, C.; Hunt, J.D.; Gatto, A.; Sharifi, A.; Feng, H.; et al. Realising the Potential of Renewable Energy as a Tool for Energy Security in Small Island Developing States. Sustainability 2022, 14, 4965. [Google Scholar] [CrossRef]
- Chou, C.-H.; Ngo, S.L.; Tran, P.P. Renewable Energy Integration for Sustainable Economic Growth: Insights and Challenges via Bibliometric Analysis. Sustainability 2023, 15, 15030. [Google Scholar] [CrossRef]
- Dirma, V.; Neverauskienė, L.O.; Tvaronavičienė, M.; Danilevičienė, I.; Tamošiūnienė, R. The Impact of Renewable Energy Development on Economic Growth. Energies 2024, 17, 6328. [Google Scholar] [CrossRef]
- Williams, J. Circular Cities: What Are the Benefits of Circular Development? Sustainability 2021, 13, 5725. [Google Scholar] [CrossRef]
- Bąk, I.; Wawrzyniak, K.; Oesterreich, M. Assessment of Impact of Use of Renewable Energy Sources on Level of Energy Poverty in EU Countries. Energies 2024, 17, 6241. [Google Scholar] [CrossRef]
- Siakas, D.; Rahanu, H.; Georgiadou, E.; Siakas, K.; Lampropoulos, G. Positive Energy Districts Enabling Smart Energy Communities. Energies 2025, 18, 3131. [Google Scholar] [CrossRef]
- An Introduction to the Geo-Information System of the Canada Land Inventory by R. F. Tomlinson. Available online: https://gisandscience.wordpress.com/wp-content/uploads/2014/02/3-an-introduction-to-the-geo-information-system-of-the-canada-land-inventory_complete.pdf (accessed on 5 August 2025).
- Principles of Geographical Information Systems for Land Resources Assessment. Available online: https://archive.org/details/principlesofgeog00burr/page/n5/mode/2up (accessed on 5 August 2025).
- GIS versus CAD versus DBMS: What Are the Differences? Available online: https://www.asprs.org/wp-content/uploads/pers/1988journal/nov/1988_nov_1551-1555.pdf (accessed on 5 August 2025).
- Geographic Information Systems: A Management Perspective. Available online: https://archive.org/details/geographicinform0000aron/page/n3/mode/2up (accessed on 5 August 2025).
- The History of GIS. Available online: https://www.geos.ed.ac.uk/~gisteac/ilw/generic_resources/books_and_papers/Thx1ARTICLE.pdf (accessed on 5 August 2025).
- Maguire, D.J.; Goodchild, M.F.; Rhind, D.W. Geographical Information Systems: Principles and Applications; Longman: London, UK, 1991. [Google Scholar]
- Goodchild, M.F. Geographical data modeling. Comput. Geosci. 1992, 18, 401–408. [Google Scholar] [CrossRef]
- Chrisman, N.R. Exploring Geographic Information Systems; Wiley: New York, NY, USA, 1997; ISBN 0-471-10842-1. [Google Scholar]
- Wright, D.J.; Goodchild, M.F.; Proctor, J.D. Demystifying the persistent ambiguity of GIS as “tool” versus “science”. Ann. Assoc. Am. Geogr. 1997, 87, 346–362. [Google Scholar] [CrossRef]
- In Geographical Information Systems. Available online: https://www.geos.ed.ac.uk/~gisteac/gis_book_abridged/files/00_fm.pdf (accessed on 3 August 2025).
- Goodchild, M.F. Geographic information systems and science: Today and tomorrow. Ann. GIS 2009, 15, 3–9. [Google Scholar] [CrossRef]
- International Organization for Standardization (ISO). ISO 19101-1:2014—Geographic Information—Reference Model—Part 1: Fundamentals. Available online: https://www.iso.org/standard/59164.html (accessed on 4 August 2025).
- Longley, P.A.; Goodchild, M.F.; Maguire, D.J.; Rhind, D.W. Geographic Information Science and Systems, 4th ed.; Wiley: Hoboken, NJ, USA, 2015; ISBN 978-1-119-12845-8. [Google Scholar]
- Zhou, C. Exploring future GIS visions in the era of the scientific and technological revolution. Inf. Geogr. 2025, 1, 100007. [Google Scholar] [CrossRef]
- Hochmair, H.H.; Juhász, L.; Li, H. Advancing AI Driven Geospatial Analysis and Data Generation: Methods, Applications and Future Directions. ISPRS Int. J. Geo-Inf. 2025, 14, 56. [Google Scholar] [CrossRef]
- Zhu, J.; Wu, P. Towards Effective BIM/GIS Data Integration for Smart City by Integrating Computer Graphics Technique. Remote Sens. 2021, 13, 1889. [Google Scholar] [CrossRef]
- Vavassori, A.; Carrion, D.; Zaragozi, B.; Migliaccio, F. VGI and Satellite Imagery Integration for Crisis Mapping of Flood Events. ISPRS Int. J. Geo-Inf. 2022, 11, 611. [Google Scholar] [CrossRef]
- Řezník, T.; Raes, L.; Stott, A.; De Lathouwer, B.; Perego, A.; Charvát, K.; Kafka, Š. Improving the documentation and findability of data services and repositories: A review of (meta)data management approaches. Comput. Geosci. 2022, 164, 105194. [Google Scholar] [CrossRef]
- Bordbar, M.; Aghamohammadi, H.; Pourghasemi, H.R.; Azizi, Z. Multi-hazard spatial modeling via ensembles of machine learning and meta-heuristic techniques. Sci. Rep. 2022, 12, 1451. [Google Scholar] [CrossRef]
- Anshuka, A.; van Ogtrop, F.F.; Sanderson, D.; Gharun, M.; Vervoort, R.W.; Sharma, A.; Vigneswaran, S.; Nguyen, T.M.H.; Abolfathi, S.; Ghosh, S.; et al. A systematic review of agent-based model for flood risk management and assessment using the ODD protocol. Nat. Hazards 2022, 112, 2739–2771. [Google Scholar] [CrossRef]
- Wu, M.; Lv, G.; Qiao, L.; Roth, R.E.; Zhu, A.X. Green cartography: A research agenda towards sustainable development. Ann. GIS 2024, 30, 15–34. [Google Scholar] [CrossRef]
- Ranatunga, S.; Ødegård, R.S.; Onstein, E.; Jetlund, K. Digital Twins for Geospatial Decision Making. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2024, X-4-2024, 271–278. [Google Scholar] [CrossRef]
- Singha, C.; Rana, V.K.; Pham, Q.B.; Nguyen, D.C.; Łupikasza, E. Integrating machine learning and geospatial data analysis for comprehensive flood hazard assessment. Environ. Sci. Pollut. Res. 2024, 31, 48497–48522. [Google Scholar] [CrossRef]
- Daud, M.; Ugliotti, F.M.; Osello, A. Comprehensive Analysis of the Use of Web-GIS for Natural Hazard Management: A Systematic Review. Sustainability 2024, 16, 4238. [Google Scholar] [CrossRef]
- Gao, S.; Mai, G. Mobile GIS and Location-Based Services. In Comprehensive Geographic Information Systems; Huang, B., Cova, T.J., Tsou, M.-H., Eds.; Elsevier: Oxford, UK, 2018; Volume 1, pp. 384–397. [Google Scholar] [CrossRef]
- Yuan, Z.; Wen, B.; He, C.; Zhou, J.; Zhou, Z.; Xu, F. Application of Multi-Criteria Decision-Making Analysis to Rural Spatial Sustainability Evaluation: A Systematic Review. Int. J. Environ. Res. Public Health 2022, 19, 6572. [Google Scholar] [CrossRef] [PubMed]
- Introduction to Geographic Information Systems. Available online: https://archive.org/details/kang-tsung-chang-introduction-to-geographic-information-systems-2019-mc-graw-hill-libgen.lc (accessed on 5 August 2025).
- Christofi, D.; Mettas, C.; Evagorou, E.; Stylianou, N.; Eliades, M.; Theocharidis, C.; Chatzipavlis, A.; Hasiotis, T.; Hadjimitsis, D. A Review of Open Remote Sensing Data with GIS, AI, and UAV Support for Shoreline Detection and Coastal Erosion Monitoring. Appl. Sci. 2025, 15, 4771. [Google Scholar] [CrossRef]
- Feizizadeh, B.; Omarzadeh, D.; Kazemi Garajeh, M.; Lakes, T.; Blaschke, T. Machine learning data-driven approaches for land use/cover mapping and trend analysis using Google Earth Engine. J. Environ. Plan. Manag. 2021, 66, 665–697. [Google Scholar] [CrossRef]
- ISO 19115:2014; Geographic Information—Metadata. International Organization for Standardization: Geneva, Switzerland, 2014.
- Brodeur, J.; Coetzee, S.; Danko, D.; Garcia, S.; Hjelmager, J. Geographic Information Metadata—An Outlook from the International Standardization Perspective. ISPRS Int. J. Geo-Inf. 2019, 8, 280. [Google Scholar] [CrossRef]
- Roberti, G.; McGregor, J.; Lam, S.; Bigelow, D.; Boyko, B.; Ahern, C.; Wang, V.; Barnhart, B.; Smyth, C.; Poole, D.; et al. INSPIRE standards as a framework for artificial intelligence applications: A landslide example. Nat. Hazards Earth Syst. Sci. 2020, 20, 3455–3472. [Google Scholar] [CrossRef]
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-Scale Geospatial Analysis for Everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- Zandbergen, P.A. Python Scripting for ArcGIS Pro, 3rd ed.; Esri Press: Redlands, CA, USA, 2024; ISBN 9781589488014. [Google Scholar]
- Helmi, A.M.; Farhan, M.S.; Nasr, M.M. A framework for integrating geospatial information systems and hybrid cloud computing. Comput. Electr. Eng. 2018, 67, 145–158. [Google Scholar] [CrossRef]
- Stojanovic, N.; Stojanovic, D. High-performance computing in GIS: Techniques and applications. Int. J. Reason. Based Intell. Syst. 2013, 5, 42–49. [Google Scholar] [CrossRef]
- Vonk, G.; Ligtenberg, A. Socio-technical PSS development to improve functionality and usability—Sketch planning using a Maptable. Landsc. Urban Plan. 2010, 94, 166–174. [Google Scholar] [CrossRef]
- Fagerholm, N.; Raymond, C.M.; Olafsson, A.S.; Brown, G.; Rinne, T.; Hasanzadeh, K.; Broberg, A.; Kyttä, M. A methodological framework for analysis of participatory mapping data in research, planning, and management. Int. J. Geogr. Inf. Sci. 2021, 35, 1848–1875. [Google Scholar] [CrossRef]
- Elghazouly, H.G.; Elnaggar, A.M.; Ayaad, S.M.; Nassar, E.T. Framework for integrating multi-criteria decision analysis and geographic information system (MCDA-GIS) for improving slums interventions policies in Cairo, Egypt. Alex. Eng. J. 2024, 86, 277–288. [Google Scholar] [CrossRef]
- Adiyasa, A.; Mantegna, A.N.; Kveladze, I. Automating GIS-Based Cloudburst Risk Mapping Using Generative AI: A Framework for Scalable Hydrological Analysis. Hydrology 2025, 12, 196. [Google Scholar] [CrossRef]
- Tesfaye, W.; Elias, E.; Warkineh, B.; Tekalign, M.; Abebe, G. Modeling of Land Use and Land Cover Changes Using Google Earth Engine and Machine Learning Approach: Implications for Landscape Management. Environ. Syst. Res. 2024, 13, 31. [Google Scholar] [CrossRef]
- Madanchian, M.; Taherdoost, H. Applications of Multi-Criteria Decision Making in Information Systems for Strategic and Operational Decisions. Computers 2025, 14, 208. [Google Scholar] [CrossRef]
- Manzolli, J.A.; Yu, J.; Miranda-Moreno, L. Synthetic multi-criteria decision analysis (S-MCDA): A new framework for participatory transportation planning. Transp. Res. Interdiscip. Perspect. 2025, 31, 101463. [Google Scholar] [CrossRef]
- Shahpari, S.; Eversole, R. Planning to ‘Hear the Farmer’s Voice’: An agent-based modelling approach to agricultural land use planning. Appl. Spat. Anal. Policy 2024, 17, 115–138. [Google Scholar] [CrossRef]
- Li, H.; Liu, Z.; Lin, X.; Wang, Y.; Chen, J.; Zhang, M.; Zhao, Q.; Yang, X.; Zhou, K.; Wu, L.; et al. A novel spatiotemporal urban land change simulation model: Coupling transformer encoder, convolutional neural network, and cellular automata. J. Geogr. Sci. 2024, 34, 2263–2287. [Google Scholar] [CrossRef]
- Guo, Z.; Liu, X. How artificial intelligence cooperating with agent-based modeling for urban studies: A systematic review. Trans. GIS 2024, 28, 13152. [Google Scholar] [CrossRef]
- Zaresefat, M.; Derakhshani, R.; Griffioen, J. Empirical Bayesian Kriging, a Robust Method for Spatial Data Interpolation of a Large Groundwater Quality Dataset from the Western Netherlands. Water 2024, 16, 2581. [Google Scholar] [CrossRef]
- Njoku, E.A.; Akpan, P.E.; Effiong, A.E.; Babatunde, I.O.; Owoseni, O.A.; Olanrewaju, J.O. Evaluation of geostatistical and multiple regression models for assessment of spatial characteristics of carbon monoxide concentration in a data-limited environment. Appl. Geogr. 2022, 149, 102816. [Google Scholar] [CrossRef]
- Clark, L.P.; Zilber, D.; Schmitt, C.; Apte, J.S.; Marshall, J.D.; Hystad, P.; Robinson, A.L.; Bechle, M.J.; Tessum, C.W.; Colmer, J.; et al. A review of geospatial exposure models and approaches for health data integration. J. Expo. Sci. Environ. Epidemiol. 2025, 35, 131–148. [Google Scholar] [CrossRef] [PubMed]
- Mashala, M.J.; Dube, T.; Mudereri, B.T.; Ayisi, K.K.; Ramudzuli, M.R. A Systematic Review on Advancements in Remote Sensing for Assessing and Monitoring Land Use and Land Cover Changes Impacts on Surface Water Resources in Semi-Arid Tropical Environments. Remote Sens. 2023, 15, 3926. [Google Scholar] [CrossRef]
- Samadzadegan, F.; Toosi, A.; Dadrass Javan, F. A critical review on multi-sensor and multi-platform remote sensing data fusion approaches: Current status and prospects. Int. J. Remote Sens. 2024, 46, 1327–1402. [Google Scholar] [CrossRef]
- Onoriode, U.; Kotonya, G. IoT architectural framework: Connection and integration framework for IoT systems. Electron. Proc. Theor. Comput. Sci. 2018, 264, 1–17. [Google Scholar] [CrossRef]
- Kayvanfar, V.; Elomri, A.; Kerbache, L.; Rezaei Vandchali, H.; El Omri, A. A review of decision support systems in the Internet of Things and supply chain and logistics using web content mining. Supply Chain Anal. 2024, 6, 100063. [Google Scholar] [CrossRef]
- Zou, L.; Song, Y.; Cervone, G. Geospatial big data: Theory, methods, and applications. Ann. GIS 2024, 30, 411–415. [Google Scholar] [CrossRef]
- Werner, M. Parallel processing strategies for big geospatial data. Front. Big Data 2019, 2, 44. [Google Scholar] [CrossRef]
- Barrile, V.; La Foresta, F.; Calcagno, S.; Genovese, E. Innovative System for BIM/GIS Integration in the Context of Urban Sustainability. Appl. Sci. 2024, 14, 8704. [Google Scholar] [CrossRef]
- Piras, G.; Muzi, F.; Zylka, C. Integration of BIM and GIS for the Digitization of the Built Environment. Appl. Sci. 2024, 14, 11171. [Google Scholar] [CrossRef]
- Pandey, A.; Mannepalli, P.K.; Gupta, M.; Dangi, R.; Choudhary, G. A deep learning-based hybrid CNN-LSTM model for location-aware web service recommendation. Neural Process. Lett. 2024, 56, 234. [Google Scholar] [CrossRef]
- Wang, S.; Cao, J.; Yu, P.S. Deep learning for spatio-temporal data mining: A survey. IEEE Trans. Knowl. Data Eng. 2022, 34, 3681–3700. [Google Scholar] [CrossRef]
- Michels, A.C.; Padmanabhan, A.; Xiao, Z.; Kotak, M.; Baig, F.; Wang, S. CyberGIS-Compute: Middleware for democratizing scalable geocomputation. SoftwareX 2024, 26, 101691. [Google Scholar] [CrossRef]
- Zhang, X.; Xiang, L.; Yue, P.; Gong, J.; Wu, H. Open Geospatial Engine: A cloud-based spatiotemporal computing platform. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2024, X-4-2024, 453–459. [Google Scholar] [CrossRef]
- The Times of India. GCC Launches Smart Waste Collection in North Chennai. Available online: https://timesofindia.indiatimes.com/city/chennai/gcc-launches-smart-waste-collection-in-north-chennai/articleshow/123417445.cms (accessed on 5 August 2025).
- The Times of India. Waste Collection in Madurai Goes Smart with AI-Powered Cameras. Available online: https://timesofindia.indiatimes.com/city/madurai/waste-collection-in-madurai-goes-smart-with-ai-powered-cameras/articleshow/123347739.cms (accessed on 5 August 2025).
- Google Research. Green Light: Using Google AI to Reduce Traffic Emissions. Available online: https://sites.research.google/gr/greenlight/ (accessed on 23 August 2025).
- Novkovic, I.; Markovic, G.B.; Lukic, D.; Dragicevic, S.; Milosevic, M.; Djurdjic, S.; Samardzic, I.; Lezaic, T.; Tadic, M. GIS-Based Forest Fire Susceptibility Zonation with IoT Sensor Network Support, Case Study—Nature Park Golija, Serbia. Sensors 2021, 21, 6520. [Google Scholar] [CrossRef]
- GIS Resources. Pimpri-Chinchwad Enhances Safety with New Flood Forecasting Early Warning System. Available online: https://gisresources.com/pimpri-chinchwad-enhances-safety-with-new-flood-forecasting-early-warning-system/ (accessed on 5 August 2025).
- Rajesh, M.; Babu, R.G.; Moorthy, U.; Sathishkumar, V.E. Machine Learning-Driven Framework for Realtime Air Quality Assessment and Predictive Environmental Health Risk Mapping. Sci. Rep. 2025, 15, 28801. [Google Scholar] [CrossRef]
- Microsoft Research. Project Eclipse—Hyperlocal Environmental Sensing Platform for Cities. Available online: https://www.microsoft.com/en-us/research/project/project-eclipse/ (accessed on 5 August 2025).
- The Guardian. Real-Time Water Quality Monitors Installed at Wild Swimming Spots in Southern England. Available online: https://www.theguardian.com/environment/article/2024/jul/21/real-time-water-quality-monitors-installed-at-wild-swimming-spots-in-southern-england (accessed on 5 August 2025).
- Skopeliti, A.; Stratigea, A.; Krassanakis, V.; Lagarias, A. Geographic Information Systems and Cartography for a Sustainable World. ISPRS Int. J. Geo-Inf. 2025, 14, 254. [Google Scholar] [CrossRef]
- Qwaider, S.; Al-Ramadan, B.; Shafiullah, M.; Islam, A.; Worku, M.Y. GIS-Based Progress Monitoring of SDGs towards Achieving Saudi Vision 2030. Remote Sens. 2023, 15, 5770. [Google Scholar] [CrossRef]
- Šoltésová, M.; Iannaccone, B.; Štrba, Ľ.; Sidor, C. Application of GIS Technologies in Tourism Planning and Sustainable Development: A Case Study of Gelnica. ISPRS Int. J. Geo-Inf. 2025, 14, 120. [Google Scholar] [CrossRef]
- Aggeri, F. How Can Performativity Contribute to Management and Organization Research? Theoretical Perspectives and Analytical Framework. M@N@Gement 2017, 20, 28–69. Available online: https://shs.cairn.info/journal-management-2017-1-page-28?lang=en (accessed on 22 August 2025). [CrossRef]
- Bajdur, W.; Zielińska, A.; Gronba-Chyła, A. Product Life Cycle Assessment (LCA) as a Tool for Environmental Management. Annu. Set Environ. Prot. 2023, 25, 389–398. [Google Scholar] [CrossRef]
- Aggeri, F.; Labatut, J. Looking at Management through Its Instruments: A Genealogical Analysis of Instrument-Based Approaches of Management; Centre de Gestion Scientifique (CGS), MINES ParisTech: Paris, France, 2011; Available online: https://hal.science/hal-00639734v1 (accessed on 22 August 2025).
- Wereda, W.; Zacłona, T. Shaping the Image as a Management Instrument in the Contemporary Enterprise; Scientific Papers of Silesian University of Technology, Organization and Management, Ser. 145; Silesian University of Technology Publishing House: Gliwice, Poland, 2020; pp. 597–611. [Google Scholar] [CrossRef]
- Kochanek, A.; Janczura, J.; Jurkowski, S.; Zacłona, T.; Gronba-Chyła, A.; Kwaśnicki, P. The Analysis of Exhaust Composition Serves as the Foundation of Sustainable Road Transport Development in the Context of Meeting Emission Standards. Sustainability 2025, 17, 3420. [Google Scholar] [CrossRef]
- Luisetto, M.; Cabianca, L.; Sahu, R. Management Instrument in Pharmaceutical Care and Clinical Pharmacy. Int. J. Econ. Manag. Sci. 2016, 5, 373. Available online: https://pdfs.semanticscholar.org/9186/707f102e5f1994337519ccc5efaa1431dd35.pdf (accessed on 5 August 2025). [CrossRef]
- Nowak, M.J.; Monteiro, R.; Olcina-Cantos, J.; Vagiona, D.G. Spatial Planning Response to the Challenges of Climate Change Adaptation: An Analysis of Selected Instruments and Good Practices in Europe. Sustainability 2023, 15, 10431. [Google Scholar] [CrossRef]
- Malczewski, J. GIS-Based Multicriteria Decision Analysis: A Survey of the Literature. Int. J. Geogr. Inf. Sci. 2006, 20, 703–726. [Google Scholar] [CrossRef]
- Rahman, M.M.; Szabó, G. Sustainable Urban Land-Use Optimization Using GIS-Based Multicriteria Decision-Making (GIS-MCDM) Approach. ISPRS Int. J. Geo-Inf. 2022, 11, 313. [Google Scholar] [CrossRef]
- Graziuso, G.; Mancini, S.; Francavilla, A.B.; Grimaldi, M.; Guarnaccia, C. Geo-Crowdsourced Sound Level Data in Support of the Community Facilities Planning. A Methodological Proposal. Sustainability 2021, 13, 5486. [Google Scholar] [CrossRef]
- Falzone, C.; Romain, A.-C. Establishing an Air Quality Index Based on Proxy Data for Urban Planning Part 1: Methodological Developments and Preliminary Tests. Atmosphere 2022, 13, 1470. [Google Scholar] [CrossRef]
- Cova, T.J. GIS in Emergency Management. In Geographical Information Systems: Principles, Techniques, Applications and Management; Longley, P.A., Goodchild, M.F., Maguire, D.J., Rhind, D.W., Eds.; John Wiley & Sons: Chichester, UK, 1999; pp. 845–858. [Google Scholar]
- Taoukidou, N.; Karpouzos, D.; Georgiou, P. Flood Hazard Assessment Through AHP, Fuzzy AHP, and Frequency Ratio Methods: A Comparative Analysis. Water 2025, 17, 2155. [Google Scholar] [CrossRef]
- Calka, B.; Szostak, M. GIS-Based Environmental Monitoring and Analysis. Appl. Sci. 2025, 15, 3155. [Google Scholar] [CrossRef]
- Brom, P.; Engemann, K.; Breed, C.; Pasgaard, M.; Onaolapo, T.; Svenning, J.-C. A Decision Support Tool for Green Infrastructure Planning in the Face of Rapid Urbanization. Land 2023, 12, 415. [Google Scholar] [CrossRef]
- Stoeglehner, G. Integrated spatial and energy planning: A means to reach sustainable development goals. Evolut. Inst. Econ. Rev. 2020, 17, 473–486. [Google Scholar] [CrossRef]
- Moltames, R.; Naghavi, M.S.; Silakhori, M.; Noorollahi, Y.; Yousefi, H.; Hajiaghaei-Keshteli, M.; Azizimehr, B. Multi-Criteria Decision Methods for Selecting a Wind Farm Site Using a Geographic Information System (GIS). Sustainability 2022, 14, 14742. [Google Scholar] [CrossRef]
- Prieto-Amparán, J.A.; Pinedo-Alvarez, A.; Morales-Nieto, C.R.; Valles-Aragón, M.C.; Álvarez-Holguín, A.; Villarreal-Guerrero, F. A Regional GIS-Assisted Multi-Criteria Evaluation of Site-Suitability for the Development of Solar Farms. Land 2021, 10, 217. [Google Scholar] [CrossRef]
- Krstić, M.; Tadić, S.; Miglietta, P.P.; Porrini, D. Enhancing Biodiversity and Environmental Sustainability in Intermodal Transport: A GIS-Based Multi-Criteria Evaluation Framework. Sustainability 2025, 17, 1391. [Google Scholar] [CrossRef]
- Bertsiou, M.M.; Theochari, A.P.; Gergatsoulis, D.; Gerakianakis, M.; Baltas, E. Optimal Site Selection for Wind and Solar Parks in Karpathos Island Using a GIS-MCDM Model. ISPRS Int. J. Geo-Inf. 2025, 14, 125. [Google Scholar] [CrossRef]
- Jaywant, S.A.; Arif, K.M. Remote Sensing Techniques for Water Quality Monitoring: A Review. Sensors 2024, 24, 8041. [Google Scholar] [CrossRef] [PubMed]
- Appiah, D.O.; Schröder, D.; Forkuo, E.K.; Bugri, J.T. Application of Geo-Information Techniques in Land Use and Land Cover Change Analysis in a Peri-Urban District of Ghana. ISPRS Int. J. Geo-Inf. 2015, 4, 1265–1289. [Google Scholar] [CrossRef]
- Che, L.; Yin, S.; Jin, J.; Wu, W. Assessment and Simulation of Urban Ecological Environment Quality Based on Geographic Information System Ecological Index. Land 2024, 13, 687. [Google Scholar] [CrossRef]
- Klonner, C.; Marx, S.; Usón, T.; Porto de Albuquerque, J.; Höfle, B. Volunteered Geographic Information in Natural Hazard Analysis: A Systematic Literature Review of Current Approaches with a Focus on Preparedness and Mitigation. ISPRS Int. J. Geo-Inf. 2016, 5, 103. [Google Scholar] [CrossRef]
- Pimenta, L.; Duarte, L.; Teodoro, A.C.; Beltrão, N.; Gomes, D.; Oliveira, R. GIS-Based Flood Susceptibility Mapping Using AHP in the Urban Amazon: A Case Study of Ananindeua, Brazil. Land 2025, 14, 1543. [Google Scholar] [CrossRef]
- Gentilucci, M.; Barbieri, M.; Younes, H.; Rihab, H.; Pambianchi, G. Analysis of Wildfire Susceptibility by Weight of Evidence, Using Geomorphological and Environmental Factors in the Marche Region, Central Italy. Geosciences 2024, 14, 112. [Google Scholar] [CrossRef]
- Ye, C.; Wu, H.; Oguchi, T.; Tang, Y.; Pei, X.; Wu, Y. Physically Based and Data-Driven Models for Landslide Susceptibility Assessment: Principles, Applications, and Challenges. Remote Sens. 2025, 17, 2280. [Google Scholar] [CrossRef]
- Guo, H.; Jiang, Y.; Li, E.Y. Enhancing Organizational Resilience in Emergency Management: A Cross-Organizational Intelligence System for Sustainable Response to Crisis. Sustainability 2025, 17, 5000. [Google Scholar] [CrossRef]
- Giuffrida, N.; Le Pira, M.; Inturri, G.; Ignaccolo, M. Mapping with Stakeholders: An Overview of Public Participatory GIS and VGI in Transport Decision-Making. ISPRS Int. J. Geo-Inf. 2019, 8, 198. [Google Scholar] [CrossRef]
- Munyaka, J.-C.B.; Chenal, J.; de Roulet, P.T.H.; Mandal, A.K.; Pudasaini, U.; Otieno, N.O. Multi-Level Participatory GIS Framework to Assess Mobility Needs and Transport Barriers in Rural Areas: A Case Study of Rural Mumias East, a Sub-County of Kakamega, Kenya. Sustainability 2023, 15, 9344. [Google Scholar] [CrossRef]
- Albrecht, J.; Pingel, J. GIS as a communication process: Experiences from the Milwaukee COMPASS project. In Geographic Information Systems and Crime Analysis; Wang, F., Ed.; Idea Group Publishing: Hershey, PA, USA, 2005; pp. 1–24. [Google Scholar] [CrossRef][Green Version]
- Pacific Southwest Region University Transportation Center (METRANS & USC). Geospatial Approaches to Enhancing MPO Community Engagement (Final Report PSR 20 SP98); USDOT-Funded Research Conducted at METRANS; California State University Long Beach: Long Beach, CA, USA, 2021. Available online: https://rosap.ntl.bts.gov/view/dot/58501 (accessed on 5 August 2025).[Green Version]
- Yildirim, R.E.; Sisman, A. Spatial Decision Support for Determining Suitable Emergency Assembly Places Using GIS and MCDM Techniques. Sustainability 2025, 17, 2144. [Google Scholar] [CrossRef]
- Miller, A.; Li, R. A Geospatial Approach for Prioritizing Wind Farm Development in Northeast Nebraska, USA. ISPRS Int. J. Geo-Inf. 2014, 3, 968–979. [Google Scholar] [CrossRef]
- Yousefi, H.; Motlagh, S.G.; Montazeri, M. Multi-Criteria Decision-Making System for Wind Farm Site-Selection Using Geographic Information System (GIS): Case Study of Semnan Province, Iran. Sustainability 2022, 14, 7640. [Google Scholar] [CrossRef]
- Amsharuk, A.; Łaska, G. The Approach to Finding Locations for Wind Farms Using GIS and MCDA: Case Study Based on Podlaskie Voivodeship, Poland. Energies 2023, 16, 7107. [Google Scholar] [CrossRef]
- Amsharuk, A.; Łaska, G. Site Selection of Wind Farms in Poland: Combining Theory with Reality. Energies 2024, 17, 2635. [Google Scholar] [CrossRef]
- Baseer, M.A.; Rehman, S.; Meyer, J.P.; Alam, M.M. GIS-Based Site Suitability Analysis for Wind Farm Development in Saudi Arabia. Energy 2017, 141, 1166–1176. [Google Scholar] [CrossRef]
- Demir, G.; Riaz, M.; Deveci, M. Wind Farm Site Selection Using Geographic Information System and Fuzzy Decision-Making Model. Expert Syst. Appl. 2024, 255, 124772. [Google Scholar] [CrossRef]
- Elkadeem, M.R.; Younes, A.; Sharshir, S.W.; Campana, P.E.; Wang, S. Sustainable siting and design optimization of hybrid renewable energy system: A geospatial multi-criteria analysis. Appl. Energy 2021, 295, 117071. [Google Scholar] [CrossRef]
- Demir, A.; Dinçer, A.E.; Çiftçi, C.; Gülçimen, S.; Uzal, N.; Yılmaz, K. Wind Farm Site Selection Using GIS-Based Multicriteria Analysis with Life-Cycle Assessment Integration. Earth Sci. Inform. 2024, 17, 1591–1608. [Google Scholar] [CrossRef]
- Backstrom, J.T.; Warden, N.M.; Walsh, C.M. Optimizing Offshore Wind Export Cable Routing Using GIS-Based Environmental Heat Maps. Wind Energ. Sci. 2024, 9, 1105–1121. [Google Scholar] [CrossRef]
- Kontos, T.D.; Katikas, L.; Kavouras, M. A Least-Cost Path Algorithm Utilizing Directional Graphs and Shape Optimization Techniques for Offshore Wind Farm Cost Modelling in the North and Central Aegean Sea, Greece. Inf. Geogr. 2025, 2, 100021. [Google Scholar] [CrossRef]
- Palmer, J.F. Deconstructing Viewshed Analysis Makes It Possible to Construct a Useful Visual Impact Map for Wind Projects. Landsc. Urban Plan. 2022, 225, 104423. [Google Scholar] [CrossRef]
- Gleason, M.; Lopez, A.; Rivers, M. Mapping and Characterizing the Visual Impacts of the Existing US Wind Turbine Fleet. Appl. Energy 2025, 378, 124801. [Google Scholar] [CrossRef]
- van Haaren, R.; Fthenakis, V. GIS-Based Wind Farm Site Selection Using Spatial Multi-Criteria Analysis (SMCA): Evaluating the Case for New York State. Renew. Sustain. Energy Rev. 2011, 15, 3332–3340. [Google Scholar] [CrossRef]
- Benti, N.E.; Alemu, Y.B.; Balta, M.M.; Gunta, S.; Chaka, M.D.; Semie, A.G.; Mekonnen, Y.S.; Yohannes, H. Site Suitability Assessment for the Development of Wind Power Plant in Wolaita Area, Southern Ethiopia: An AHP-GIS Model. Sci. Rep. 2023, 13, 19811. [Google Scholar] [CrossRef] [PubMed]
- Al-Abadi, A.M.; Handhal, A.M.; Abdulhasan, M.A.; Ali, W.L.; Hassan, J.J.; Al Aboodi, A.H. Optimal siting of large photovoltaic solar farms at Basrah governorate, Southern Iraq using hybrid GIS-based Entropy-TOPSIS and AHP-TOPSIS models. Renew. Energy 2025, 241, 122308. [Google Scholar] [CrossRef]
- Aziz, M.T.; Haque, A.; Islam, M.R.; Hosen, M.B.; Kader, Z.; Aziz, M.A.; Saha, O.R. Site Suitability Assessment for Solar Powered Green Hydrogen Production Plants: A GIS Based AHP and Fuzzy AHP Approach for Bangladesh. Renew. Energy 2025, 254, 123675. [Google Scholar] [CrossRef]
- Barbusiński, K.; Kwaśnicki, P.; Gronba-Chyła, A.; Generowicz, A.; Ciuła, J.; Szeląg, B.; Fatone, F.; Makara, A.; Kowalski, Z. Influence of Environmental Conditions on the Electrical Parameters of Side Connectors in Glass–Glass Photovoltaic Modules. Energies 2024, 17, 680. [Google Scholar] [CrossRef]
- Ashraf, H.A.; Li, J.; Li, Z.; Sohail, A.; Ahmed, R.; Butt, M.H.; Ullah, H. Geographic Information System and Machine Learning Approach for Solar Photovoltaic Site Selection: A Case Study in Pakistan. Processes 2025, 13, 981. [Google Scholar] [CrossRef]
- Muhammad, S.; Ali, T.; Khan, Y.; Abdullah, S. Optimal Photovoltaic Location Selection Systems through TOPSIS, AHP, and GIS Techniques: A Case Study in Pakistan. Eur. Phys. J. Plus 2024, 139, 12. [Google Scholar] [CrossRef]
- Rane, N.L.; Günen, M.A.; Mallick, S.K.; Rane, J.; Pande, C.B.; Giduturi, M.; Bhutto, J.K.; Yadav, K.K.; Tolche, A.D.; Alreshidi, M.A. GIS-Based Multi-Influencing Factor (MIF) Application for Optimal Site Selection of Solar Photovoltaic Power Plant in Nashik, India. Environ. Sci. Eur. 2024, 36, 5. [Google Scholar] [CrossRef]
- Adhikari, M.D.; Yune, C.-Y. Geospatial-Based Risk Analysis of Solar Plants Located in the Mountainous Region of Gangwon Province, South Korea. Renew. Energy 2025, 251, 123408. [Google Scholar] [CrossRef]
- de Luis-Ruiz, J.M.; Salas-Menocal, B.R.; Pereda-García, R.; Pérez-Álvarez, R.; Sedano-Cibrián, J.; Ruiz-Fernández, C. Optimal Location of Solar Photovoltaic Plants Using Geographic Information Systems and Multi-Criteria Analysis. Sustainability 2024, 16, 2895. [Google Scholar] [CrossRef]
- Tian, A.; Zünd, D.; Bettencourt, L.M.A. Estimating Rooftop Solar Potential in Urban Environments: A Generalized Approach and Assessment of the Galápagos Islands. Front. Sustain. Cities 2021, 3, 632109. [Google Scholar] [CrossRef]
- Kwaśnicki, P.; Gronba-Chyła, A.; Generowicz, A.; Ciuła, J.; Wiewiórska, I.; Gaska, K. Alternative Method of Making Electrical Connections in the 1st and 3rd Generation Modules as an Effective Way to Improve Module Efficiency and Reduce Production Costs. Arch. Thermodyn. 2023, 44, 179–200. [Google Scholar] [CrossRef]
- Kaya, Ö. Photovoltaic Mobile Charging Station for Green Infrastructure: A Data-Driven Case Study. Urban Clim. 2025, 60, 102358. [Google Scholar] [CrossRef]
- Park, J.; Kim, M.; Hyun, C.-U. Assessing the Applicability of a Railway-Integrated Photovoltaic System for Sustainable Urban Tourist Trains. Sustain. Energy Technol. Assess. 2025, 82, 104468. [Google Scholar] [CrossRef]
- Idrovo-Macancela, A.; Velecela-Zhindón, M.; Barragán-Escandón, A.; Zalamea-León, E.; Mejía-Coronel, D. GIS-Based Assessment of Photovoltaic Solar Potential on Building Rooftops in Equatorial Urban Areas. Heliyon 2025, 11, e41425. [Google Scholar] [CrossRef] [PubMed]
- Ma, C.; Yuan, C.; Zhang, Y.; Hu, H. Mapping Utilizable Rooftop Areas to Meet Food Security Goal in Four High-Density Cities: A Deep Learning and GIS Integrated Approach. Sustain. Cities Soc. 2025, 118, 106066. [Google Scholar] [CrossRef]
- Marcos-Castro, A.; Martín-Chivelet, N.; Polo, J. Enhanced GIS Methodology for Building-Integrated Photovoltaic Façade Potential Based on Free and Open-Source Tools and Information. Remote Sens. 2025, 17, 954. [Google Scholar] [CrossRef]
- Anselmo, S.; Safaeianpour, A.; Moghadam, S.T.; Ferrara, M. GIS-Based Solar Radiation Modelling for Photovoltaic Potential in Cities: A Sensitivity Analysis for the Evaluation of Output Variability Range. Energy Rep. 2024, 12, 4656–4669. [Google Scholar] [CrossRef]
- Ilba, M. SolarQGIS: A QGIS Application for Calculating Solar Radiation on 3D Vector GIS Data. SoftwareX 2025, 31, 102230. [Google Scholar] [CrossRef]
- Sullivan, J.; Witayangkurn, A. Automatic Estimation of Solar Rooftops and Power Generation From Publicly Available Satellite Imagery Through Georeferencing and Large-Scale Support. IEEE Access 2025, 13, 20740–20749. [Google Scholar] [CrossRef]
- Belaid, A.; Guermoui, M.; Riche, A.; Arrif, T.; Maamar, H.; Mohamed Kamel, C.; Rabehi, A.; Mahmoud Al Rahhal, M. High-Resolution Mapping of Concentrated Solar Power Site Suitability in Ghardaïa, Algeria: A GIS-Based Fuzzy Logic and Multi-Criteria Decision Analysis. IEEE Access 2025, 13, 231–255. [Google Scholar] [CrossRef]
- Feng, X.; Zhang, Z.; Chen, Q.; Guo, Z.; Zhang, H.; Wang, M.; Gao, W.; Liu, X. Integrating Remote Sensing, GIS, and Multi-Criteria Decision Making for Assessing PV Potential in Mountainous Regions. Renew. Energy 2025, 241, 122340. [Google Scholar] [CrossRef]
- Flora, F.M.I. A GIS-Based on Application of Monte Carlo and Multi-Criteria Decision-Making Approach for Site Suitability Analysis of Solar-Hydrogen Production: Case of Cameroon. Heliyon 2025, 11, e41541. [Google Scholar] [CrossRef]
- Bhatta, G.; Lohani, S.P.; KC, M.; Bhandari, R.; Palit, D.; Anderson, T. Harnessing Solar PV Potential for Decarbonization in Nepal: A GIS Based Assessment of Ground-Mounted, Rooftop, and Agrivoltaic Solar Systems for Nepal. Energy Sustain. Dev. 2025, 85, 101618. [Google Scholar] [CrossRef]
- Elazab, R.; Daowd, M. New Geographic Information System Based Sustainability Metric for Isolated Photovoltaic Systems. Sci. Rep. 2025, 15, 2023. [Google Scholar] [CrossRef]
- Nassar, A.K.; Al-Dulaimi, O.; Fakhruldeen, H.F.; Sapaev, I.B.; Jabbar, F.I.; Dawood, I.I.; Khalaf, D.H.; Algburi, S. Multi-Criteria GIS-Based Approach for Optimal Site Selection of Solar and Wind Energy. Unconvent. Resour. 2025, 7, 100192. [Google Scholar] [CrossRef]
- Hauger, S.; Lieb, V.; Glaser, R. Spatial Potential Analysis and Site Selection for Agrivoltaics in Germany. Renew. Sustain. Energy Rev. 2025, 213, 115469. [Google Scholar] [CrossRef]
- Jamroen, C.; Suttikul, T. A Geographic Information System-Assisted Techno-Economic Assessment Framework for Aquavoltaic Systems in Shrimp Farming. Energy Rep. 2024, 12, 881–891. [Google Scholar] [CrossRef]
- Okeke, C.J.; Egberibine, P.K.; Edet, J.U.; Wilson, J.; Blanchard, R.E. Comparative Assessment of Concentrated Solar Power and Photovoltaic for Power Generation and Green Hydrogen Potential in West Africa: A Case Study on Nigeria. Renew. Sustain. Energy Rev. 2025, 215, 115548. [Google Scholar] [CrossRef]
- Shi, F.; Li, X.; Li, M.I.; Bai, B. Site Selection Strategy for Photovoltaic Power Plants Construction on Gangue Hills: An Integrated Method Based on GIS and AHP-TOPSIS. Energy Strategy Rev. 2025, 59, 101722. [Google Scholar] [CrossRef]
- Achbab, E.; Lambarki, R.; Rhinane, H.; Saifaoui, D. Integrating Geographic Information System and 3D Virtual Reality for Optimized Modeling of Large-Scale Photovoltaic Wind Hybrid System: A Case Study in Dakhla City, Morocco. Energy Geosci. 2025, 6, 100389. [Google Scholar] [CrossRef]
- Boubé, B.D.; Bhandari, R.; Saley, M.M.; Adamou, R. Topic: Geospatial Evaluation of Solar Potential for Hydrogen Production Site Suitability: GIS-MCDA Approach for Off-Grid and Utility or Large-Scale Systems over Niger. Energy Rep. 2025, 13, 2393–2416. [Google Scholar] [CrossRef]
- Rodriguez-Pastor, D.A.; Soltero, V.M.; Chacartegui, R. Green Methanol Production from Photovoltaics in Europe. Renew. Energy 2025, 254, 123751. [Google Scholar] [CrossRef]
- He, Z.; Xu, W.; Sun, Y.; Zhang, X. A GIS-Based Techno-Economic Comparative Assessment of Offshore Fixed and Floating Photovoltaic Systems: A Case Study of Hainan. Appl. Energy 2025, 391, 125854. [Google Scholar] [CrossRef]
- Jin, L.; Rossi, M.; Monforti Ferrario, A.; Mennilli, F.; Comodi, G. Designing Hybrid Energy Storage Systems for Steady Green Hydrogen Production in Residential Areas: A GIS-Based Framework. Appl. Energy 2025, 389, 125765. [Google Scholar] [CrossRef]
- Dickson, R.; Abbas, A.; Lee, Y.; Liu, J.; Niaz, H. A Global Perspective on Solar-Driven Hydrogen Economy and 2050 Carbon Neutrality. Chem. Eng. J. 2025, 516, 164144. [Google Scholar] [CrossRef]
- Dahri, N.; Séjine, H.; Bouamrane, A.; Pham, Q.B.; Abida, H.; Gagnon, A.S.; Anane, M. Suitability Map for Solar Photovoltaic Desalination Farms Using GIS and Multi-Criteria Decision Analysis. Environ. Earth Sci. 2025, 84, 6. [Google Scholar] [CrossRef]
- Jahangir, M.H.; Razeghi, M.; Naseri, A.; Yousefi, H.; Noorollahi, Y. Hybrid Solar-Wind Farm Site Selection for Reverse Osmosis Desalination: A Case Study in Sistan and Baluchestan Using Geographic Information System. Energy Rep. 2025, 13, 6059–6078. [Google Scholar] [CrossRef]
- Onuoha, H.; Denwigwe, I.; Babatunde, O.; Abdulsalam, K.A.; Adebisi, J.; Emezirinwune, M.; Okharedia, T.; Akindayomi, A.; Adisa, K.; Hamam, Y. Integrating GIS and AHP for Photovoltaic Farm Site Selection: A Case Study of Ikorodu, Nigeria. Processes 2025, 13, 164. [Google Scholar] [CrossRef]
- Pan, Z.; Zhang, L.; Dong, L.; Xu, W.; Li, G.; Yuan, Y.; Wang, C.; Yu, B. Exploring the Seasonal Impact of Photovoltaic Roofs on Urban Land Surface Temperature under Different Urban Spatial Forms. Renew. Energy 2025, 244, 122724. [Google Scholar] [CrossRef]
- Park, J.H.; Yang, S.; Kim, S. Evaluation of Photovoltaic Installation Potential in Industrial Complexes around Metropolitan Areas: Regulatory Obstacles and Geographical Considerations. Energy Sustain. Dev. 2024, 83, 101564. [Google Scholar] [CrossRef]
- Rösch, C.; Fakharizadehshirazi, E. Public Participation GIS Scenarios for Decision-Making on Land-Use Requirements for Renewable Energy Systems. Energy Sustain. Soc. 2025, 15, 18. [Google Scholar] [CrossRef]
- Sainz-Ortiz, E.; Somohano-Rodriguez, F.M.; Pascual-Muñoz, P.; Arroyo, A.; Manana, M. Dynamic Web-Based GIS Tool for Pre-Feasibility Evaluation of Renewable Energy Projects. Energy Convers. Manag. 2024, 322, 119162. [Google Scholar] [CrossRef]
- Tinsley, E.; Froidevaux, J.S.P.; Jones, G. The Location of Solar Farms within England’s Ecological Landscape: Implications for Biodiversity Conservation. J. Environ. Manag. 2024, 372, 123372. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Wang, X.; Chen, T. Mapping the Potential: A GIS-Based Approach to Assessing Floating Solar Resources for Rural Electrification in Cambodia. Energy Sustain. Dev. 2025, 87, 101724. [Google Scholar] [CrossRef]
- Uyan, M.; Ertunç, E. GIS-Based Optimal Site Selection of the Biogas Facility Installation Using the Best-Worst Method. Chem. Eng. Res. Des. 2023, 192. in press. [Google Scholar] [CrossRef]
- Sliz-Szkliniarz, B.; Vogt, J. A GIS-Based Approach for Evaluating the Potential of Biogas Production from Livestock Manure and Crops at a Regional Scale: A Case Study for the Kujawsko-Pomorskie Voivodeship. Renew. Sustain. Energy Rev. 2012, 16, 752–763. [Google Scholar] [CrossRef]
- Levstek, T.; Rozman, Č. A Model for Finding a Suitable Location for a Micro Biogas Plant Using GIS Tools. Energies 2022, 15, 7522. [Google Scholar] [CrossRef]
- Chukwuma, E.C.; Okey Onyesolu, F.C.; Ani, K.A.; Nwanna, E.C. GIS Bio Waste Assessment and Suitability Analysis for Biogas Power Plant: A Case Study of Anambra State of Nigeria. Renew. Energy 2021, 163, 1182–1194. [Google Scholar] [CrossRef]
- Mahal, Z.; Yabar, H. Spatial Optimization of Bioenergy Production by Introducing a Cooperative Manure Management System in Bangladesh. Resources 2025, 14, 111. [Google Scholar] [CrossRef]
- Plinke, M.; Berndmeyer, J.; Hack, J. Development of a GIS-Based Register of Biogas Plant Sites in Lower Saxony, Germany: A Foundation for Identifying P2G Potential. Energy Sustain. Soc. 2025, 15, 7. [Google Scholar] [CrossRef]
- Kochanek, A.; Ciuła, J.; Generowicz, A.; Mitryasova, O.; Jasińska, A.; Jurkowski, S.; Kwaśnicki, P. The Analysis of Geospatial Factors Necessary for the Planning, Design, and Construction of Agricultural Biogas Plants in the Context of Sustainable Development. Energies 2024, 17, 5619. [Google Scholar] [CrossRef]
- Lovrak, A.; Pukšec, T.; Grozdek, M.; Duić, N. An Integrated Geographical Information System (GIS) Approach for Assessing Seasonal Variation and Spatial Distribution of Biogas Potential from Industrial Residues and By-Products. Energy 2021, 229, 122016. [Google Scholar] [CrossRef]
- Bedoić, R.; Smoljanić, G.; Pukšec, T.; Čuček, L.; Ljubas, D.; Duić, N. Geospatial Analysis and Environmental Impact Assessment of a Holistic and Interdisciplinary Approach to the Biogas Sector. Energies 2021, 14, 5374. [Google Scholar] [CrossRef]
- Scotto Di Perta, E.; Cervelli, E.; Grieco, R.; Mautone, A.; Pindozzi, S. GIS-Based Analysis to Assess Biogas Energy Potential as Support for Manure Management in Southern Italy. Acta IMEKO 2024, 13, 1–6. [Google Scholar] [CrossRef]
- Gomes de Jesus, R.H.; Barros, M.V.; Salvador, R.; de Souza, J.T.; Piekarski, C.M.; de Francisco, A.C. Forming Clusters Based on Strategic Partnerships and Circular Economy for Biogas Production: A GIS Analysis for Optimal Location. Biomass Bioenergy 2021, 150, 106097. [Google Scholar] [CrossRef]
- Chukwuma, E.C.; Okey-Onyesolu, C.F.; Anizoba, D.C.; Ubah, J.I. Location Analysis and Application of GIS in Site Suitability Study for Biogas Plant. In Biotechnological Applications of Biomass; IntechOpen: London, UK, 2021; pp. 1–14. [Google Scholar] [CrossRef]
- Selvaggi, R.; Valenti, F. Assessment of Fruit and Vegetable Residues Suitable for Renewable Energy Production: GIS-Based Model for Developing New Frontiers within the Context of Circular Economy. Appl. Syst. Innov. 2021, 4, 10. [Google Scholar] [CrossRef]
- Leanza, P.M.; Valenti, F.; D’Urso, P.R.; Arcidiacono, C. Environmental Productivity Index (EPI) GIS Based Model to Estimate Prickly Pear Biomass Potential Availability for Biogas Production: An Application to a Mediterranean Area. Agron. J. 2022, 114, 3206–3224. [Google Scholar] [CrossRef]
- García Álvaro, A.; Vides Herrera, C.A.; Moreno-Amat, E.; Ruiz Palomar, C.; Pardo García, A.; Ospino, A.J.; De Godos, I. Optimization of Biogas Production from Agricultural Residues through Anaerobic Co-Digestion and GIS Tools in Colombia. Processes 2025, 13, 2013. [Google Scholar] [CrossRef]
- Mesthrige, T.G.; Kaparaju, P. Decarbonisation of Natural Gas Grid: A Review of GIS-Based Approaches on Spatial Biomass Assessment, Plant Siting and Biomethane Grid Injection. Energies 2025, 18, 734. [Google Scholar] [CrossRef]
- Aktar, K.; Yabar, H.; Mizunoya, T.; Islam, M.M. Application of GIS in Introducing Community-Based Biogas Plants from Dairy Farm Waste: Potential of Renewable Energy for Rural Areas in Bangladesh. Geomatics 2024, 4, 384–411. [Google Scholar] [CrossRef]
- Moosavian, S.F.; Zahedi, R.; Hajinezhad, A. Potential and Economic Evaluation of Biogas Resources and Location of Its Power Plants with GIS in Iran. Ann. Agric. Crop Sci. 2022, 7, 1120. [Google Scholar] [CrossRef]
- Akther, A.; Ahamed, T.; Noguchi, R.; Genkawa, T.; Takigawa, T. Site Suitability Analysis of Biogas Digester Plant for Municipal Waste Using GIS and Multi-Criteria Analysis. Asia-Pacific J. Reg. Science 2019, 3, 61–93. [Google Scholar] [CrossRef]
- Dima, F.A.F.J.; Li, Z.; Mang, H.-P.; Zhu, L. Feasibility Analysis of Biogas Production by Using GIS and Multicriteria Decision Aid Methods in the Central African Republic. Sustainability 2022, 14, 13418. [Google Scholar] [CrossRef]
- Mao, C.; Feng, Y.; Wang, X.; Ren, G. Review on Research Achievements of Biogas from Anaerobic Digestion. Renew. Sustain. Energy Rev. 2015, 45, 540–555. [Google Scholar] [CrossRef]
- Heck, R.; Rudi, A.; Lauth, D.; Schultmann, F. An Estimation of Biomass Potential and Location Optimization for Integrated Biorefineries in Germany: A Combined Approach of GIS and Mathematical Modeling. Sustainability 2024, 16, 6781. [Google Scholar] [CrossRef]
- Tulun, Ş.; Arsu, T.; Gürbüz, E. Selection of the Most Suitable Biogas Facility Location with the Geographical Information System and Multi-Criteria Decision-Making Methods: A Case Study of Konya Closed Basin, Turkey. Biomass Convers. Bioref. 2023, 13, 3439–3461. [Google Scholar] [CrossRef]
- Kochanek, A.; Ciuła, J.; Cembruch-Nowakowski, M.; Zacłona, T. Polish Farmers′ Perceptions of the Benefits and Risks of Investing in Biogas Plants and the Role of GISs in Site Selection. Energies 2025, 18, 3981. [Google Scholar] [CrossRef]
- Abdelzaher, M.A.; Farahat, E.M.; Abdel-Ghafar, H.M.; Balboul, B.A.A.; Awad, M.M. Environmental Policy to Develop a Conceptual Design for the Water–Energy–Food Nexus: A Case Study in Wadi-Dara on the Red Sea Coast, Egypt. Water 2023, 15, 780. [Google Scholar] [CrossRef]
- Sammartano, V.; Liuzzo, L.; Freni, G. Identification of Potential Locations for Run-of-River Hydropower Plants Using a GIS-Based Procedure. Energies 2019, 12, 3446. [Google Scholar] [CrossRef]
- Punys, P.; Vyčienė, G.; Jurevičius, L.; Kvaraciejus, A. Small Hydropower Assessment of Uganda Based on Multisource Geospatial Data. Water 2023, 15, 2051. [Google Scholar] [CrossRef]
- Butt, A.Q.; Shangguan, D.; Waseem, M.; Abbas, A.; Banerjee, A.; Yadav, N. Assessment of Hydropower Potential in the Upper Indus Basin: A Geographic Information System-Based Multi-Criteria Decision Analysis for Sustainable Water Resources in Pakistan. Resources 2025, 14, 49. [Google Scholar] [CrossRef]
- Kumar, R.; Singh, A.; Sharma, P. Investigation of Theoretical Hydroelectric Potential Using GIS-Based Analysis. Int. J. Hydrol. Sci. Technol. 2022, 12, 205–219. [Google Scholar] [CrossRef]
- Korkovelos, A.; Mentis, D.; Siyal, S.H.; Arderne, C.; Rogner, H.; Bazilian, M.; Howells, M.; Beck, H.; De Roo, A. A Geospatial Assessment of Small-Scale Hydropower Potential in Sub-Saharan Africa. Energies 2018, 11, 3100. [Google Scholar] [CrossRef]
- Zhang, L.; Chen, X.; Wang, Q. Assessment of Small Hydropower Potential Based on GIS and SWAT: A Case Study of Lijia River. Water Resour. Manag. 2021, 35, 2723–2737. Available online: https://www.researchgate.net/publication/393786752_Assessment_of_Small_Hydropower_Potential_Based_on_GIS_and_SWAT_A_Case_Study_of_the_Lijia_River (accessed on 5 August 2025).
- Chen, H.-S.; Ho, H.-C.H. Applying GIS to Identify Potential Location of Small Hydropower in Catchment Region. In Proceedings of the 39th IAHR World Congress, Granada, Spain, 19–24 June 2022; International Association for Hydro-Environment Engineering and Research (IAHR): Madrid, Spain, 2022. [Google Scholar] [CrossRef]
- Temesgen, A.L.; Bekele, G. GIS-based Assessment of Economically Feasible Off-Grid Mini-Grids in Ethiopia. Discov. Energy 2025, 5, 12. [Google Scholar] [CrossRef]
- Ronoh, D. Application of GIS in Sub-National Energy Planning in Kenya—Integrating Primary Data and Least-Cost Electrification Using OnSSET (Case Study of Narok County, Kenya). J. Sustain. Dev. Energy Water Environ. Syst. 2025, 13, 1130549. [Google Scholar] [CrossRef]
- Valenti, F.; Toscano, A. A GIS-Based Model to Assess the Potential of Wastewater Treatment Plants for Enhancing Bioenergy Production within the Context of the Water–Energy Nexus. Energies 2021, 14, 2838. [Google Scholar] [CrossRef]
- Garcia, X.; Estrada, L.; Llorente, O.; Acuña, V. Assessing Small Hydropower Viability in Water-Scarce Regions: Environmental Flow and Climate Change Impacts Using a SWAT+-Based Tool. Environ. Sci. Eur. 2024, 36, 126, Correction in Environ. Sci. Eur. 2024, 36, 142. [Google Scholar] [CrossRef]
- Chiu, Y.-R.; Tsai, Y.-L.; Chiang, Y.-C. Designing Rainwater Harvesting Systems Cost-Effectively in a Urban Water-Energy Saving Scheme by Using a GIS-Simulation Based Design System. Water 2015, 7, 6285–6300. [Google Scholar] [CrossRef]
- Tafere, T.; Assefa, E.; Alemayehu, T. GIS-Based Hydropower Potential Assessment on Gumara River, Ethiopia. Am. Sci. Res. J. Eng. Technol. Sci. 2020, 64, 112–127. Available online: http://asrjetsjournal.org/index.php/American_Scientific_Journal/article/view/5890 (accessed on 5 August 2025).
- Paschetto, A.; Caselle, C.; Bonetto, S.M.R. A GIS-Based Methodology for Hydropower Potential Assessment: Balancing Energy Production and Ecosystem Sustainability. Environ. Chall. 2025, 11, 101236. [Google Scholar] [CrossRef]
- Bhattarai, R.; Mishra, B.K.; Bhattarai, D.; Khatiwada, D.; Kumar, P.; Meraj, G. Assessing Hydropower Potential in Nepal’s Sunkoshi River Basin: An Integrated GIS and SWAT Hydrological Modeling Approach. Scientifica 2024, 2024, 1–19. [Google Scholar] [CrossRef]
- Guan, J. Landscape Visual Impact Evaluation for Onshore Wind Farm: A Case Study. ISPRS Int. J. Geo-Inf. 2022, 11, 594. [Google Scholar] [CrossRef]
- Adjiski, V.; Kaplan, G.; Mijalkovski, S. Assessment of the Solar Energy Potential of Rooftops Using LiDAR Datasets and GIS-Based Approach. Int. J. Eng. Geosci. 2022, 8, 188–199. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, X.; Rentizelas, A.; Dong, C.; Li, J. Optimisation of Logistic Model Using Geographic Information Systems: A Case Study of Biomass-based Combined Heat & Power Generation in China. Appl. Energy Combust. Sci. 2022, 10, 100060. [Google Scholar] [CrossRef]
- Yalcin, M.; Kalaycioglu, S.; Basaran, C.; Sari, F.; Gul, F.K. Exploration of Potential Geothermal Fields Using GIS-Based Entropy Method: A Case Study of the Sandıklı. Renew. Energy 2024, 237, 121719. [Google Scholar] [CrossRef]
- Open Geospatial Consortium (OGC). Available online: https://www.ogc.org (accessed on 28 July 2025).
- United Nations Committee of Experts on Global Geospatial Information Management (UN-GGIM). Integrated Geospatial Information Framework (IGIF). Available online: https://ggim.un.org/UN-IGIF/ (accessed on 28 July 2025).
- Federal Geographic Data Committee (FGDC). Geospatial Data Act of 2018. Available online: https://www.fgdc.gov/gda (accessed on 28 July 2025).
- Chief Information Officers Council (CIO.gov). OPEN Government Data Act. Available online: https://www.cio.gov (accessed on 28 July 2025).
- European Parliament and Council. Directive 2007/2/EC of the European Parliament and of the Council of 14 March 2007 Establishing an Infrastructure for Spatial Information in the European Community (INSPIRE). Available online: https://eur-lex.europa.eu/eli/dir/2007/2/oj (accessed on 28 July 2025).
- European Parliament and Council. Directive (EU) 2019/1024 on Open Data and the Re-Use of Public Sector Information (Recast). Available online: https://eur-lex.europa.eu/eli/dir/2019/1024/oj (accessed on 5 August 2025).
- European Parliament and Council. Regulation (EU) 2016/679 (General Data Protection Regulation—GDPR). Available online: https://eur-lex.europa.eu/eli/reg/2016/679/oj (accessed on 28 July 2025).
- United Nations Economic Commission for Europe (UNECE). Aarhus Convention; and European Parliament and Council. Directive 2003/4/EC on Public Access to Environmental Information. Available online: https://unece.org (accessed on 28 July 2025).
- European Parliament and Council. Directive (EU) 2022/2555 on Measures for a High Common Level of Cybersecurity Across the Union (NIS2). Available online: https://eur-lex.europa.eu/eli/dir/2022/2555/oj (accessed on 28 July 2025).
- Sejm of the Republic of Poland. Act of 4 March 2010 on Spatial Information Infrastructure; Journal of Laws 2010, No. 76, item 489. Available online: https://isap.sejm.gov.pl/isap.nsf/download.xsp/WDU20100760489/U/D20100489Lj.pdf (accessed on 28 July 2025).
- Sejm of the Republic of Poland. Geodetic and Cartographic Law; Consolidated Text of 2024. Available online: https://isap.sejm.gov.pl/isap.nsf/download.xsp/WDU20240001151/U/D20241151Lj.pdf (accessed on 28 July 2025).
- Sejm of the Republic of Poland. Act of 11 August 2021 on Open Data and Re-use of Public Sector Information. Available online: https://isap.sejm.gov.pl/isap.nsf/download.xsp/WDU20210001641/T/D20211641L.pdf (accessed on 28 July 2025).
- Sejm of the Republic of Poland. Act of 6 September 2001 on Access to Public Information. Available online: https://isap.sejm.gov.pl/isap.nsf/download.xsp/WDU20011121198/U/D20011198Lj.pdf (accessed on 28 July 2025).
- Sejm of the Republic of Poland. Act of 27 March 2003 on Spatial Planning and Development—Amendment of 7 July 2023; 2023. Available online: https://orka.sejm.gov.pl/proc9.nsf/ustawy/3097_u.htm (accessed on 28 July 2025).
- Federal Geographic Data Committee. The Geospatial Data Act of 2018 (P.L. 115–254; 43 U.S.C. Chapter 46). Available online: https://www.fgdc.gov (accessed on 28 July 2025).
- U.S. Congress. Foundations for Evidence-Based Policymaking Act of 2018, Title II: OPEN Government Data Act (P.L. 115–435). Available online: https://www.congress.gov (accessed on 28 July 2025).
- U.S. Office of Management and Budget; CDO Council. Phase 2 Implementation Guidance for the Evidence Act/OPEN Government Data Act. Available online: https://www.cdo.gov (accessed on 28 July 2025).
- Government of Japan. Basic Act on the Advancement of Utilizing Geospatial Information (Act No. 63 of 2007). Available online: https://www.japaneselawtranslation.go.jp (accessed on 28 July 2025).
- Geospatial Information Authority of Japan (GSI). AUGI (the “NSDI Act of Japan”) Overview. Available online: https://www.gsi.go.jp (accessed on 28 July 2025).
- Korea Legislation Research Institute. Act on the Establishment and Management of Spatial Data (Act No. 12738 of 2014, as amended). Available online: https://elaw.klri.re.kr (accessed on 28 July 2025).
- FAOLEX. Act on the Establishment, Management, etc. of Spatial Data (Act No. 12738 of 3 June 2014). Available online: https://faolex.fao.org/docs/pdf/kor167262.pdf (accessed on 28 July 2025).
- FAOLEX. Surveying and Mapping Law of the People’s Republic of China (Revised 2017). Available online: https://faolex.fao.org/docs/pdf/chn173733.pdf (accessed on 28 July 2025).
- Xinhua. China Adopts Revised Surveying and Mapping Law. Available online: https://www.xinhuanet.com (accessed on 28 July 2025).
- Presidency of the Republic (Brazil). Decree No. 6.666 of 27 November 2008 (Establishes the National Spatial Data Infrastructure—INDE); 2008. Available online: https://www.planalto.gov.br/ccivil_03/_ato2007-2010/2008/decreto/d6666.htm (accessed on 28 July 2025).
- Erba, D.A. 3D Cadastres in South America. Rev. Bras. De Cartogr. 2012, 64, 461–478. [Google Scholar] [CrossRef]
- Cámara de Diputados (Mexico). Available online: https://unstats.un.org/unsd/trade/mexico11/Item%2001%20-%20Mexico%20-%20National%20System%20of%20Statistical%20and%20Geographic%20Information.pdf (accessed on 28 July 2025).
- INEGI. Law of the National System of Statistical and Geographic Information (Ley del SNIEG) (Official Text—Normateca). Available online: https://inegi.org.mx (accessed on 28 July 2025).
- SNIEG. Strategic Program of the National System of Statistical and Geographic Information 2016–2040 (Legal Context of the Act). Available online: https://www.snieg.mx (accessed on 28 July 2025).
- Republic of South Africa. Spatial Data Infrastructure Act, 2003 (Act No. 54 of 2003). Available online: https://www.gov.za (accessed on 28 July 2025).
- United Nations Committee of Experts on Global Geospatial Information Management (UN-GGIM). South Africa—Spatial Data Infrastructure Act (Information Note). Available online: https://ggim.un.org (accessed on 28 July 2025).
- SAFLII. Spatial Data Infrastructure Act 2003 (Consolidated Text). Available online: https://www.saflii.org (accessed on 28 July 2025).
- Fedlex (Switzerland). Federal Act on Geoinformation (GeoIG), 5 October 2007 (SR 510.62). Available online: https://www.fedlex.admin.ch (accessed on 28 July 2025).
- swisstopo. Legal Basis: Geoinformation Act and Ordinances. Available online: https://www.swisstopo.admin.ch (accessed on 28 July 2025).
- Federal Ministry of Justice (Germany). Geodata Access Act (GeoZG) of 10 February 2009 (BGBl. I p. 278). Available online: https://www.gesetze-im-internet.de/geozg (accessed on 28 July 2025).
- Bundesgesetzblatt. BGBl. Part I 2009, No. 8: GeoZG. Available online: https://www.bgbl.de (accessed on 28 July 2025).
- dejure.org. BGBl. I 2009 S. 278—GeoZG (reference). Available online: https://dejure.org (accessed on 28 July 2025).
- UK Legislation. The INSPIRE Regulations 2009 (SI 2009/3157). Available online: https://www.legislation.gov.uk (accessed on 28 July 2025).
- Information Commissioner’s Office (UK). INSPIRE Regulations 2009 and the Role of the ICO. Available online: https://ico.org.uk (accessed on 28 July 2025).
- European Commission. INSPIRE Directive—Overview (Context). Available online: https://inspire.ec.europa.eu (accessed on 28 July 2025).
- Indonesia (Presidential Regulation). Presidential Regulation No. 9/2016—Acceleration of the Implementation of the One Map Policy (1:50,000). Available online: https://peraturan.bpk.go.id (accessed on 28 August 2025).
- Cabinet Secretariat of the Republic of Indonesia. Presidential Regulation No. 9/2016—Establishment of the One Map Policy Implementation Team. Available online: https://setkab.go.id (accessed on 28 July 2025).
- Open Government Partnership. Indonesia: One Map Policy (Case Study). Available online: https://www.opengovpartnership.org (accessed on 28 July 2025).
- JDIH Ministry of Finance of the Republic of Indonesia. Presidential Regulation No. 9/2016—Legal Record. Available online: https://jdih.kemenkeu.go.id (accessed on 28 July 2025).
- Geospatial Information Agency (BIG) Library. Presidential Regulation No. 9/2016—Description and Access. Available online: https://www.big.go.id (accessed on 28 July 2025).
- Kochanek, A.J.; Kobylarczyk, S. The Analysis of the Main Geospatial Factors Using Geoinformation Programs Required for the Planning, Design and Construction of a Photovoltaic Power Plant. J. Ecol. Eng. 2024, 25, 49–65. [Google Scholar] [CrossRef] [PubMed]
- Ciuła, J.; Gaska, K.; Generowicz, A.; Hajduga, G. Energy from landfill gas as an example of circular economy. E3S Web Conf. 2018, 30, 03002. [Google Scholar] [CrossRef]
- Maurya, A.K.; Kumar, A. Role of GIS in Study of Sustainable Development and Environmental Management. J. Geogr. Nat. Disasters 2024, 14, 326. Available online: https://www.longdom.org/open-access/role-of-gis-in-study-of-sustainable-development-and-environmental--management-1101471.html (accessed on 4 August 2025).
- Shuaibu Dabo, M.B.; Jibril, H.; Suberu, M.G.; Ayawa, M.G. The Role of Geographic Information Systems (GIS) as an Effective Tool in Environmental Planning and Management. J. Built Environ. Geol. Res. 2024, 3, 202–208. Available online: https://africanscholarpub.com/ajbegr/article/view/174 (accessed on 4 August 2025).
- Kowalski, Z.; Makara, A.; Kulczycka, J.; Generowicz, A.; Kwaśnicki, P.; Ciuła, J.; Gronba-Chyła, A. Conversion of Sewage Sludge into Biofuels via Different Pathways and Their Use in Agriculture: A Comprehensive Review. Energies 2024, 17, 1383. [Google Scholar] [CrossRef]
- Elsevier. Environmental Management—Agricultural and Biological Sciences. ScienceDirect. Available online: https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/environmental-management (accessed on 1 August 2025).
- Fedra, K.; Reitsma, R.F. Decision Support and Geographical Information Systems. In Geographical Information Systems for Urban and Regional Planning; Scholten, H.J., Stillwell, J.C.H., Eds.; Springer: Dordrecht, The Netherlands, 1990; pp. 177–188. [Google Scholar] [CrossRef]
- Singh, R. The Role of Geographic Information Systems (GIS) in Disaster Management and Planning. Int. J. Geogr. Geol. Environ. 2024, 6, 195–205. [Google Scholar] [CrossRef]
- Albrecht, J. GIS as a Communication Process: Experience from the Portland Metro Project. URISA J. 2001, 13, 41–50. Available online: https://www.researchgate.net/publication/237275611_GIS_as_a_Communication_Process_Experience_from_the (accessed on 5 August 2025).
- Todaro, N.M.; Daddi, T.; Testa, F.; Iraldo, F. Organization and Management Theories in Environmental Management Systems Research: A Systematic Literature Review. Bus. Strategy Dev. 2019, 3, 39–54. [Google Scholar] [CrossRef]
- De Roulet, P.; Chenal, J.; Munyaka, J.-C.B.; Pudasaini, U. Mapping Rural Mobility in the Global South: Case Studies of Participatory GIS Approach for Assessments of Daily Movement Needs and Practice in Nepal and Kenya. Sustainability 2024, 16, 9442. [Google Scholar] [CrossRef]
- Uribe, D.F.; Ortiz-Marcos, I.; Uruburu, Á. What Is Going on with Stakeholder Theory in Project Management Literature? A Symbiotic Relationship for Sustainability. Sustainability 2018, 10, 1300. [Google Scholar] [CrossRef]
- Wereda, W.S.; Zacłona, T.; Wołowiec, T. Role of Public—Private Partnerships in Investment Project Management in Local Government Units. In Proceedings of the 4th International Conference on Changes in Social and Business Environment, CISABE ‘11, Panevezys, Lithuania, 3–4 November 2011; p. 269. Available online: https://www.researchgate.net/publication/281684388_Role_of_public_-_private_partnerships_in_investment_project_management_in_local_government_units (accessed on 5 August 2025).
Functional Area | Description | Refs. |
---|---|---|
Data Acquisition and Integration | Consolidation of data from Internet of Things (IoT) sensors, satellite photography, Laser Imaging Detection and Ranging (LiDAR), drones, Volunteered Geographic Information (VGI), and real-time data streams. | [53,54] |
Spatial Data Management | Handling of distributed, dynamic, and heterogeneous datasets; cataloging, validation, versioning, archiving, metadata standards, and source synchronization. | [55] |
Spatial Analysis | Classical and advanced spatial analyses: accessibility, natural hazards, ecosystem services, environmental assessments, and predictive models. | [56] |
Modeling and Simulation | Land use change scenarios, hazard simulations (e.g., floods), disease spread, climate phenomena; includes agent-based and hybrid models. | [57] |
Visualization and Data Communication | Dynamic 2D/3D maps, spatiotemporal visualizations, dashboards, and urban digital twins facilitate participatory planning and public involvement. | [58] |
Collaboration and Data Sharing | Collaboration across sectors, data exchange through APIs, GeoNode platforms, WMS/WFS standards, and Spatial Data Infrastructure (SDI). | [59] |
Artificial Intelligence (AI) Integration and Automation | Use of AI, deep learning, object detection, semantic segmentation; development of self-learning systems based on spatial data. | [60] |
Monitoring and Spatial Alerts | Environmental monitoring, crisis management, location-based early warning systems, anomaly detection and automated alerts via cloud processing. | [61] |
Mobile Integration | Collection of field data, mapping applications, geolocation instruments, and the application of augmented reality (AR) on mobile devices. | [62] |
Multi-Criteria Decision Analysis (MCDA) | Support for urban, environmental, and infrastructure-related decision-making using Multi-Criteria Decision Analysis methods and sustainability indicators. | [63] |
Application Area | Description & Benefits | GIS–AI–IoT Integration | Refs. |
---|---|---|---|
Smart city—waste management | Greater Chennai (India) deployed a ‘smart waste’ system that improved collection efficiency and reduced costs through real-time monitoring. | IoT (bin sensors) + AI (overflow prediction, route optimization) + GIS (central monitoring dashboard) | [99] |
Smart city—public cleanliness | Madurai (India) implemented AI-based monitoring of overflowing bins and illegal dumping, which accelerated response times of sanitation services. | IoT (cameras, sensors) + AI (image recognition, overflow detection) + GIS (map-based alerts and dispatch) | [100] |
Smart city—mobility | Google’s Project Green Light reduced congestion, emissions, and fuel use by optimizing traffic signals in pilot cities. | IoT (traffic flow sensors) + AI (signal optimization) + GIS (integration with mapping data) | [101] |
Crisis response—wildfires | In Serbia’s Golija Park, an integrated system improved fire risk forecasts and optimized firefighting operations. | IoT (environmental sensors) + AI (risk analysis) + GIS (hazard mapping) | [102] |
Crisis response—urban DSS | Pimpri-Chinchwad (India) introduced a 72 h DSS that supports decision-makers in managing multi-hazard risks. | IoT (weather/air quality stations) + AI (forecasting) + GIS (map-based decision support system) | [103] |
Environmental monitoring—air (global framework) | The AQ Framework delivers real-time air quality forecasts, supporting public health risk assessment. | IoT (fixed and mobile sensors) + AI (AQI forecasting) + GIS (health risk mapping) | [104] |
Environmental monitoring—air (urban) | Chicago’s Project Eclipse enabled hyper-local mapping of air quality, revealing neighborhood-level disparities. | IoT (air quality sensors) + AI (ML with GSV data) + GIS (neighborhood maps) | [105] |
Environmental monitoring—water | In Southern England, a system provides 30 min forecasts of bathing water quality for users and authorities. | IoT (water quality sensors) + AI (bacteria prediction) + GIS (public maps/app) | [106] |
RES Type | Resource and Key GIS Layers (Description) | Limitations/Challenges | Typical Tools | Refs. |
---|---|---|---|---|
Hydropower | In hydropower, the resource is typically modelled using HEC-HMS or SWAT, which simulate rainfall–runoff processes; in GIS, the most important layers are DEMs, watershed boundaries, land cover, soils, and hydrometric data. | Key challenges include catchment ecology, minimum environmental flow requirements, and sedimentation. | HEC-HMS, SWAT/QSWAT, HEC-GeoHMS, ArcHydro | [239] |
Wind | In wind energy, the resource is assessed via mesoscale datasets (WRF, reanalyses) that are downscaled in GIS to microscale with adjustments for terrain, surface roughness, infrastructure, and environmental receptors. | Main issues include visual impact, noise, shadow flicker, and wake losses. | WRF, CFD/wake models, viewshed tools, MCDA | [240] |
Solar PV | In photovoltaics, solar resource is modelled with tools such as PVGIS; GIS analyses typically combine DSM/DTM, buildings, protected areas, power grid layers, hydrological features, and LiDAR for shading analysis. | Challenges include glare/glint impacts near airports and land use conflicts. | PVGIS, SGHAT/ForgeSolar, 3D GIS, MCDA | [241] |
Biomass | In bioenergy, GIS support balancing the supply of agricultural and forestry residues, drawing on data about land use, crop yields, road networks, slope gradients, and protected areas. | Main difficulties include seasonal variability of supply and high feedstock transport costs. | Cost-distance modelling, MCDA, transport network analysis | [242] |
Geothermal | In geothermal energy, GIS are used to integrate thermal anomalies and geological structures, including faults and hydrothermal indicators, with remote sensing datasets. | The biggest challenge is the uncertainty and low resolution of subsurface data. | GIS toolboxes for geothermal prospecting | [243] |
Legal Act | Scope of Regulation | Refs. |
---|---|---|
Act of 4 March 2010 on Spatial Information Infrastructure | Implementation of INSPIRE; defines authorities, datasets, services, and administrative cooperation | [253] |
Geodesy and Cartography Law | Rules for maintaining the Land and Building Register (EGiB) and the State Geodetic and Cartographic Resource | [254] |
Act of 11 August 2021 on Open Data | Implementation of Directive 2019/1024; re-use of public sector data | [255] |
Act of 6 September 2001 on Access to Public Information | General access to public information, including spatial data | [256] |
Amendment to the Spatial Planning Act of 7 July 2023 | Digitalisation of spatial planning, introduction of the Urban Planning Register | [257] |
Country | Legal Act | Year | Scope of Regulation | Refs. |
---|---|---|---|---|
USA | Geospatial Data Act (GDA) | 2018 | Geospatial Data Governance Framework in the Federal Administration | [258] |
USA | OPEN Government Data Act (Evidence Act, Title II) | 2019 | Default openness of government data, metadata catalog | [259,260] |
Japan | Basic Act on the Advancement of Utilizing Geospatial Information (AUGI) | 2007 | NSDI Act: base plan, reference data, GIS policies. | [261,262] |
South Korea | Act on the Establishment and Management of Spatial Data | 2014 | Creation, standardization, and sharing of spatial data | [263,264] |
China | Surveying and Mapping Law (revised) | 2017 | Regulation of geodetic and cartographic activities and geographic information security. | [265,266] |
Brazil | Decretonº 6.666/2008 (INDE) | 2008 | Establishment of the National Spatial Data Infrastructure (NSDI) | [267,268] |
Mexico | Ley del Sistema Nacional de Información Estadística y Geográfica (SNIEG) | 2008 | Statistical-geographic system; INEGI’s competences, geographic pillar | [269,270,271] |
South Africa | Spatial Data Infrastructure Act (Act 54/2003) | 2003 | Establishment of SASDI, the Spatial Information Committee, and the metadata catalog. | [272,273,274] |
Switzerland | Federal Geoinformation Act (GeoIG, SR 510.62) | 2007 | Provision of official geospatial data, quality standards, and metadata | [275,276] |
Germany | Geodatenzugangsgesetz (GeoZG) | 2009 | Access to geospatial data at the federal level (INSPIRE transposition and national principles). | [277,278,279] |
United Kingdom | The INSPIRE Regulations 2009 (SI 2009/3157) | 2009 | Implementation of the INSPIRE directive into UK law | [280,281,282] |
Indonesia | Perpres No. 9/2016—One Map Policy | 2016 | One Map Policy: a single reference framework, standard, database, and geoportal. | [283,284,285,286,287] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kochanek, A.; Generowicz, A.; Zacłona, T. The Role of Geographic Information Systems in Environmental Management and the Development of Renewable Energy Sources—A Review Approach. Energies 2025, 18, 4740. https://doi.org/10.3390/en18174740
Kochanek A, Generowicz A, Zacłona T. The Role of Geographic Information Systems in Environmental Management and the Development of Renewable Energy Sources—A Review Approach. Energies. 2025; 18(17):4740. https://doi.org/10.3390/en18174740
Chicago/Turabian StyleKochanek, Anna, Agnieszka Generowicz, and Tomasz Zacłona. 2025. "The Role of Geographic Information Systems in Environmental Management and the Development of Renewable Energy Sources—A Review Approach" Energies 18, no. 17: 4740. https://doi.org/10.3390/en18174740
APA StyleKochanek, A., Generowicz, A., & Zacłona, T. (2025). The Role of Geographic Information Systems in Environmental Management and the Development of Renewable Energy Sources—A Review Approach. Energies, 18(17), 4740. https://doi.org/10.3390/en18174740