CFD-Driven Design Optimization of Corrugated-Flange Diffuser-Integrated Wind Turbines for Enhanced Performance
Abstract
1. Introduction
2. Materials and Methods
2.1. Theoretical Background and Turbine–Diffuser Modeling
- Case I. Effect of opening angle for flat-flange diffuser and normal (no flange) diffuser comparison, as illustrated in Figure 6.
- Case III. Performance analysis of a wind turbine integrated with a corrugated-flange diffuser, as illustrated in Figure 3b.
- Case IV. Evaluation of the inlet guide’s influence when integrated with the corrugated-flange diffuser (refer to Figure 8).
- Case V. Comparative performance analysis between a standalone wind turbine and a wind turbine integrated with the optimized diffuser configuration (see Figure 3).
2.2. Methods in CFD Analysis
2.3. Mathematical Modeling and Setup of CFD Analysis
2.4. Grid Independent Test
2.5. Result Validation
3. Results and Discussion
3.1. Effect of Opening Angle on the Performance of Flat-Flange and No-Flange Diffusers for Wind Turbine Applications
3.2. Effect of Diffuser Flange Type (Corrugated Flange, Flat Flange, and No Flange)
3.3. Performance Investigation of Corrugated-Flange Diffuser Integrated with Wind Turbine
3.4. Comparison of the Effect of with and Without Inlet Guide of Diffuser on Performance of Diffuser Integrated with Wind Turbine
3.5. Comparison of Corrugated-Flange Diffuser-Integrated Wind Turbine with the Bare Wind Turbine (Normal Wind Turbine)
3.6. Effect of Turbulent Structures for Corrugated-Flange Diffuser Integrated with Wind Turbine
3.7. Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
Symbol | Nomenclature | Symbol | Nomenclature |
E | Kinetic energy (J) | Generation of turbulent kinetic energy due to mean velocity gradients | |
m | Mass (kg) | Generation of | |
t | Time (s) | , | Effective diffusivity of k and |
Density (kg/m3) | , | Dissipation of k and ω due to turbulence | |
v | Wind speed (m/s) | Cross-diffusion term | |
r | Radius (m) | and | The user-defined source term |
p | Power (w) | DIHWT | Diffuser-Integrated Horizontal Wind Turbine |
A | Swept area (m2) | β | Opening angle |
x or s | Distance (m) | ϕ | Flange angle |
Mass flow rate (kg/s) | GFRP | Glass Fiber Reinforced Polymer | |
Energy flow rate (J/s) | CFRP | Carbon Fiber Reinforced Polymer | |
NACA | National Advisory Committee for Aeronautics | 2D and 3D | Two-dimensional and three-dimensional |
HAWT | Horizontal-axis wind turbine | RANS | Reynolds-Averaged Navier–Stokes |
DES | Detached eddy simulation | LES | Large Eddy Simulation |
DNS | Direct numerical simulation | ||
DIHWT | Diffuser-integrated horizontal-axis wind turbine | IWT | Integrated Wind Turbine |
CFDIWT | Corrugated-flange diffuser-integrated wind turbine | TSR | Tip Speed Ratio |
Appendix A
X | Y | Z |
---|---|---|
1 | 0 | 0 |
0.998459 | 0.000224 | 0 |
0.993844 | 0.000891 | 0 |
0.986185 | 0.00199 | 0 |
0.975528 | 0.003501 | 0 |
0.96194 | 0.005399 | 0 |
0.945503 | 0.007651 | 0 |
0.92632 | 0.010221 | 0 |
0.904508 | 0.013071 | 0 |
0.880203 | 0.016158 | 0 |
0.853553 | 0.019438 | 0 |
0.824724 | 0.022869 | 0 |
0.793893 | 0.026405 | 0 |
0.761249 | 0.03 | 0 |
0.726995 | 0.03361 | 0 |
0.691342 | 0.037188 | 0 |
0.654508 | 0.040686 | 0 |
0.616723 | 0.044055 | 0 |
0.578217 | 0.047242 | 0 |
0.53923 | 0.050196 | 0 |
0.5 | 0.052862 | 0 |
0.46077 | 0.055184 | 0 |
0.421783 | 0.057108 | 0 |
0.383277 | 0.058582 | 0 |
0.345492 | 0.059557 | 0 |
0.308658 | 0.059988 | 0 |
0.273005 | 0.059841 | 0 |
0.238751 | 0.059088 | 0 |
0.206107 | 0.057712 | 0 |
0.175276 | 0.055708 | 0 |
0.146447 | 0.053083 | 0 |
0.119797 | 0.049854 | 0 |
0.095492 | 0.046049 | 0 |
0.07368 | 0.041705 | 0 |
0.054497 | 0.036867 | 0 |
0.03806 | 0.03158 | 0 |
0.024472 | 0.025893 | 0 |
0.013815 | 0.019854 | 0 |
0.006156 | 0.013503 | 0 |
0.001541 | 0.006877 | 0 |
0 | 0 | 0 |
0.001541 | −0.00688 | 0 |
0.006156 | −0.0135 | 0 |
0.013815 | −0.01985 | 0 |
0.024472 | −0.02589 | 0 |
0.03806 | −0.03158 | 0 |
0.054497 | −0.03687 | 0 |
0.07368 | −0.04171 | 0 |
0.095492 | −0.04605 | 0 |
0.119797 | −0.04985 | 0 |
0.146447 | −0.05308 | 0 |
0.175276 | −0.05571 | 0 |
0.206107 | −0.05771 | 0 |
0.238751 | −0.05909 | 0 |
0.273005 | −0.05984 | 0 |
0.308658 | −0.05999 | 0 |
0.345492 | −0.05956 | 0 |
0.383277 | −0.05858 | 0 |
0.421783 | −0.05711 | 0 |
0.46077 | −0.05518 | 0 |
0.5 | −0.05286 | 0 |
0.53923 | −0.0502 | 0 |
0.578217 | −0.04724 | 0 |
0.616723 | −0.04406 | 0 |
0.654508 | −0.04069 | 0 |
0.691342 | −0.03719 | 0 |
0.726995 | −0.03361 | 0 |
0.761249 | −0.03 | 0 |
0.793893 | −0.02641 | 0 |
0.824724 | −0.02287 | 0 |
0.853553 | −0.01944 | 0 |
0.880203 | −0.01616 | 0 |
0.904508 | −0.01307 | 0 |
0.92632 | −0.01022 | 0 |
0.945503 | −0.00765 | 0 |
0.96194 | −0.0054 | 0 |
0.975528 | −0.0035 | 0 |
0.986185 | −0.00199 | 0 |
0.993844 | −0.00089 | 0 |
0.998459 | −0.00022 | 0 |
1 | 0 | 0 |
References
- Sadorsky, P. Wind Energy for Sustainable Development: Driving Factors and Future Outlook. J. Clean. Prod. 2021, 289, 125779. [Google Scholar] [CrossRef]
- Firoozi, A.A.; Hejazi, F.; Firoozi, A.A. Advancing Wind Energy Efficiency: A Systematic Review of Aerodynamic Optimization in Wind Turbine Blade Design. Energies 2024, 17, 2919. [Google Scholar] [CrossRef]
- European Union European Commission. Energy Roadmap 2050. COM(2011) 885 Final, Brussels, Belgium. Available online: https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=COM:2011:0885:FIN:EN:PDF (accessed on 15 December 2011).
- Global Wind Energy Council Global Wind Energy Council (GWEC). 2025. Available online: https://www.gwec.net/ (accessed on 20 February 2025).
- IRENA and CPI. Global Landscape of Renewable Energy Finance, 2023; International Renewable Energy Agency: Abudhabi, United Arab Emirates, 2023; ISBN 9789292605230. Available online: https://www.irena.org/ (accessed on 15 July 2025).
- International Renewable Energy Agency. World Energy Transitions Outlook 2024: 1.5 °C Pathway; International Renewable Energy Agency: Abudhabi, United Arab Emirates, 2024; ISBN 9789292606343. [Google Scholar]
- Chen, J.; Wang, Q.; Shen, W.Z.; Pang, X.; Li, S.; Guo, X. Structural Optimization Study of Composite Wind Turbine Blade. Mater. Des. 2013, 46, 247–255. [Google Scholar] [CrossRef]
- Xiong, L.; Huang, S.; Li, P.; Wang, Z.; Khan, M.W.; Niu, T. Hidden Markov Jump System Based Robust Control of Inverter-Fed Power Systems With Asynchronous Sliding Mode Observer. IEEE Trans. Ind. Electron. 2025, 1–13. [Google Scholar] [CrossRef]
- Xudong, W.; Shen, W.Z.; Zhu, W.J.; Sørensen, J.N.; Jin, C. Shape Optimization of Wind Turbine Blades. Wind. Energy 2009, 12, 781–803. [Google Scholar] [CrossRef]
- Sessarego, M.; Wood, D. Multi-Dimensional Optimization of Small Wind Turbine Blades. Renew. Wind Water Sol. 2015, 2, 9. [Google Scholar] [CrossRef]
- Bekele, N.; Bogale, W. Parametric Study of a Diffuser for Horizontal Axis Wind Turbine Power Augmentation. AIMS Energy 2019, 7, 841–856. [Google Scholar] [CrossRef]
- Pucci, M.; Zanforlin, S. The Ability of Convergent–Divergent Diffusers for Wind Turbines to Exploit Yawed Flows on Moderate-to-High-Slope Hills. Energies 2024, 17, 990. [Google Scholar] [CrossRef]
- Kim, I.H.; Kim, B.R.; Yang, Y.J.; Jang, S.J. Parametric Study on Ducted Micro Wind Energy Harvester. Energies 2022, 15, 727. [Google Scholar] [CrossRef]
- Aszczur, M.; Borowski, M.; Halibart, J.; Zwolińska-Glądys, K.; Marczak, P. Optimization of the Small Wind Turbine Design—Performance. Computation 2024, 12, 215. [Google Scholar] [CrossRef]
- Shambira, N.; Makaka, G.; Mukumba, P. Velocity Augmentation Model for an Empty Concentrator-Diffuser-Augmented Wind Turbine and Optimisation of Geometrical Parameters Using Surface Response Methodology. Sustainability 2024, 16, 1707. [Google Scholar] [CrossRef]
- Bontempo, R.; Di Marzo, E.M.; Manna, M. Coupled and Uncoupled CFD-Based Design Strategies for Diffuser-Augmented Wind Turbines: A Comparative Study. Energy 2025, 314, 134159. [Google Scholar] [CrossRef]
- Seifi Davari, H.; Botez, R.M.; Seify Davari, M.; Chowdhury, H.; Hosseinzadeh, H. Numerical and Experimental Investigation of Darrieus Vertical Axis Wind Turbines to Enhance Self-Starting at Low Wind Speeds. Results Eng. 2024, 24, 103240. [Google Scholar] [CrossRef]
- Sridhar, S.; Zuber, M.; Shenoy, S.; Kumar, A.; Ng, E.Y.; Radhakrishnan, J. Aerodynamic Comparison of Slotted and Non-Slotted Diffuser Casings for Diffuser Augmented Wind Turbines (DAWT). Renew. Sustain. Energy Rev. 2022, 161, 112316. [Google Scholar] [CrossRef]
- Rajendra Prasad, K.; Manoj Kumar, V.; Swaminathan, G.; Loganathan, G.B. Computational Investigation and Design Optimization of a Duct Augmented Wind Turbine (DAWT). Mater. Today Proc. 2020, 22, 1186–1191. [Google Scholar] [CrossRef]
- Agha, A.; Chaudhry, H.N.; Wang, F. Determining the Augmentation Ratio and Response Behaviour of a Diffuser Augmented Wind Turbine (DAWT). Sustain. Energy Technol. Assess. 2020, 37, 100610. [Google Scholar] [CrossRef]
- Rahmatian, M.A.; Hashemi Tari, P.; Mojaddam, M.; Majidi, S. Numerical and Experimental Study of the Ducted Diffuser Effect on Improving the Aerodynamic Performance of a Micro Horizontal Axis Wind Turbine. Energy 2022, 245, 123267. [Google Scholar] [CrossRef]
- Jafari, S.A.H.; Kosasih, B. Flow Analysis of Shrouded Small Wind Turbine with a Simple Frustum Diffuser with Computational Fluid Dynamics Simulations. J. Wind Eng. Ind. Aerodyn. 2014, 125, 102–110. [Google Scholar] [CrossRef]
- Hu, S.Y.; Cheng, J.H. Innovatory Designs for Ducted Wind Turbines. Renew. Energy 2008, 33, 1491–1498. [Google Scholar] [CrossRef]
- Rachman, A.; Johnstone, A.; Kosasih, B. The Effects of Shape and Size on Duct-Augmented Horizontal Axis Turbine Performance. Wind. Eng. 2021, 45, 953–972. [Google Scholar] [CrossRef]
- Dawahdeh, A.I.; Al-Nimr, M.A. Augmented Wind Turbine Performance Using a Novel Annular Circumferential Duct Design. Int. J. Energy Res. 2022, 46, 24424–24440. [Google Scholar] [CrossRef]
- Li, D.; Li, C.; Zhang, W.; Zhu, H. Effect of Building Diffusers on Aerodynamic Performance for Building Augmented Vertical Axis Wind Turbine. J. Renew. Sustain. Energy 2021, 13, 023306. [Google Scholar] [CrossRef]
- Nile, A.T.; Emam, M.; Ookawara, S.; Nada, S.A. Performance Prediction of a Small-Scale Diffuser-Augmented Wind Turbine with and without an Inlet Nozzle: A 2D and 3D Analysis. Energy Convers. Manag. 2025, 327, 119513. [Google Scholar] [CrossRef]
- Al-Quraishi, B.A.J.; Asmuin, N.Z.B.; Mohd, S.; Abd Al-Wahid, W.A.; Mohammed, A.N.; Didane, D.H. Review on Diffuser Augmented Wind Turbine (DAWT). Int. J. Integr. Eng. 2019, 11, 178–206. [Google Scholar] [CrossRef]
- Kannan Thangavelu, S.; Goh Leong Wan, T.; Piraiarasi, C. Flow Simulations of Modified Diffuser Augmented Wind Turbine. In Proceedings of the IOP Conference Series: Materials Science and Engineering, London, UK, 5–6 October 2020; Volume 886. [Google Scholar]
- Hamid, H.; Abd El Maksoud, R.M. A Numerical Assessment of the Heterogeneous Effects of Innovative Shroud Profiles for Horizontal Axis Wind Turbine. Heliyon 2025, 11, e41661. [Google Scholar] [CrossRef] [PubMed]
- Ngouani Siewe, M.M.; Chen, Y.K.; Day, R.; David-West, O. CFD and Experimental Investigations of a Novel Vertical Axis Omni-Flow Wind Turbine Shroud System Operating at Low Reynolds Numbers, Typical Urban Flow Conditions. Energy Convers. Manag. 2025, 326, 119514. [Google Scholar] [CrossRef]
- Al-Quraishi, B.A.J.; Asmuin, N.Z.; Nasir, N.F.; Latif, N.A.; Taweekun, J.; Mohd, S.; Mohammed, A.N.; Al-Wahid, W.A.A. CFD Investigation of Empty Flanged Diffuser Augmented Wind Turbine. Int. J. Integr. Eng. 2020, 12, 22–32. [Google Scholar]
- Liu, S.; Zhang, L.; Lu, J.; Liu, Z.; Jing, Z.; Zhang, X.; Cui, X.; Wang, H. A Novel Bio-Inspired Ducted Wind Turbine: From Prairie Dog Burrow Architecture to Aerodynamic Performance Optimization. Renew. Energy 2025, 256, 123941. [Google Scholar] [CrossRef]
- Teklemariyem, D.A.; Yimer, E.T.; Ancha, V.R.; Zeru, B.A. Parametric Study of an Empty Diffuser Geometric Parameters and Shape for a Wind Turbine Using CFD Analysis. Heliyon 2024, 10, e26782. [Google Scholar] [CrossRef]
- Burton, T.; Sharpe, D.; Jenkins, N.; Bossanyi, E. Wind Energy Hand Book; John Wiley & Sons: Hoboken, NJ, USA, 2021; Volume 3, ISBN 978-1-119-45116-7. [Google Scholar]
- Manwell, J.F.; McGowan, J.G.; Rogers, A.L. Wind Energy Explained: Theory, Design and Application; John Wiley & Sons: Hoboken, NJ, USA, 2010; Volume 148, ISBN 9780470015001. [Google Scholar]
- Jahani, K.; Langlois, R.G.; Afagh, F.F. Structural Dynamics of Offshore Wind Turbines: A Review. Ocean. Eng. 2022, 251, 111136. [Google Scholar] [CrossRef]
- Yilmaz, M.; Köten, H.; Çetinkaya, E.; Coşar, Z. A Comparative CFD Analysis of NACA0012 and NACA4412 Airfoils. J. Energy Syst. 2018, 2, 145–159. [Google Scholar] [CrossRef]
- Airfoil Tools. Available online: http://airfoiltools.com/ (accessed on 27 February 2025).
- Morampudi, P.; Namala, K.K.; Gajjela, Y.K.; Barath, M.; Prudhvi, G. Review on Glass Fiber Reinforced Polymer Composites. In Proceedings of the Materials Today: Proceedings; Elsevier Ltd.: Amsterdam, The Netherlands, 2020; Volume 43, pp. 314–319. [Google Scholar]
- Ohya, Y.; Karasudani, T. A Shrouded Wind Turbine Generating High Output Power with Wind-Lens Technology. Energies 2010, 3, 634–649. [Google Scholar] [CrossRef]
- ANSYS.INC. Ansys Meshing Users Guide. 2010. Available online: http://www.ansys.com (accessed on 25 May 2025).
- Farias, G.M.; Galhardo, M.A.B.; Vaz, J.R.P.; Pinho, J.T. A Steady-State Based Model Applied to Small Wind Turbines. J. Braz. Soc. Mech. Sci. Eng. 2019, 41, 209. [Google Scholar] [CrossRef]
- Zhang, Z.; Fang, H.; Gao, F.; Rodriguez, J.; Kennel, R. Multiple-Vector Model Predictive Power Control for Grid-Tied Wind Turbine System with Enhanced Steady-State Control Performance. IEEE Trans. Ind. Electron. 2017, 64, 6287–6298. [Google Scholar] [CrossRef]
- Ferziger, J.H.; Peric, M.; Leonard, A. Computational Methods for Fluid Dynamics; Springer: Berlin/Heidelberg, Germany, 1997; Volume 50, ISBN 3540420746. [Google Scholar] [CrossRef]
- ANSYS.INC. Ansys Fluid Dynamics Verification Manual. 2025. Available online: https://ansyshelp.ansys.com/public/Views/Secured/corp/v251/en/pdf/Ansys_Fluid_Dynamics_Verification_Manual.pdf (accessed on 25 May 2025).
- Abe, K.I.; Ohya, Y. An Investigation of Flow Fields around Flanged Diffusers Using CFD. J. Wind Eng. Ind. Aerodyn. 2004, 92, 315–330. [Google Scholar] [CrossRef]
- Bakare, A.; Patil, N.; Karad, V.; Shastri, D. Review of Diffuser Augmented Wind Turbines and Development of It in Urban Areas. J. Sci. Adv. 2025, 2, 13–30. [Google Scholar] [CrossRef]
- Ohya, Y.; Karasudani, T.; Sakurai, A. Development of a Shrouded Wind Turbine with a Flanged Diffuser. J. Wind. Eng. Ind. Aerodyn. 2008, 96, 524–539. [Google Scholar] [CrossRef]
- El-Zahaby, A.M.; Kabeel, A.E.; Elsayed, S.S.; Obiaa, M.F. CFD Analysis of Flow Fields for Shrouded Wind Turbine’s Diffuser Model with Different Flange Angles. Alex. Eng. J. 2017, 56, 171–179. [Google Scholar] [CrossRef]
- Behery, M.R.; Didane, D.H.; Manshoor, B. Optimization of Flanged Diffuser for Small-Scale Wind Power Applications. CFD Lett. 2024, 16, 54–70. [Google Scholar] [CrossRef]
- Masukume, P.M.; Makaka, G.; Mukumba, P. Optimization of the Power Output of a Bare Wind Turbine by the Use of a Plain Conical Diffuser. Sustainability 2018, 10, 2647. [Google Scholar] [CrossRef]
- Charisi, S.; Thiis, T.K.; Aurlien, T. Full-Scale Measurements of Wind-Pressure Coefficients in Twin Medium-Rise Buildings. Buildings 2019, 9, 63. [Google Scholar] [CrossRef]
- Cóstola, D.; Blocken, B.; Hensen, J.L.M. Overview of Pressure Coefficient Data in Building Energy Simulation and Airflow Network Programs. Build. Environ. 2009, 44, 2027–2036. [Google Scholar] [CrossRef]
- Parsa, H.; Maftouni, N. Optimization of a Real Scale Shrouded Wind Turbine Using 3D CFD Analysis. Int. J. Renew. Energy Res. 2020, 10, 922–932. [Google Scholar] [CrossRef]
- Lokesharun, D.; Rameshkumar, S.; Navaneeth, B.S.; Kirubakaran, R. Design and Analysis of Diffuser Augmented Wind Turbine Using CFD. Int. J. Mech. Ind. Technol. 2019, 7, 1–13. [Google Scholar]
- Kanya, B.; Visser, K.D. Experimental Validation of a Ducted Wind Turbine Design Strategy. Wind. Energy Sci. 2018, 3, 919–928. [Google Scholar] [CrossRef]
- Dao, P.B. On Cointegration Analysis for Condition Monitoring and Fault Detection of Wind Turbines Using SCADA Data. Energies 2023, 16, 2352. [Google Scholar] [CrossRef]
- Castellani, F.; Pandit, R.; Natili, F.; Belcastro, F.; Astolfi, D. Advanced Methods for Wind Turbine Performance Analysis Based on SCADA Data and CFD Simulations. Energies 2023, 16, 1081. [Google Scholar] [CrossRef]
- Dao, P.B.; Barszcz, T.; Staszewski, W.J. Anomaly Detection of Wind Turbines Based on Stationarity Analysis of SCADA Data. Renew. Energy 2024, 232, 121076. [Google Scholar] [CrossRef]
r (mm) | C (mm) | () | () | |||
---|---|---|---|---|---|---|
0.1 | 35 | 188.3 | 0.538 | 45.54 | 53.13 | 45.63 |
0.2 | 70 | 130.57 | 0.373 | 26.1 | 33.69 | 26.19 |
0.3 | 105 | 95.6 | 0.273 | 16.372 | 23.962 | 16.462 |
0.4 | 140 | 74.41 | 0.212 | 10.84 | 18.43 | 10.93 |
0.5 | 175 | 60.64 | 0.173 | 7.34 | 14.93 | 7.43 |
0.6 | 210 | 51.02 | 0.145 | 4.93 | 12.52 | 5.02 |
0.7 | 245 | 44.02 | 0.125 | 3.19 | 10.78 | 3.28 |
0.8 | 280 | 38.68 | 0.11 | 1.87 | 9.46 | 1.96 |
0.9 | 315 | 34.46 | 0.098 | 0.83 | 8.42 | 0.92 |
1 | 350 | 31.09 | 0.088 | 0 | 7.59 | 0.09 |
Dimensions | Values | Flange Types |
---|---|---|
A1 | 0.025D | Corrugated flange |
R1 = R2 = R3 | (0.0347D) × 6 | |
C | (0.0139D) × 2 | |
A2 | 0.039D | |
Total Length(L) | 0.3D | Both corrugated and flat |
Comparison | Type of Diffuser | Increment in Wind Speed | Power Factor | ||
---|---|---|---|---|---|
Hamid et al. [30] | 5 | 7.5 | Split diffuser profile | 0.5 | 3.38 |
Bekele and Bogale, [11] | 5 | 7.69 | Diffuser with flat flange | 0.53.8 | 3.64 |
Parsa and Maftouni, [55] | 8 | 12 | 0.5 | 3.38 | |
Lokesharun et al. [56] | 5 | 7.62 | 0.524 | 3.54 | |
Current work | 4.5 | 8.04 | Diffuser with corrugated flange | 0.78 | 5.69 |
Authors | (m/s) | Type of Diffuser | ||
---|---|---|---|---|
Based on Rotor Area | Based on Outer Diameter of Diffuser | |||
Kanya and Visser [57] | 1 | - | 5.5 | Airfoil diffuser profile with curved flange |
Jafari and Kosasih [22] | - | 0.31 | 10 | Normal diffuser without flange |
This research | 1.69 | 0.524 | 4.5 | Diffuser with corrugated flange |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Teklemariyem, D.A.; Syed, N.H.R.; Dao, P.B. CFD-Driven Design Optimization of Corrugated-Flange Diffuser-Integrated Wind Turbines for Enhanced Performance. Energies 2025, 18, 4601. https://doi.org/10.3390/en18174601
Teklemariyem DA, Syed NHR, Dao PB. CFD-Driven Design Optimization of Corrugated-Flange Diffuser-Integrated Wind Turbines for Enhanced Performance. Energies. 2025; 18(17):4601. https://doi.org/10.3390/en18174601
Chicago/Turabian StyleTeklemariyem, Debela Alema, Nasir Hussain Razvi Syed, and Phong Ba Dao. 2025. "CFD-Driven Design Optimization of Corrugated-Flange Diffuser-Integrated Wind Turbines for Enhanced Performance" Energies 18, no. 17: 4601. https://doi.org/10.3390/en18174601
APA StyleTeklemariyem, D. A., Syed, N. H. R., & Dao, P. B. (2025). CFD-Driven Design Optimization of Corrugated-Flange Diffuser-Integrated Wind Turbines for Enhanced Performance. Energies, 18(17), 4601. https://doi.org/10.3390/en18174601