Mechanism, Modeling and Challenges of Geological Storage of Supercritical Carbon Dioxide
Abstract
1. Introduction
1.1. Background
1.2. Research Methods
1.3. Review Purpose
2. Capture Mechanism in CO2 Geological Storage
2.1. Structural Trapping
2.2. Residual Trapping
2.3. Dissolution Trapping
2.4. Mineral Trapping
3. Mechanism of Surrounding Rock Deterioration Under CO2
3.1. Strength and Deformation of Surrounding Rock
3.2. Porosity and Permeability Evolution of Surrounding Rock
3.3. Caprock Integrity
4. Numerical Simulation and Monitoring
4.1. Numerical Simulation
4.2. Monitoring
5. Summary and Conclusions
- (1)
- We systematically review the four mechanisms of CO2 geological storage, analyzing their respective principles, influencing factors, and applicable conditions. Discussions are extended to the coupling effects between these mechanisms, including the impact of mineral reactions on residual trapping. Future research priorities are proposed for each capture mechanism. For structural trapping, subsequent research should strengthen precise monitoring of the direction and migration velocity of CO2. For residual trapping, continuous attention must be paid to subsurface pressure changes during the injection process to avoid excessive pressure that could generate new fractures and trigger gas remobilization. Research on the primary factors influencing CO2 solubility and analysis of dissolution efficiency under diverse geological conditions are essential to effectively assess CO2 storage capacity. Mineral trapping is intrinsically linked to the mineral composition of the rock. As rocks rich in carbonate minerals exhibit enhanced reactivity with CO2, lithological characterization of the formation is crucial during the site selection process.
- (2)
- The injection of SC-CO2 can create cooling zones within the formation, leading to non-isothermal effects that may alter the stability of faults distant from the cooling area. The thermal effects induced by this temperature difference can impact the efficiency and safety of CO2 geological sequestration. Significant temperature disparities may damage caprock and activate faults, providing pathways for CO2 leakage. However, the rock response mechanisms under thermo-hydro-mechanical–chemical (THMC) multiphysics coupling remain poorly understood. This is particularly true regarding the impact of non-isothermal effects induced by temperature gradients on fault stability. Consequently, it is imperative to establish a comprehensive understanding of these rock response mechanisms under coupled THMC conditions, with specific emphasis on how temperature-gradient-driven non-isothermal phenomena influence fault stability.
- (3)
- Formation parameters exhibit uncertainty; initial data obtained through logging may not adequately represent the complex actual geological conditions. In numerical simulations, parameters such as permeability and porosity are predominantly derived from laboratory measurements or localized well logs. This approach fails to effectively characterize reservoir-scale heterogeneity. Consequently, strengthening geological exploration is particularly important. Utilizing geostatistical methods to analyze logging and seismic data can help represent the distribution of formation parameters more accurately, thus establishing a more realistic numerical model.
- (4)
- Caprock exhibits diversity, such as anticlines, planar structures, etc. Current research lacks depth regarding the capture mechanisms, migration directions, and leakage risks of CO2 under different caprock configurations. It is essential to establish an integrity assessment model considering caprock morphology factors to evaluate CO2 plume migration and leakage risks more accurately. Moreover, due to the long timescale of geological sequestration, the lack of long-term experimental data supporting caprock integrity creates a need to emphasize the interactions of temperature, pressure, and chemical reactions during numerical simulations to improve the modeling capacity for CO2 diffusion, flow, and fracture leakage processes.
- (5)
- Current monitoring techniques still exhibit limitations. Methods such as seismic and electrical resistivity face inherent trade-offs between spatial resolution and temporal continuity, and a unified multi-scale monitoring framework is lacking. Furthermore, machine learning models are predominantly trained on site-specific data, lacking cross-regional and cross-lithological validation, which compromises their generalization capability. Consequently, future efforts should focus on integrating multi-source data including seismic, electrical resistivity, pressure, and temperature to develop AI-powered monitoring models with robust spatiotemporal generalization capabilities.
Author Contributions
Funding
Conflicts of Interest
References
- Filonchyk, M.; Peterson, M.P.; Zhang, L.; Hurynovich, V.; He, Y. Greenhouse gases emissions and global climate change: Examining the influence of CO2, CH4, and N2O. Sci. Total Environ. 2024, 935, 173359. [Google Scholar] [CrossRef]
- Hurlbert, M.; Osazuwa-Peters, M. Carbon capture and storage in Saskatchewan: An analysis of communicative practices in a contested technology. Renew. Sustain. Energy Rev. 2023, 173, 113104. [Google Scholar] [CrossRef]
- Qian, Y.; Sun, Y.; Huang, D.; Li, C.; He, S.; Zhu, Y.; Yang, X. Investigation of hygroscopic properties and isothermal adsorption models of hydrophobic SiO2 aerogel cement-based composites. J. Build. Phys. 2025. [Google Scholar] [CrossRef]
- Woosley, R.J.; Moon, J.-Y. Re-evaluation of carbonic acid dissociation constants across conditions and the implications for ocean acidification. Mar. Chem. 2023, 250, 104247. [Google Scholar] [CrossRef]
- Tran, H.M.; Tsai, F.J.; Lee, Y.L.; Chang, J.H.; Chang, L.T.; Chang, T.Y.; Chung, K.F.; Kuo, H.P.; Lee, K.Y.; Chuang, K.J.; et al. The impact of air pollution on respiratory diseases in an era of climate change: A review of the current evidence. Sci. Total Environ. 2023, 898, 166340. [Google Scholar] [CrossRef]
- Xue, Z.; Xie, X.; Ma, H.; Sun, Z.; Zhang, K.; Chen, Z. Applications of CO2 capture, utilization and storage in energy industry: Global cases review and insights. Pet. Geol. Oilfield Dev. Daqing 2024, 43, 14–21. [Google Scholar] [CrossRef]
- Al-Shafi, M.; Massarweh, O.; Abushaikha, A.S.; Bicer, Y. A review on underground gas storage systems: Natural gas, hydrogen and carbon sequestration. Energy Rep. 2023, 9, 6251–6266. [Google Scholar] [CrossRef]
- Ausfelder, F.; Baltac, J. Special report on carbon capture utilisation and storage CCUS in clean energy transitions. In Energy Technology Perspectives; International Energy Agency: Paris, France, 2020. [Google Scholar]
- Jafari, M.; Cao, S.C.; Jung, J. Geological CO2 sequestration in saline aquifers: Implication on potential solutions of China’s power sector. Resour. Conserv. Recycl. 2017, 121, 137–155. [Google Scholar] [CrossRef]
- Wilkinson, J.; Szafranski, R.; Lee, K.-S.; Kratzing, C. Subsurface design considerations for carbon dioxide storage. Energy Procedia 2009, 1, 3047–3054. [Google Scholar] [CrossRef]
- Hosseinzadeh, S.; Haghighi, M.; Salmachi, A.; Shokrollahi, A. Carbon dioxide storage within coal reservoirs: A comprehensive review. Geoenergy Sci. Eng. 2024, 241, 213198. [Google Scholar] [CrossRef]
- Stavropoulou, E.; Laloui, L. Evaluating CO2 breakthrough in a shaly a caprock material: A multi-scale experimental approach. Sci. Rep. 2022, 12, 10706. [Google Scholar] [CrossRef]
- Kearns, J.; Teletzke, G.; Palmer, J.; Thomann, H.; Kheshgi, H.; Chen, Y.H.; Paltsev, S.; Herzog, H. Developing a Consistent Database for Regional Geologic CO2 Storage Capacity Worldwide. Energy Procedia 2017, 114, 4697–4709. [Google Scholar] [CrossRef]
- Mathieson, A.; Midgely, J.; Wright, I.; Saoula, N.; Ringrose, P. In Salah CO2 Storage JIP: CO2 sequestration monitoring and verification technologies applied at Krechba, Algeria. Energy Procedia 2011, 4, 3596–3603. [Google Scholar] [CrossRef]
- Ringrose, P.S.; Mathieson, A.S.; Wright, I.W.; Selama, F.; Hansen, O.; Bissell, R.; Saoula, N.; Midgley, J. The In Salah CO2 Storage Project: Lessons Learned and Knowledge Transfer. Energy Procedia 2013, 37, 6226–6236. [Google Scholar] [CrossRef]
- Pamukcu, Y.; Hurter, S.; Jammes, L.; Vu-Hoang, D.; Pekot, L. Characterizing and predicting short term performance for the In Salah Krechba field CCS joint industry project. Energy Procedia 2011, 4, 3371–3378. [Google Scholar] [CrossRef]
- Bhowmik, S.; Srinivasan, S.; Bryant, S.L. Inferring migration of CO2 plume using injection data and a probabilistic history matching approach. Energy Procedia 2011, 4, 3841–3848. [Google Scholar] [CrossRef][Green Version]
- Streibel, M.; Finley, R.J.; Martens, S.; Greenberg, S.; Möller, F.; Liebscher, A. From Pilot to Demo Scale–Comparing Ketzin results with the Illinois Basin-decatur Project. Energy Procedia 2014, 63, 6323–6334. [Google Scholar] [CrossRef]
- Möller, F.; Liebscher, A.; Martens, S.; Schmidt-Hattenberger, C.; Streibel, M. Injection of CO2 at Ambient Temperature Conditions–Pressure and Temperature Results of the “cold injection” Experiment at the Ketzin Pilot Site. Energy Procedia 2014, 63, 6289–6297. [Google Scholar] [CrossRef]
- Ghosh, R.; Sen, M.K.; Vedanti, N. Quantitative interpretation of CO2 plume from Sleipner (North Sea), using post-stack inversion and rock physics modeling. Int. J. Greenh. Gas Control 2015, 32, 147–158. [Google Scholar] [CrossRef]
- Angeli, M.; Faleide, J.I.; Gabrielsen, R.H. Evaluating Seal Quality for Potential Storage Sites in the Norwegian North Sea. Energy Procedia 2013, 37, 4853–4862. [Google Scholar] [CrossRef][Green Version]
- Burrowes, G. Investigating sequestration potential of carbonate rocks during tertiary recovery from a billion-barrel oil field, Weyburn, Saskatchewan: The geoscience framework (IEA Weyburn CO2 monitoring and storage project). Natl. Energy Technol. Lab. 2001, 14, 9. [Google Scholar]
- Harsh, A.; Anne, V. Carbon dioxide capture, utilization and storage (CCUS). In Proceedings of the 76th EAGE Conference and Exhibition, Amsterdam, Netherlands, 16–19 June 2014; European Association of Geoscientists & Engineers: Houten, The Netherlands, 2014; Volume 2014, pp. 1–3. [Google Scholar] [CrossRef]
- Strutt, M.H.; Baubron, J.C.; Beaubien, S.E.; Cardellini, C.; Granieri, D.; Jones, D.G.; Lombardi, S.; Penner, L.; Quattrocchi, F. Soil gas as a monitoring tool of deep geological sequestration of carbon dioxide: Results from the three year Monitoring of the Encana Eor Project, Weyburn, Saskatchewan (Canada). In Greenhouse Gas Control Technologies 7; Rubin, E.S., Keith, D.W., Gilboy, C.F., Wilson, M., Morris, T., Gale, J., Thambimuthu, K., Eds.; Elsevier Science Ltd.: Oxford, UK, 2005; pp. 2119–2123. [Google Scholar]
- Zhao, X.; Ma, R.; Zhang, F.; Zhong, Z.; Wang, B.; Wang, Y.; Li, Y.; Weng, L. The latest monitoring progress for Shenhua CO2 storage project in China. Int. J. Greenh. Gas Control 2017, 60, 199–206. [Google Scholar] [CrossRef]
- Li, X.; Li, Q.; Bai, B.; Wei, N.; Yuan, W. The geomechanics of Shenhua carbon dioxide capture and storage (CCS) demonstration project in Ordos Basin, China. J. Rock Mech. Geotech. Eng. 2016, 8, 948–966. [Google Scholar] [CrossRef]
- Al Hosni, M.; Caspari, E.; Pevzner, R.; Daley, T.M.; Gurevich, B. Case History: Using time-lapse vertical seismic profiling data to constrain velocity–saturation relations: The Frio brine pilot CO2 injection. Geophys. Prospect. 2016, 64, 987–1000. [Google Scholar] [CrossRef]
- Baskaran, D.; Saravanan, P.; Nagarajan, L.; Byun, H.-S. An overview of technologies for capturing, storing, and utilizing carbon dioxide: Technology readiness, large-scale demonstration, and cost. Chem. Eng. J. 2024, 491, 151998. [Google Scholar] [CrossRef]
- Davoodi, S.; Al-Shargabi, M.; Wood, D.A.; Rukavishnikov, V.S.; Minaev, K.M. Review of technological progress in carbon dioxide capture, storage, and utilization. Gas Sci. Eng. 2023, 117, 205070. [Google Scholar] [CrossRef]
- Aminu, M.D.; Nabavi, S.A.; Rochelle, C.A.; Manovic, V. A review of developments in carbon dioxide storage. Appl. Energy 2017, 208, 1389–1419. [Google Scholar] [CrossRef]
- Bashir, A.; Ali, M.; Patil, S.; Aljawad, M.S.; Mahmoud, M.; Al-Shehri, D.; Hoteit, H.; Kamal, M.S. Comprehensive review of CO2 geological storage: Exploring principles, mechanisms, and prospects. Earth Sci. Rev. 2024, 249, 104672. [Google Scholar] [CrossRef]
- Zhao, J.; Zheng, J.; Ren, L.; Lin, R.; Zhou, B. A review on geological storage of marine carbon dioxide: Challenges and prospects. Mar. Pet. Geol. 2024, 163, 106757. [Google Scholar] [CrossRef]
- Zhou, X.; Wu, Y.-S.; Chen, H.; Elsayed, M.; Yu, W.; Zhao, X.; Murtaza, M.; Shahzad Kamal, M.; Zafar Khan, S.; Al-Abdrabalnabi, R.; et al. Review of Carbon dioxide utilization and sequestration in depleted oil reservoirs. Renew. Sustain. Energy Rev. 2024, 202, 114646. [Google Scholar] [CrossRef]
- Wang, X.; Yang, H.; Huang, Y.; Liang, Q.; Liu, J.; Ye, D. Evolution of CO2 Storage Mechanisms in Low-Permeability Tight Sandstone Reservoirs. Engineering 2025, 48, 107–120. [Google Scholar] [CrossRef]
- Jun, Y.S.; Zhang, L.; Min, Y.; Li, Q. Nanoscale Chemical Processes Affecting Storage Capacities and Seals during Geologic CO2 Sequestration. Acc. Chem. Res. 2017, 50, 1521–1529. [Google Scholar] [CrossRef] [PubMed]
- Punnam, P.R.; Krishnamurthy, B.; Surasani, V.K.; SoonMin, H. Investigations of Structural and Residual Trapping Phenomena during CO2 Sequestration in Deccan Volcanic Province of the Saurashtra Region, Gujarat. Int. J. Chem. Eng. 2021, 2021, 7762127. [Google Scholar] [CrossRef]
- Khandoozi, S.; Hazlett, R.; Fustic, M. A critical review of CO2 mineral trapping in sedimentary reservoirs—From theory to application: Pertinent parameters, acceleration methods and evaluation workflow. Earth Sci. Rev. 2023, 244, 104515. [Google Scholar] [CrossRef]
- Fagorite, V.I.; Onyekuru, S.O.; Opara, A.I.; Oguzie, E.E. The major techniques, advantages, and pitfalls of various methods used in geological carbon sequestration. Int. J. Environ. Sci. Technol. 2022, 20, 4585–4614. [Google Scholar] [CrossRef]
- Sun, Q.; Ampomah, W.; Kutsienyo, E.J.; Appold, M.; Adu-Gyamfi, B.; Dai, Z.; Soltanian, M.R. Assessment of CO2 trapping mechanisms in partially depleted oil-bearing sands. Fuel 2020, 278, 118356. [Google Scholar] [CrossRef]
- Li, N.; Feng, W.; Yu, J.; Chen, F.; Zhang, Q.; Zhu, S.; Hu, Y.; Li, Y. Recent Advances in Geological Storage: Trapping Mechanisms, Storage Sites, Projects, and Application of Machine Learning. Energy Fuels 2023, 37, 10087–10111. [Google Scholar] [CrossRef]
- Busch, A.; Alles, S.; Gensterblum, Y.; Prinz, D.; Dewhurst, D.N.; Raven, M.D.; Stanjek, H.; Krooss, B.M. Carbon dioxide storage potential of shales. Int. J. Greenh. Gas Control 2008, 2, 297–308. [Google Scholar] [CrossRef]
- Mingxing, B.; Zhichao, Z.; Huaming, B.; Siyu, D.; Reservoirs, G. Progress in leakage risk study of CO2 geosequestration system. Spec. Oil Gas Reserv. 2022, 29, 1. [Google Scholar]
- Primasari, I.; Ampomah, W.; Chen, H.Y.; Tu, J.; Bui, D.; Ulmer-Scholle, D.; Chu, S. The Implementation of Underground CO2 Sequestration: Analysis of Caprock Leakage on the Todilto Shale Of San Juan Basin. In Proceedings of the Carbon Capture, Utilization, and Storage Conference and Exhibition, Edmonton, AB, Canada, 11–13 March 2024; pp. 9–30. [Google Scholar]
- Jayasekara, D.W.; Ranjith, P.G.; Wanniarachchi, W.A.M.; Rathnaweera, T.D. Understanding the chemico-mineralogical changes of caprock sealing in deep saline CO2 sequestration environments: A review study. J. Supercrit. Fluids 2020, 161, 104819. [Google Scholar] [CrossRef]
- Zhang, Y.; Chu, B.; Huang, T.; Qi, S.; Manga, M.; Zhang, H.; Zheng, B.; Zhou, Y. Using the Tidal Response of Groundwater to Assess and Monitor Caprock Confinement in CO2 Geological Sequestration. Water 2024, 16, 868. [Google Scholar] [CrossRef]
- Khan, M.J.; Mahmood, S.M.; Alakbari, F.S.; Siddiqui, N.A.; Ridha, S.; Shafiq, M.U. Rock Wettability and Its Implication for Caprock Integrity in CO2–Brine Systems: A Comprehensive Review. Energy Fuels 2024, 38, 19966–19991. [Google Scholar] [CrossRef]
- Zhang, D.; Song, J. Mechanisms for Geological Carbon Sequestration. Procedia IUTAM 2014, 10, 319–327. [Google Scholar] [CrossRef]
- Iglauer, S. Optimum storage depths for structural CO2 trapping. Int. J. Greenh. Gas Control 2018, 77, 82–87. [Google Scholar] [CrossRef]
- Niu, B.; Al-Menhali, A.; Krevor, S. A Study of Residual Carbon Dioxide Trapping in Sandstone. Energy Procedia 2014, 63, 5522–5529. [Google Scholar] [CrossRef]
- Kumar, S.; Foroozesh, J.; Edlmann, K.; Rezk, M.G.; Lim, C.Y. A comprehensive review of value-added CO2 sequestration in subsurface saline aquifers. J. Nat. Gas Sci. Eng. 2020, 81, 103437. [Google Scholar] [CrossRef]
- Zhang, H.; Arif, M. Reply to Discussion: “Haiyang Zhang and Muhammad Arif. Residual trapping capacity of subsurface systems for geological storage of CO2: Measurement techniques, meta-analysis of influencing factors, and future outlook. Earth-Science Reviews (2024): 104764”. Earth Sci. Rev. 2024, 257, 104907. [Google Scholar] [CrossRef]
- Li, B.; Benson, S.M. Influence of small-scale heterogeneity on upward CO2 plume migration in storage aquifers. Adv. Water Resour. 2015, 83, 389–404. [Google Scholar] [CrossRef]
- Yu, S.; Hu, M.; Steefel, C.I.; Battiato, I. Unraveling residual trapping for geologic hydrogen storage and production using pore-scale modeling. Adv. Water Resour. 2024, 185, 104659. [Google Scholar] [CrossRef]
- Amooie, A.; Gong, Y.; Sedghi, M.; McCaskill, B.; Piri, M. A pore-network modeling perspective on the dynamics of residual trapping in geological carbon storage. Int. J. Greenh. Gas Control 2024, 136, 104200. [Google Scholar] [CrossRef]
- Cui, G.; Hu, Z.; Wang, Y.; Jiang, S.; Wang, R. Migration characteristics and local capillary trapping mechanism after the CO2 leakage out of saline aquifers. Fuel 2024, 356, 129347. [Google Scholar] [CrossRef]
- Mouallem, J.; Raza, A.; Mahmoud, M.; Mouallem, J.; Arif, M. Impact of petrophysical properties on CO2 residual trapping in limestone formations. Fuel 2025, 396, 135327. [Google Scholar] [CrossRef]
- Han, W.S.; Kim, K.-Y.; Esser, R.P.; Park, E.; McPherson, B.J. Sensitivity Study of Simulation Parameters Controlling CO2 Trapping Mechanisms in Saline Formations. Transp. Porous Media 2011, 90, 807–829. [Google Scholar] [CrossRef]
- Talapatra, A. A study on the carbon dioxide injection into coal seam aiming at enhancing coal bed methane (ECBM) recovery. J. Pet. Explor. Prod. Technol. 2020, 10, 1965–1981. [Google Scholar] [CrossRef]
- Ni, H.; Boon, M.; Garing, C.; Benson, S.M. Predicting CO2 residual trapping ability based on experimental petrophysical properties for different sandstone types. Int. J. Greenh. Gas Control 2019, 86, 158–176. [Google Scholar] [CrossRef]
- Zulqarnain, M.; Zeidouni, M.; Hughes, R.G. Implications of fault structure heterogeneities, dissolution and capillary trapping mechanisms for CO2 storage integrity. Int. J. Greenh. Gas Control 2018, 76, 53–61. [Google Scholar] [CrossRef]
- Gunter, W.D.; Wiwehar, B.; Perkins, E.H. Aquifer disposal of CO2-rich greenhouse gases: Extension of the time scale of experiment for CO2-sequestering reactions by geochemical modelling. Mineral. Petrol. 1997, 59, 121. [Google Scholar] [CrossRef]
- Zhu, Z.; Li, M.; Lin, M.; Peng, B.; Sun, L. Review of the CO2-Water-Rock Interaction in Reservoir. Bull. Mineral. Petrol. Geochem. 2011, 30, 104–112. [Google Scholar]
- Luo, J.; Xie, Y.; Hou, M.Z.; Xiong, Y.; Wu, X.; Lüddeke, C.T.; Huang, L. Advances in subsea carbon dioxide utilization and storage. Energy Rev. 2023, 2, 100016. [Google Scholar] [CrossRef]
- Soltanian, M.R.; Amooie, M.A.; Gershenzon, N.; Dai, Z.; Ritzi, R.; Xiong, F.; Cole, D.; Moortgat, J. Dissolution Trapping of Carbon Dioxide in Heterogeneous Aquifers. Environ. Sci. Technol. 2017, 51, 7732–7741. [Google Scholar] [CrossRef]
- Agartan, E.; Trevisan, L.; Cihan, A.; Birkholzer, J.; Zhou, Q.; Illangasekare, T.H. Experimental study on effects of geologic heterogeneity in enhancing dissolution trapping of supercritical CO2. Water Resour. Res. 2015, 51, 1635–1648. [Google Scholar] [CrossRef]
- Gilmore, K.A.; Neufeld, J.A.; Bickle, M.J. CO2 Dissolution Trapping Rates in Heterogeneous Porous Media. Geophys. Res. Lett. 2020, 47, e2020GL087001. [Google Scholar] [CrossRef]
- Li, S.; Wang, X.; Jiang, L.; Song, Y. Pore-scale observations of CO2 thermodynamic properties and dissolution trapping in porous media. J. Hydrol. 2025, 658, 133118. [Google Scholar] [CrossRef]
- Chang, Y.-B.; Coats, B.K.; Nolen, J.S. In a compositional model for CO2 floods including CO2 solubility in water. In Proceedings of the SPE Permian Basin Oil and Gas Recovery Conference, Midland, TX, USA, 27 March 1996; SPE: Houston, TX, USA, 1996. [Google Scholar]
- Xie, Q.; Wang, W.; Bakhshian, S.; Wang, H.; Guo, X.; Su, Y. Simulation of CO2 dissolution reactions in saline aquifers using lattice Boltzmann method. Gas Sci. Eng. 2024, 125, 205284. [Google Scholar] [CrossRef]
- Sun, Y.; Yu, H.; Yang, B. Impact of Wettability on CO2 Dynamic Dissolution in Three-Dimensional Porous Media: Pore-Scale Simulation Using the Lattice Boltzmann Method. Langmuir 2024, 40, 22658–22672. [Google Scholar] [CrossRef] [PubMed]
- Soong, Y.; Goodman, A.L.; McCarthy-Jones, J.R.; Baltrus, J.P. Experimental and simulation studies on mineral trapping of CO2 with brine. Energy Convers. Manag. 2004, 45, 1845–1859. [Google Scholar] [CrossRef]
- Bin, L.I.; Jiuqiang, S.U.; Yangyang, C.U.; Ying, P.A.; Yuxin, L.I. CO2 sequestration mechanism and capacity calculation in deep saline aquifer. J. New Ind. 2015, 5, 47–53. [Google Scholar]
- Zhang, Y.; Qu, X.; Yuan, Y.; Zhang, Y.; Li, Q. Mineral trapping of carbon dioxide: Rapid hydrothermal synthesis experiments and carbon sequestration potential of dawsonite. Sci. Total Environ. 2024, 946, 174220. [Google Scholar] [CrossRef]
- Zhang, G.; Lu, P.; Huang, Y.; Li, G.; Zhu, C. Investigation of mineral trapping processes based on coherent front propagation theory: A dawsonite-rich natural CO2 reservoir as an example. Int. J. Greenh. Gas Control 2021, 110, 103400. [Google Scholar] [CrossRef]
- Bello, A.; Dorhjie, D.B.; Ivanova, A.; Cheremisin, A. Numerical sensitivity analysis of CO2 mineralization trapping mechanisms in a deep saline aquifer. Chem. Eng. Sci. 2024, 283, 119335. [Google Scholar] [CrossRef]
- Haese, R.R.; Watson, M. Comparison of the Mineral Trapping Capacity in three Reservoirs with Variable Mineral Compositions under CO2 Saturated Conditions. Energy Procedia 2014, 63, 5479–5482. [Google Scholar] [CrossRef]
- Ge, J.; Zhang, X.; Le-Hussain, F. Fines migration and mineral reactions as a mechanism for CO2 residual trapping during CO2 sequestration. Energy 2022, 239, 122233. [Google Scholar] [CrossRef]
- Gou, B.; Wang, K.; Zhan, L.; Liu, C. Effect of Supercritical CO2 on Mechanical Properties of Tight Carbonate Rocks. J. Southwest Pet. Univ. Sci. Technol. Ed. 2024, 46, 65–76. [Google Scholar]
- Dong, W.; Li, Z.; Shen, L.; Liu, W.; Guo, Y.; Xu, H.; Yong, R. Study on the process of mass transfer and deterioration of limestone under dynamic dissolution of CO2 solution. Sci. Rep. 2024, 14, 5278. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Duan, P.; Gao, W.; Wang, K.; Shi, S.; Lin, L. Calculation and application of elastic modulus of mineral components in tight sandstone based on an adaptive method. J. Geophys. Eng. 2025, 22, 74–87. [Google Scholar] [CrossRef]
- Zhou, Z.; Sheng, M.; Ge, Z.; Li, R.; Gong, S.; Zhang, H. Mechanical properties and failure characteristics of supercritical carbon dioxide soak in water-bearing coal rocks. Energy 2024, 286, 129599. [Google Scholar] [CrossRef]
- Lang, J.; Zhang, L. Effects of Supercritical CO2 at Different Temperatures on Shale Mechanical Properties. Min. Res. Dev. 2021, 41, 80–86. [Google Scholar] [CrossRef]
- Han, S. Experimental Study on Degradation Mechanism of the Mechanical Properties of Shale Treated by CO2. Master’s Thesis, Chongqing University, Chongqing, China, 2018. [Google Scholar]
- Ning, H.; Guo, X.; Ding, L.; Bai, B.; Sun, X.; Yang, J. Experiment on mechanical properties of shale soaked with supercritical carbon dioxide. J. China Univ. Pet. Ed. Nat. Sci. 2019, 43, 77–84. [Google Scholar]
- Wu, H.; Rutqvist, J.; Vilarrasa, V. Analytical solution to quickly assess ground displacement for a pressurized or depleted deep reservoir intersected by a fault in a half space. Int. J. Rock Mech. Min. Sci. 2024, 174, 105641. [Google Scholar] [CrossRef]
- Xing, T.; Ghaffari, H.; Mok, U.; Pec, M. Creep of CarbFix basalt: Influence of rock–fluid interaction. Solid Earth 2022, 13, 137–160. [Google Scholar] [CrossRef]
- Khan, S.; Khulief, Y.A.; Al-Shuhail, A.A. Effects of reservoir size and boundary conditions on pore-pressure buildup and fault reactivation during CO2 injection in deep geological reservoirs. Environ. Earth Sci. 2020, 79, 294. [Google Scholar] [CrossRef]
- Rahman, M.J.; Fawad, M.; Chan Choi, J.; Mondol, N.H. Effect of overburden spatial variability on field-scale geomechanical modeling of potential CO2 storage site Smeaheia, offshore Norway. J. Nat. Gas Sci. Eng. 2022, 99, 104453. [Google Scholar] [CrossRef]
- Zhang, Y. Experimental Studies on CO2 (SO2)-Salineminerals Interaction Under Geological Storage Condition. Master’s Thesis, China University of Geosciences, Beijing, China, 2015. [Google Scholar]
- Lin, R.; Yu, Z.; Zhao, J.; Dai, C.; Sun, Y.; Ren, L.; Xie, M. Experimental evaluation of tight sandstones reservoir flow characteristics under CO2–Brine–Rock multiphase interactions: A case study in the Chang 6 layer, Ordos Basin, China. Fuel 2022, 309, 122167. [Google Scholar] [CrossRef]
- Mahmoud, M.; Eliebid, M.; Al-Yousef, H.Y.; Kamal, M.S.; Al-Garadi, K.; Elkatatny, S. Impact of methane adsorption on tight rock permeability measurements using pulse-decay. Petroleum 2019, 5, 382–387. [Google Scholar] [CrossRef]
- Cao, X.; Feng, Q.; Ji, Y. Effect of Interaction between Carbon Dioxide and Fluid Phase/Rock Interface on Carbon Dioxide Storage. Processes 2023, 11, 3331. [Google Scholar] [CrossRef]
- Wei, J.; Chen, Y.; Liang, W. Experimental and theoretical investigation on permeability evolution of fractures in anthracite with supercritical CO2 immersion. Int. J. Rock Mech. Min. Sci. 2024, 174, 105651. [Google Scholar] [CrossRef]
- Wang, Y.; Wu, S.; Xun, J.; Ye, Y.; Gao, Y.; Zhang, J. Effects of supercritical CO2 immersion on permeability of sandy conglomerate reservoir with different clay mineral content in Mahu. Pet. Reserv. Eval. Dev. 2021, 11, 837–844. [Google Scholar] [CrossRef]
- Yu, Z. An Experimental Study on Water-Rock Interaction During Water Flooding in Formations Saturated with CO2-Example from Southern Songliao Basin. Ph.D. Thesis, Jilin University, Changchu, China, 2013. [Google Scholar]
- Dai, X.; Wang, M.; Feng, G.; Zheng, S.; Ren, B.; Xu, S. Mineralogical erosion and precipitation characteristics and their effects on adsorption property of shale during scCO2-H2O-shale interaction. J. China Coal Soc. 2023, 48, 2813–2826. [Google Scholar] [CrossRef]
- Li, Y.; Chen, Y.; Zhao, J.; Wang, Z.; Wei, B.; Kadet, V. Interaction mechanism between supercritical carbon dioxide and shale. Oil Gas Geol. 2024, 45, 1180–1194. [Google Scholar]
- Jia, H.; Li, B.; Lu, Z.; Zhao, T.; Zhao, H.; Mou, J. Experimental study on the interaction between CO2 and Jimsar reservoir rocks. Chem. Eng. Oil Gas 2021, 50, 76–80. [Google Scholar]
- Espinoza, D.N.; Santamarina, J.C. CO2 breakthrough—Caprock sealing efficiency and integrity for carbon geological storage. Int. J. Greenh. Gas Control 2017, 66, 218–229. [Google Scholar] [CrossRef]
- He, K. Research on Integrity Evolution and Leakage of CO2 Geological Storage System. Master’s Thesis, Northeast Petroleum University, Daqing, China, 2019. [Google Scholar]
- Pan, P.-Z.; Rutqvist, J.; Feng, X.-T.; Yan, F. Modeling of caprock discontinuous fracturing during CO2 injection into a deep brine aquifer. Int. J. Greenh. Gas Control 2013, 19, 559–575. [Google Scholar] [CrossRef]
- Fu, P.; Settgast, R.R.; Hao, Y.; Morris, J.P.; Ryerson, F.J. The Influence of Hydraulic Fracturing on Carbon Storage Performance. J. Geophys. Res. Solid. Earth 2017, 122, 9931–9949. [Google Scholar] [CrossRef]
- Gupta, N.; Verma, A. Supercritical Carbon Dioxide Utilization for Hydraulic Fracturing of Shale Reservoir, and Geo-Storage: A Review. Energy Fuels 2023, 37, 14604–14621. [Google Scholar] [CrossRef]
- Yu, Z.; Lu, S.; Bai, L.; Zheng, T. Research Progresson Rock Mechanics of CO2 Geological Sequestration. J. Jilin Univ. Earth Sci. Ed. 2025, 55, 930–942. [Google Scholar] [CrossRef]
- Bao, X.; Eaton, D. Fault activation by hydraulic fracturing in western Canada. Science 2016, 6318, 1406–1409. [Google Scholar] [CrossRef]
- Nath, F.; Cabezudo, E.; Romero, N. Experimental Investigations of Caprock Integrity for Geological Carbon Storage Using Three-Dimensional Digital Image Correlation. In Proceedings of the SPE Western Regional Meeting, Palo Alto, CA, USA, 23–25 April 2024; SPE: Houston, TX, USA, 2024; p. D031S014R002. [Google Scholar]
- Huang, X. Study on Sealing Property of Subsurface Buried Cap in Supercritical CO2 Brine Layer. Master’s Thesis, Xi’an Shiyou University, Xi’an, China, 2023. [Google Scholar]
- Guo, B. Study on the Sealing Ability Evolution of Caprock System in the Process of CO2 Geological Storage: A Case Study of Ziniquanzi Formation Mudstone Caprockin Xinjiang Junggar Basin. Master’s Thesis, Jilin University, Changchun, China, 2020. [Google Scholar]
- Tian, H. Impact of CO2-Brink-Rock Interaction on the Caprock Sealing Efficiency: A Case Study of Shaqianfeng Formation Mudstone Caprock in Ordos Basin. Ph.D. Thesis, Jilin University, Changchun, China, 2014. [Google Scholar]
- Li, H.; Wang, F.; Wang, Y.; Yuan, Y.; Feng, G.; Tian, H.; Xu, T. Phase-field modeling of coupled reactive transport and pore structure evolution due to mineral dissolution in porous media. J. Hydrol. 2023, 619, 129363. [Google Scholar] [CrossRef]
- Jyoti, A.; Haese, R.R. Validation of a multicomponent reactive-transport model at pore scale based on the coupling of COMSOL and PhreeqC. Comput. Geosci. 2021, 156, 104870. [Google Scholar] [CrossRef]
- Wei, Z.; Gao, K.; Li, S. Integrated Thermo-Hydro-Mechanical Workflow for Modeling CO2 Storage with Fault Activation Risk. SPE J. 2025, 30, 2975–2995. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, Q.; Li, X.; Tan, Y.; Jing, M. Reactivation of rate-and-state faults induced by CO2 injection: Effects of pore pressure diffusion and fluid pressurization. J. Rock Mech. Geotech. Eng. 2025. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, Y.; Zheng, H.; Fan, B. A novel fully coupled thermo-hydro-mechanical-damage model for hydraulic fracture propagation in fractured geothermal reservoirs. Comput. Geotech. 2025, 185, 107364. [Google Scholar] [CrossRef]
- Gao, X.; Yang, S.; Shen, B.; Wang, J.; Tian, L.; Li, S. Effects of CO2 variable thermophysical properties and phase behavior on CO2 geological storage: A numerical case study. Int. J. Heat Mass Transf. 2024, 221, 125073. [Google Scholar] [CrossRef]
- Pavan, T.N.V.; Devarapu, S.R.; Govindarajan, S.K. Numerical investigations on the performance of sc-CO2 sequestration in heterogeneous deep saline aquifers under non-isothermal conditions. Gas Sci. Eng. 2024, 130, 205437. [Google Scholar] [CrossRef]
- Zhang, T.; Gan, Q.; Wang, M.; Song, S.; Tang, M.; Li, Y. Modelling the multifield coupling response to the CO2/Water flooding in ultralow-permeability oil reservoir. Geomech. Geophys. Geo-Energy Geo-Resour. 2025, 11, 64. [Google Scholar] [CrossRef]
- Cui, J.; Yang, J.; Wang, M.; Wang, X.; Wu, Y.; Yu, C. Shale porosity prediction based on random forest algorithm. Pet. Geol. Recovery Effic. 2023, 30, 13–21. [Google Scholar] [CrossRef]
- Shchipanov, A.A.; Kollbotn, L.; Berenblyum, R. Characterization and monitoring of reservoir flow barriers from pressure transient analysis for CO2 injection in saline aquifers. Int. J. Greenh. Gas Control 2019, 91, 102842. [Google Scholar] [CrossRef]
- Loizzo, M.; Lombardi, S.; Deremble, L.; Lecampion, B.; Quesada, D.; Huet, B.; Khalfallah, I.; Annunziatellis, A.; Picard, G. Monitoring CO2 migration in an injection well: Evidence from MovECBM. Energy Procedia 2011, 4, 5203–5210. [Google Scholar] [CrossRef]
- Sori, A.; Moghaddas, J.; Abedpour, H. Technology, Comprehensive review of experimental studies, numerical modeling, leakage risk assessment, monitoring, and control in geological storage of carbon dioxide: Implications for effective CO2 deployment strategies. Greenh. Gases Sci. Technol. 2024, 14, 887–913. [Google Scholar] [CrossRef]
- Giese, R.; Henninges, J.; Lüth, S.; Morozova, D.; Schmidt-Hattenberger, C.; Würdemann, H.; Zimmer, M.; Cosma, C.; Juhlin, C. Monitoring at the CO2 SINK site: A concept integrating geophysics, geochemistry and microbiology. Energy Procedia 2019, 1, 2251–2259. [Google Scholar] [CrossRef]
- Cheng, Y.; Liu, W.; Xu, T.; Zhang, Y.; Zhang, X.; Xing, Y.; Feng, B.; Xia, Y. Seismicity induced by geological CO2 storage: A review. Earth-Sci. Rev. 2023, 239, 104369. [Google Scholar] [CrossRef]
- Khan, S.; Khulief, Y.; Juanes, R.; Bashmal, S.; Usman, M.; Al-Shuhail, A. Geomechanical modeling of CO2 sequestration: A review focused on CO2 injection and monitoring. J. Environ. Chem. Eng. 2024, 12, 112847. [Google Scholar] [CrossRef]
- Rippe, D.; Jordan, M.; Romdhane, A.; Macquet, M.; Lawton, D. Accurate CO2 monitoring using quantitative joint inversion at the CaMI Field Research Station (FRS), Canada. In Proceedings of the 14th International Conference on Greenhouse Gas Control Technologies-GHGT-14, Melbourne, Australia, 21–25 October 2018. [Google Scholar]
- Zhou, Z.; Lin, Y.; Zhang, Z.; Wu, Y.; Wang, Z.; Dilmore, R.; Guthrie, G. A data-driven CO2 leakage detection using seismic data and spatial–temporal densely connected convolutional neural networks. Int. J. Greenh. Gas Control 2019, 90, 102790. [Google Scholar] [CrossRef]
- Chen, B.; Harp, D.R.; Lin, Y.; Keating, E.H.; Pawar, R.J. Geologic CO2 sequestration monitoring design: A machine learning and uncertainty quantification based approach. Appl. Energy 2018, 225, 332–345. [Google Scholar] [CrossRef]
Formation Type | Advantage | Disadvantages |
---|---|---|
Deep Saline Aquifers | Deep saline aquifers exhibit extensive global occurrence, possess the largest theoretical storage capacity, are typically sealed by shale caprocks, and provide effective CO2 containment. | Deep saline aquifers are often poorly characterized geologically, exhibiting significant uncertainties in porosity, permeability, and caprock integrity. Consequently, injectivity may be constrained, while accurately mapping CO2 plume migration and verifying long-term containment states poses substantial technical complexity and cost. |
Gas Reservoirs | Geological structure, reservoir properties, caprock sealing capacity, and trapping mechanisms are well characterized. The existing infrastructure can be repurposed, significantly lowering development costs. Offers enhanced economic viability potential, particularly when combined with enhanced oil recovery. | With limited storage capacity, Wellbore integrity requires rigorous assessment, as existing wells may serve as potential leakage pathways. Long-term production activities may compromise reservoir integrity, affecting injectivity and containment security. |
Deep Unmineable Coal Seams | CO2 exhibits stronger adsorption affinity to coal surfaces than methane, enabling displacement of coalbed methane (CBM). This mechanism achieves concurrent CO2 sequestration and enhanced CBM recovery (ECBM), offering significant economic benefits. | Low permeability poses injectivity challenges, while complex fracture networks and strong reservoir heterogeneity further complicate operations. Critically, CO2 adsorption induces significant coal-matrix swelling, thereby reducing permeability and constraining long-term injectivity. |
Name | Location | Storage Capacity | Main Information |
---|---|---|---|
In Salah | Algeria | 1700 Mt [14] | This fully operational, world-pioneering onshore gas field receives CO2 from the In Salah oil field, a depleted reservoir. Injection was suspended in June 2011 due to caprock integrity concerns [15,16,17]. |
Ketzin | Ketzin, Germany | 67,271 t | Europe’s first onshore CO2 storage project injected the gas into a saline sandstone aquifer at ~630 m depth [18,19]. |
Sleipner | The mid-central North Sea | 15.5 Mt | The world’s first commercial-scale CO2 injection project stored the gas in a Norwegian North Sea saline aquifer, 800–1000 m below the seabed [20,21]. |
Weyburn-Midale | South central Saskatchewan (Canada) | 20 Mt [22] | The Weyburn project aimed to boost oil production via CO2-EOR, targeting two Midale carbonate reservoir aquifers: porous vuggy beds and dolostone marly beds [23,24]. |
Ordos | Inner Mongolia (China) | 15 Mt | A comprehensive monitoring system (ground, surface, and subsurface) tracked CO2 migration using vertical seismic profiles (VSP). Results showed oil/gas reservoirs outperform saline aquifers for storage [25,26]. |
Trapping Mechanisms | Timescale | Stability | Topography | Advantage | Disadvantages |
---|---|---|---|---|---|
Structural Trapping | Minimum | Minimum | Well-suited for sedimentary basins but remains inapplicable to mountainous terrains or fault-developed zones. | Structural trapping provides a predictable storage capacity and serves as the primary barrier against upward CO2 migration | This mechanism is entirely contingent upon the long-term integrity of the caprock and structural stability, presenting elevated long-term risks. Its viability demands stringent geological conditions and necessitates continuous pressure monitoring to mitigate induced seismicity. |
Residual Trapping | Medium | Medium | High-porosity channel sands enhance capillary trapping effectiveness, thus improving storage efficiency, whereas steep mountainous terrains remain inapplicable for this mechanism. | Capillary trapping immobilizes the mobile CO2 phase and markedly reduces its leakage potential, thereby providing a critical contribution to long-term containment in saline aquifers. | The magnitude of capillary trapping is strongly conditioned by the pore structure, wettability, and spatial heterogeneity of the host rock, leading to substantial variability across formations. |
Dissolution Trapping | Medium and long term | Higher | Deep-water basins (>800 m) are optimal for CO2 storage, geothermal zones pose elevated vertical migration risks due to thermal convection. | Aqueous-phase dissolution of CO2 eliminates discrete pore-volume occupancy, thereby enhancing effective reservoir storage capacity. Concurrently, it reduces potential leakage volume and pressure, substantially mitigating long-term containment risks. | The dissolution process is kinetically constrained, with rates and extent governed by formation water salinity, temperature, pressure, pH, and reservoir heterogeneity. |
Mineral Trapping | Maximum | Maximum | Mineral trapping exhibits high efficiency in divalent cation-rich lithologies such as basalt, whereas quartz-dominated sandstones demonstrate limited effectiveness. | Dissolved CO2 reacts with reservoir minerals to precipitate stable carbonate phases, achieving permanent sequestration; these neo-formed carbonates simultaneously enhance mechanical integrity by reinforcing the pore framework and increasing bulk rock strength. | Mineral-trapping kinetics operate on geological timescales (103–106 yr), rate-limited by silicate reactivity and divalent cation availability. Although carbonate precipitation permanently immobilizes CO2, excessive mineralization may occlude pore throats, degrading porosity and impairing long-term injectivity and storage capacity. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, S.; Jin, K.; Zhao, W.; Ding, L.; Zhang, J.; Xu, D. Mechanism, Modeling and Challenges of Geological Storage of Supercritical Carbon Dioxide. Energies 2025, 18, 4338. https://doi.org/10.3390/en18164338
Wang S, Jin K, Zhao W, Ding L, Zhang J, Xu D. Mechanism, Modeling and Challenges of Geological Storage of Supercritical Carbon Dioxide. Energies. 2025; 18(16):4338. https://doi.org/10.3390/en18164338
Chicago/Turabian StyleWang, Shun, Kan Jin, Wei Zhao, Luojia Ding, Jingning Zhang, and Di Xu. 2025. "Mechanism, Modeling and Challenges of Geological Storage of Supercritical Carbon Dioxide" Energies 18, no. 16: 4338. https://doi.org/10.3390/en18164338
APA StyleWang, S., Jin, K., Zhao, W., Ding, L., Zhang, J., & Xu, D. (2025). Mechanism, Modeling and Challenges of Geological Storage of Supercritical Carbon Dioxide. Energies, 18(16), 4338. https://doi.org/10.3390/en18164338