Impact of Demineralization on Various Types of Biomass Pyrolysis: Behavior, Kinetics, and Thermodynamics
Abstract
1. Introduction
2. Materials and Method
2.1. Materials
2.2. Thermogravimetric Experiment
2.3. Kinetic Analysis
2.4. Calculation of Thermodynamic Parameters
3. Results and Discussion
3.1. Thermogravimetric Characteristics Analysis
3.2. Analysis of Pyrolysis Reaction Activation Energy Variation Patterns
3.3. Analysis of Pyrolysis Reaction Models
3.4. Analysis of Thermodynamic Parameters
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, G.; Dai, Y.; Yang, H.; Xiong, Q.; Wang, K.; Zhou, J.; Li, Y.; Wang, S. A Review of Recent Advances in Biomass Pyrolysis. Energy Fuels 2020, 34, 15557–15578. [Google Scholar] [CrossRef]
- Qiu, B.; Tao, X.; Wang, J.; Liu, Y.; Li, S.; Chu, H. Research progress in the preparation of high-quality liquid fuels and chemicals by catalytic pyrolysis of biomass: A review. Energy Convers. Manag. 2022, 261, 115647. [Google Scholar] [CrossRef]
- Khan, A.A.; Jong, W.D.; Jansens, P.J.; Spliethoff, H. Biomass combustion in fluidized bed boilers: Potential problems and remedies. Fuel Process. Technol. 2009, 90, 21–50. [Google Scholar] [CrossRef]
- Kan, T.; Strezov, V.; Evans, T.J. Lignocellulosic biomass pyrolysis: A review of product properties and effects of pyrolysis parameters. Renew. Sustain. Energy Rev. 2016, 57, 1126–1140. [Google Scholar] [CrossRef]
- Che, Y.; Yan, B.; Li, J.; Zhao, Z.; Gao, X.; Chen, G.; Cravotto, G.; Sun, Y.; Zhao, J. Microwave applied to the thermochemical conversion of biomass: A review. Renew. Sustain. Energy Rev. 2025, 216, 115674. [Google Scholar] [CrossRef]
- Seo, M.W.; Lee, S.H.; Nam, H.; Lee, D.; Tokmurzin, D.; Wang, S.; Park, Y.-K. Recent advances of thermochemical conversion processes for biorefinery. Bioresour. Technol. 2022, 343, 126109. [Google Scholar] [CrossRef]
- Sherif, I.M.; Ifeanyi, M.S.A.; Stephen, O.A.; Muritala, K.B.; Tetteh, E.K.; Tetteh, E.K.; Isa, Y.M. Biomass conversion for sustainable hydrogen generation: A comprehensive review. Fuel Process. Technol. 2025, 272, 108210. [Google Scholar]
- Zhang, Y.; Liang, Y.; Li, S.; Yuan, Y.; Zhang, D.; Wu, Y.; Xie, H.; Brindhadevi, K.; Pugazhendhi, A.; Xia, C. A review of biomass pyrolysis gas: Forming mechanisms, influencing parameters, and product application upgrades. Fuel 2023, 347, 128461. [Google Scholar] [CrossRef]
- Wang, S.; Dai, G.; Yang, H.; Luo, Z. Lignocellulosic biomass pyrolysis mechanism: A state-of-the-art review. Prog. Energy Combust. Sci. 2017, 62, 33–86. [Google Scholar] [CrossRef]
- Di Blasi, C.; Branca, C.; Galgano, A. Biomass screening for the production of furfural via thermal decomposition. Ind. Eng. Chem. Res. 2010, 49, 2658–2671. [Google Scholar] [CrossRef]
- Qu, T.; Guo, W.; Shen, L.; Xiao, J.; Zhao, K. Experimental study of biomass pyrolysis based on three major components: Hemicellulose, cellulose, and lignin. Ind. Eng. Chem. Res. 2011, 50, 10424–10433. [Google Scholar] [CrossRef]
- Lv, G.; Wu, S. Analytical pyrolysis studies of corn stalk and its three main components by TG-MS and Py-GC/MS. J. Anal. Appl. Pyrolysis 2012, 97, 11–18. [Google Scholar] [CrossRef]
- Li, X.; Cen, K.; Li, J.; Jia, D.; Gao, J.; Zhang, L.; Chen, D. Insights into the interactions between cellulose and hemicellulose during pyrolysis for optimizing the properties of biochar as a potential energy vector. Ind. Crops Prod. 2025, 223, 120126. [Google Scholar] [CrossRef]
- Ni, X.; Cen, K.; Li, X.; Cui, D.; Liu, M.; Zhu, L.; Chen, D. Cellulose upgradation by torrefaction pretreatment and effect of torrefaction severity on the quality of pyrolysis products. Ind. Crops Prod. 2025, 225, 120516. [Google Scholar] [CrossRef]
- Huang, J.; He, C.; Wu, L.; Tong, H. Thermal degradation reaction mechanism of xylose: A DFT study. Chem. Phys. Lett. 2016, 658, 114–124. [Google Scholar] [CrossRef]
- Du, X.; Wu, S. Effect of lignin modification on the selectivity of pyrolysis products from softwood kraft lignin. J. Anal. Appl. Pyrolysis 2024, 179, 106517. [Google Scholar] [CrossRef]
- Hu, B.; Zhang, W.M.; Guo, X.W.; Li, J.H.; Yang, X.; Fang, Z.M.; Liu, J.; Lu, Q. Experimental and computational study on xylan pyrolysis: The effect of branch structures. Fuel 2025, 386, 134329. [Google Scholar] [CrossRef]
- Agblevor, F.A.; Besler, S. Inorganic compounds in biomass feedstocks. 1.Effect on the quality of fast pyrolysis oils. Energy Fuels. 1996, 10, 293–298. [Google Scholar] [CrossRef]
- Zhang, H.; Ma, Y.; Shao, S.; Xiao, R. The effects of potassium on distributions of bio-oils obtained from fast pyrolysis of agricultural and forest biomass in a fluidized bed. Appl. Energy 2017, 208, 867–877. [Google Scholar] [CrossRef]
- Patwardhan, P.R.; Satrio, J.A.; Brown, R.C.; Shanks, B.H. Influence of inorganic salts on the primary pyrolysis products of cellulose. Bioresour. Technol. 2010, 101, 4646–4655. [Google Scholar] [CrossRef]
- Liu, D.; Yu, Y.; Long, Y.; Wu, H. Effect of MgCl2 loading on the evolution of reaction intermediates during cellulose fast pyrolysis at 325 °C. Proc. Combust. Inst. 2015, 35, 2381–2388. [Google Scholar] [CrossRef]
- Carpenter, D.; Westover, T.L.; Czernik, S.; Jablonski, W. Biomass feedstocks for renewable fuel production: A review of the impacts of feedstock and pretreatment on the yield and product distribution of fast pyrolysis bio-oils and vapors. Green Chem. 2014, 16, 384–406. [Google Scholar] [CrossRef]
- Song, Q.; Zhang, W.; Wang, X.; Wang, X.; Li, H.; Yang, Z.; Ye, Y.; Luo, G. Comprehensive effects of different inorganic elements on initial biomass char-CO2 gasification reactivity in micro fluidised bed reactor: Theoretical modeling and experiment analysis. Energy 2023, 262, 125379. [Google Scholar]
- Nsibi, C.; Pozzobon, V.; Escudero-Sanz, J.; Lajili, M. Catalytic Effects of Potassium Concentration on Steam Gasification of Biofuels Blended from Olive Mill Solid Wastes and Pine Sawdust for a Sustainable Energy of Syngas. Sustainability 2024, 16, 9040. [Google Scholar] [CrossRef]
- El-Naggar, M.A.; Mousa, M.A.; Reda, S.M.; Emara, M.M. Thermal decomposition behavior and kinetics for pyrolysis and catalytic pyrolysis of sugarcane bagasse. Sustain. Chem. Pharm. 2025, 44, 101976. [Google Scholar] [CrossRef]
- Nawaz, A.; Kumar, P. Pyrolysis of mustard straw: Evaluation of optimum process parameters, kinetic and thermodynamic study. Bioresour. Technol. 2021, 340, 125722. [Google Scholar] [CrossRef]
- Acikalin, K. Determination of kinetic triplet, thermal degradation behaviour and thermodynamic properties for pyrolysis of a lignocellulosic biomass. Bioresour. Technol. 2021, 337, 125438. [Google Scholar] [CrossRef]
- Xu, Q.; Ma, X.; Yu, Z.; Cai, Z. A kinetic study on the effects of alkaline earth and alkali metal compounds for catalytic pyrolysis of microalgae using thermogravimetry. Appl. Therm. Eng. 2014, 73, 357–361. [Google Scholar] [CrossRef]
- Tran, Q.K.; Ly, H.V.; Hwang, H.T.; Kim, J.; Kim, S.-S. Study on pyrolysis of Organosolv lignin impregnated with alkali and alkaline earth metals: Kinetics, thermodynamics, and product characterization. Fuel 2022, 329, 14. [Google Scholar] [CrossRef]
- Zhang, Y.J.; Wang, J.F.; Wei, J.T.; Bai, Y.H.; Song, X.D.; Su, W.G.; Yu, G.S. Effect of alkali metal occurrence on the pyrolysis behavior of rice straw. J. Fuel Chem. Technol. 2021, 49, 752–758. [Google Scholar] [CrossRef]
- Sun, K.; Guo, T.; Li, Y.; Wang, W.; Li, Z.; Geng, P.; Fu, P. Rapid pyrolysis of cellulose: Revealing the role of volatile matter and char structure evolution. J. Anal. Appl. Pyrolysis 2024, 182, 106704. [Google Scholar] [CrossRef]
- Vassilev, S.V.; Baxter, D.; Andersen, L.K.; Vassileva, C.G.; Morgan, T.J. An overview of the organic and inorganic phase composition of biomass. Fuel 2012, 94, 1–33. [Google Scholar] [CrossRef]
- Vassilev, S.V.; Baxter, D.; Andersen, L.K.; Vassileva, C.G. An overview of the composition and application of biomass ash. Part 1. Phase-mineral and chemical composition and classification. Fuel 2013, 105, 40–76. [Google Scholar] [CrossRef]
Reaction Mechanisms | Symbol | ||
---|---|---|---|
Interface Reactions | R1 | 1 | |
R2 | |||
R3 | |||
Diffusion-Controlled Reactions | D1 | ||
D2 | |||
D3 | |||
G-B | |||
ZH | |||
Nucleation and Growth | A2 | ||
A3 | |||
A4 | |||
Chemical Reactions | F1 | ||
F3/2 | |||
F2 | |||
F3 | |||
Power Law | P2/3 | ||
P2 | |||
P3 |
Samples | Heating Rate | Ti °C | Tf °C | Tmax1 °C | Dmax1 %/min | Tmax2 °C | Dmax2 %/min | Mf % |
---|---|---|---|---|---|---|---|---|
Eucalyptus | 5 | 222.02 | 500.23 | 273.03 | −1.74 | 338.59 | −6.14 | 21.79 |
10 | 232.90 | 509.32 | 278.61 | −3.64 | 351.93 | −11.05 | 23.10 | |
20 | 242.97 | 510.33 | 292.62 | −8.70 | 360.90 | −24.14 | 23.84 | |
HF-eucalyptus | 5 | 225.69 | 503.26 | 277.93 | −9.16 | 342.27 | −27.26 | 20.23 |
10 | 232.49 | 505.61 | 285.82 | −9.29 | 354.37 | −25.43 | 21.57 | |
20 | 243.78 | 508.42 | 302.28 | −10.43 | 364.98 | −22.88 | 21.89 | |
Straw | 5 | 205.43 | 500.13 | 283.91 | −2.34 | 300.51 | −4.02 | 34.93 |
10 | 211.68 | 510.25 | 291.94 | −2.43 | 312.21 | −4.08 | 33.01 | |
20 | 216.99 | 515.33 | 299.01 | −2.57 | 317.10 | −3.56 | 36.91 | |
HF-straw | 5 | 217.39 | 510.23 | 279.42 | −2.71 | 324.31 | −6.31 | 20.63 |
10 | 220.12 | 514.46 | 282.96 | −2.56 | 334.79 | −5.93 | 21.35 | |
20 | 231.13 | 520.33 | 291.94 | −2.75 | 343.08 | −5.12 | 22.54 | |
Miscanthus | 5 | 202.30 | 490.52 | 280.65 | −2.79 | 314.52 | −4.62 | 21.83 |
10 | 211.95 | 493.25 | 283.50 | −2.44 | 323.50 | −4.23 | 27.72 | |
20 | 210.46 | 500.24 | 289.63 | −2.32 | 331.79 | −4.12 | 28.01 | |
HF-miscanthus | 5 | 220.93 | 500.46 | 291.80 | −2.93 | 333.15 | −5.76 | 18.86 |
10 | 233.99 | 508.65 | 296.56 | −3.15 | 342.68 | −5.32 | 18.90 | |
20 | 244.33 | 519.36 | 315.20 | −3.09 | 351.38 | −4.91 | 20.63 |
Samples | Average Activation Energy (kJ/mol) | ||
---|---|---|---|
KAS | FWO | Friedman | |
Eucalyptus | 193.48 | 203.62 | 203.71 |
HF-eucalyptus | 205.70 | 216.14 | 200.95 |
Straw | 290.13 | 299.10 | 296.96 |
HF-straw | 218.43 | 228.28 | 219.43 |
Miscanthus | 245.66 | 255.48 | 254.19 |
HF-miscanthus | 205.52 | 215.52 | 211.54 |
Models | Eucalyptus | HF-Eucalyptus | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
0.1 < α < 0.3 | 0.3 < α < 0.8 | 0.8 < α < 0.9 | 0.1 < α < 0.3 | 0.3 < α < 0.8 | 0.8 < α < 0.9 | |||||||
R2 | E | R2 | E | R2 | E | R2 | E | R2 | E | R2 | E | |
R1 | 0.9713 | 58.59 | 0.9938 | 55.25 | 0.8065 | −4.70 | 0.9807 | 56.01 | 0.9933 | 61.35 | 0.8503 | −4.96 |
R2 | 0.9818 | 71.57 | 0.9899 | 80.54 | 0.9156 | 11.29 | 0.9885 | 68.96 | 0.9932 | 88.37 | 0.9272 | 10.97 |
R3 | 0.9827 | 72.84 | 0.9871 | 86.26 | 0.9219 | 13.58 | 0.9892 | 70.19 | 0.9915 | 94.71 | 0.9329 | 13.19 |
D1 | 0.9755 | 126.46 | 0.9947 | 120.51 | 0.9090 | 1.50 | 0.9838 | 121.40 | 0.9942 | 132.80 | 0.9148 | 1.06 |
D2 | 0.9808 | 140.58 | 0.9926 | 149.24 | 0.9054 | 17.83 | 0.9877 | 135.45 | 0.9944 | 163.60 | 0.9178 | 17.31 |
D3 | 0.9827 | 145.68 | 0.9871 | 172.52 | 0.9219 | 27.16 | 0.9892 | 140.38 | 0.9915 | 189.42 | 0.9329 | 26.37 |
G-B | 0.9814 | 142.30 | 0.9909 | 156.93 | 0.9120 | 20.80 | 0.9882 | 137.11 | 0.9937 | 172.14 | 0.9239 | 20.20 |
ZH | 0.9859 | 156.15 | 0.9725 | 224.81 | 0.9403 | 52.16 | 0.9918 | 150.50 | 0.9813 | 247.49 | 0.9495 | 50.63 |
A2 | 0.9844 | 37.71 | 0.9804 | 49.34 | 0.9324 | 9.58 | 0.9906 | 36.34 | 0.9871 | 54.25 | 0.9424 | 9.30 |
A3 | 0.9844 | 25.14 | 0.9804 | 32.81 | 0.9324 | 6.38 | 0.9906 | 24.23 | 0.9871 | 36.16 | 0.9424 | 6.20 |
A4 | 0.9844 | 18.86 | 0.9804 | 24.67 | 0.9324 | 4.79 | 0.9906 | 18.17 | 0.9871 | 27.12 | 0.9424 | 4.65 |
F1 | 0.9844 | 75.42 | 0.9804 | 98.68 | 0.9324 | 19.15 | 0.9906 | 72.69 | 0.9871 | 108.49 | 0.9424 | 18.59 |
F3/2 | 0.9867 | 79.43 | 0.9683 | 119.76 | 0.9434 | 30.07 | 0.9923 | 76.55 | 0.9780 | 131.92 | 0.9523 | 29.16 |
F2 | 0.9968 | 26.18 | 0.9099 | 100.19 | 0.9542 | 40.36 | 0.9941 | 25.29 | 0.9283 | 111.01 | 0.9618 | 39.15 |
F3 | 0.9921 | 92.32 | 0.9311 | 199.22 | 0.9556 | 76.58 | 0.9962 | 89.02 | 0.9471 | 220.36 | 0.9631 | 74.30 |
P3/2 | 0.9789 | 101.80 | 0.9954 | 97.90 | 0.8920 | 9.29 | 0.9862 | 98.08 | 0.9950 | 107.18 | 0.9055 | 9.03 |
P2 | 0.9789 | 33.93 | 0.9954 | 32.63 | 0.8920 | 3.10 | 0.9862 | 32.69 | 0.9950 | 35.73 | 0.9055 | 3.01 |
P3 | 0.9713 | 22.62 | 0.9954 | 21.75 | 0.8920 | 2.07 | 0.9862 | 21.79 | 0.9950 | 23.81 | 0.9055 | 2.01 |
Models | Straw | |||||||
---|---|---|---|---|---|---|---|---|
0.1 < α < 0.2 | 0.2 < α < 0.5 | 0.5 < α < 0.8 | 0.8 < α < 0.9 | |||||
R2 | E | R2 | E | R2 | E | R2 | E | |
R1 | 0.9977 | 73.69 | 0.9981 | 61.50 | 0.9849 | 56.53 | 0.9966 | −6.20 |
R2 | 0.9979 | 85.89 | 0.9996 | 78.77 | 0.9957 | 89.95 | 0.9987 | 8.93 |
R3 | 0.9979 | 87.04 | 0.9998 | 81.59 | 0.9970 | 99.07 | 0.9980 | 10.71 |
D1 | 0.9980 | 156.20 | 0.9984 | 132.24 | 0.9873 | 123.01 | 0.8486 | −1.26 |
D2 | 0.9980 | 169.46 | 0.9994 | 151.77 | 0.9935 | 160.94 | 0.9991 | 14.16 |
D3 | 0.9979 | 174.08 | 0.9998 | 163.18 | 0.9970 | 198.13 | 0.9980 | 21.43 |
G-B | 0.9980 | 170.59 | 0.9996 | 155.58 | 0.9950 | 173.17 | 0.9989 | 16.48 |
ZH | 0.9975 | 183.49 | 0.9995 | 187.25 | 0.9985 | 284.56 | 0.9940 | 40.80 |
A2 | 0.9977 | 44.69 | 0.9998 | 43.73 | 0.9984 | 59.66 | 0.9961 | 7.52 |
A3 | 0.9977 | 29.79 | 0.9998 | 29.15 | 0.9984 | 39.77 | 0.9961 | 5.01 |
A4 | 0.9977 | 22.34 | 0.9998 | 21.86 | 0.9984 | 29.83 | 0.9961 | 3.76 |
F1 | 0.9977 | 89.37 | 0.9998 | 87.46 | 0.9984 | 119.31 | 0.9961 | 15.04 |
F3/2 | 0.9974 | 92.95 | 0.9993 | 96.82 | 0.9983 | 154.78 | 0.9929 | 23.46 |
F2 | 0.9808 | 24.56 | 0.9780 | 53.44 | 0.9904 | 155.58 | 0.9882 | 31.33 |
F3 | 0.9964 | 104.26 | 0.9949 | 128.86 | 0.9921 | 293.96 | 0.9874 | 59.41 |
P3/2 | 0.9982 | 123.76 | 0.9987 | 106.11 | 0.9892 | 99.73 | 0.9987 | 7.42 |
P2 | 0.9982 | 41.25 | 0.9987 | 35.37 | 0.9892 | 33.24 | 0.9987 | 2.47 |
P3 | 0.9982 | 27.50 | 0.9987 | 23.58 | 0.9892 | 22.16 | 0.9987 | 1.65 |
Models | HF-Straw | |||||||
---|---|---|---|---|---|---|---|---|
0.1 < α < 0.2 | 0.2 < α < 0.5 | 0.5 < α < 0.8 | 0.8 < α < 0.9 | |||||
R2 | E | R2 | E | R2 | E | R2 | E | |
R1 | 0.9990 | 76.96 | 0.9954 | 51.77 | 0.9850 | 56.53 | 0.7092 | −4.10 |
R2 | 0.9995 | 89.43 | 0.9985 | 68.16 | 0.9958 | 89.89 | 0.8994 | 11.81 |
R3 | 0.9995 | 90.63 | 0.9989 | 70.60 | 0.9971 | 98.98 | 0.9062 | 14.21 |
D1 | 0.9991 | 162.94 | 0.9963 | 112.98 | 0.9874 | 123.01 | 0.0274 | 2.36 |
D2 | 0.9994 | 176.46 | 0.9980 | 131.32 | 0.9937 | 160.88 | 0.8885 | 18.63 |
D3 | 0.9995 | 181.26 | 0.9989 | 141.20 | 0.9971 | 197.97 | 0.9062 | 28.42 |
G-B | 0.9994 | 178.10 | 0.9984 | 134.62 | 0.9951 | 173.07 | 0.8956 | 21.75 |
ZH | 0.9997 | 191.02 | 0.9994 | 162.02 | 0.9985 | 284.15 | 0.9264 | 54.69 |
A2 | 0.9997 | 46.52 | 0.9993 | 37.84 | 0.9984 | 59.59 | 0.9177 | 10.03 |
A3 | 0.9997 | 31.02 | 0.9993 | 25.22 | 0.9984 | 39.72 | 0.9177 | 6.69 |
A4 | 0.9996 | 23.26 | 0.9993 | 18.92 | 0.9984 | 29.79 | 0.9177 | 5.02 |
F1 | 0.9997 | 93.05 | 0.9993 | 75.68 | 0.9984 | 119.17 | 0.9177 | 20.06 |
F3/2 | 0.9998 | 96.76 | 0.9993 | 83.78 | 0.9982 | 154.54 | 0.9298 | 31.51 |
F2 | 0.9918 | 25.48 | 0.9823 | 46.24 | 0.9900 | 155.20 | 0.9418 | 42.38 |
F3 | 0.9999 | 108.49 | 0.9965 | 111.49 | 0.9917 | 293.28 | 0.9435 | 80.44 |
P3/2 | 0.9992 | 128.88 | 0.9969 | 91.82 | 0.9893 | 99.72 | 0.8994 | 11.81 |
P2 | 0.9992 | 42.96 | 0.9969 | 30.61 | 0.9893 | 33.24 | 0.8743 | 3.23 |
P3 | 0.9992 | 28.64 | 0.9969 | 20.40 | 0.9893 | 22.16 | 0.8743 | 2.16 |
Models | Miscanthus | HF-Miscanthus | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
0.1 < α < 0.4 | 0.4 < α < 0.8 | 0.8 < α < 0.9 | 0.1 < α < 0.4 | 0.4 < α < 0.8 | 0.8 < α < 0.9 | |||||||
R2 | E | R2 | E | R2 | E | R2 | E | R2 | E | R2 | E | |
R1 | 0.9931 | 67.21 | 0.9420 | 39.08 | 0.9320 | −4.57 | 0.9731 | 68.58 | 0.9939 | 51.06 | 0.8409 | −4.75 |
R2 | 0.9969 | 81.55 | 0.9784 | 63.55 | 0.9764 | 10.84 | 0.9839 | 83.24 | 0.9959 | 78.72 | 0.9248 | 11.16 |
R3 | 0.9975 | 83.33 | 0.9823 | 69.12 | 0.9788 | 12.94 | 0.9852 | 85.09 | 0.9951 | 85.45 | 0.9301 | 13.50 |
D1 | 0.9940 | 143.58 | 0.9544 | 88.05 | 0.1881 | 1.54 | 0.9766 | 146.48 | 0.9949 | 112.12 | 0.9177 | 1.24 |
D2 | 0.9963 | 159.46 | 0.9729 | 115.53 | 0.9726 | 17.33 | 0.9824 | 162.74 | 0.9964 | 143.48 | 0.9161 | 17.45 |
D3 | 0.9975 | 166.66 | 0.9823 | 138.24 | 0.9788 | 25.88 | 0.9852 | 170.18 | 0.9951 | 170.89 | 0.9301 | 27.00 |
G-B | 0.9967 | 161.89 | 0.9765 | 123.01 | 0.9751 | 20.06 | 0.9834 | 165.24 | 0.9962 | 152.52 | 0.9218 | 20.49 |
ZH | 0.9992 | 181.57 | 0.9927 | 190.22 | 0.9854 | 48.42 | 0.9899 | 185.59 | 0.9884 | 233.44 | 0.9455 | 52.83 |
A2 | 0.9985 | 43.50 | 0.9884 | 40.68 | 0.9826 | 8.99 | 0.9877 | 44.44 | 0.9923 | 50.10 | 0.9389 | 9.62 |
A3 | 0.9985 | 29.00 | 0.9884 | 27.12 | 0.9826 | 6.00 | 0.9877 | 29.63 | 0.9923 | 33.40 | 0.9389 | 6.41 |
A4 | 0.9985 | 21.75 | 0.9884 | 20.34 | 0.9826 | 4.50 | 0.9877 | 22.22 | 0.9923 | 25.05 | 0.9389 | 4.81 |
F1 | 0.9985 | 87.00 | 0.9884 | 81.37 | 0.9826 | 17.99 | 0.9877 | 88.88 | 0.9923 | 100.20 | 0.9389 | 19.24 |
F3/2 | 0.9994 | 92.73 | 0.9942 | 102.54 | 0.9865 | 27.75 | 0.9909 | 94.81 | 0.9861 | 125.63 | 0.9481 | 30.53 |
F2 | 0.9716 | 35.82 | 0.9956 | 95.97 | 0.9903 | 36.61 | 0.9903 | 36.98 | 0.9570 | 116.05 | 0.9569 | 41.52 |
F3 | 0.9996 | 111.56 | 0.9973 | 184.22 | 0.9908 | 69.28 | 0.9972 | 114.30 | 0.9650 | 223.41 | 0.9582 | 78.93 |
P3/2 | 0.9948 | 114.55 | 0.9632 | 73.45 | 0.9673 | 9.16 | 0.9795 | 116.84 | 0.9958 | 91.59 | 0.9050 | 8.99 |
P2 | 0.9948 | 38.18 | 0.9632 | 24.48 | 0.9673 | 3.05 | 0.9795 | 38.95 | 0.9958 | 30.53 | 0.9050 | 3.00 |
P3 | 0.9948 | 25.45 | 0.9632 | 16.32 | 0.9673 | 2.04 | 0.9795 | 25.96 | 0.9958 | 20.35 | 0.9050 | 2.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shen, S.; Li, J.; Lai, Y.; Zhang, R.; Fan, H.; Zhao, W.; Shen, F.; Zhang, Y.; Zhu, W. Impact of Demineralization on Various Types of Biomass Pyrolysis: Behavior, Kinetics, and Thermodynamics. Energies 2025, 18, 4289. https://doi.org/10.3390/en18164289
Shen S, Li J, Lai Y, Zhang R, Fan H, Zhao W, Shen F, Zhang Y, Zhu W. Impact of Demineralization on Various Types of Biomass Pyrolysis: Behavior, Kinetics, and Thermodynamics. Energies. 2025; 18(16):4289. https://doi.org/10.3390/en18164289
Chicago/Turabian StyleShen, Shaoying, Jianping Li, Yuanen Lai, Rui Zhang, Honggang Fan, Wei Zhao, Feng Shen, Yuanjia Zhang, and Weiqiang Zhu. 2025. "Impact of Demineralization on Various Types of Biomass Pyrolysis: Behavior, Kinetics, and Thermodynamics" Energies 18, no. 16: 4289. https://doi.org/10.3390/en18164289
APA StyleShen, S., Li, J., Lai, Y., Zhang, R., Fan, H., Zhao, W., Shen, F., Zhang, Y., & Zhu, W. (2025). Impact of Demineralization on Various Types of Biomass Pyrolysis: Behavior, Kinetics, and Thermodynamics. Energies, 18(16), 4289. https://doi.org/10.3390/en18164289