A Raindrop Energy Harvester for Application to Microrobots
Abstract
1. Introduction
2. Structure and Working Principle of Energy Harvester
2.1. Energy Harvester Structure
2.2. Work Principle
3. Mathematical Modeling
4. Experimental Platform Construction and Result Discussion
4.1. Experimental Platform Construction
4.2. Experimental Tests and Numerical Simulation Results Are Analyzed
5. Performance Comparison and Potential Applications
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Eghbali, P.; Younesian, D.; Moayedizadeh, A.; Ranjbar, M. Study in circular auxetic structures for efficiency enhancement in piezoelectric vibration energy harvesting. Sci. Rep. 2020, 10, 16338. [Google Scholar] [CrossRef]
- Hou, C.; Shan, X.; Zhang, L.; Song, R.; Yang, Z. Design and Modeling of a Magnetic-Coupling Monostable Piezoelectric Energy Harvester Under Vortex-Induced Vibration. IEEE Access 2020, 8, 108913–108927. [Google Scholar] [CrossRef]
- Kan, J.; Liao, W.; Wang, J.; Wang, S.; Yan, M.; Jiang, Y.; Zhang, Z. Enhanced piezoelectric wind-induced vibration energy harvester via the interplay between cylindrical shell and diamond-shaped baffle. Nano Energy 2021, 89, 106466. [Google Scholar] [CrossRef]
- Lai, Z.; Wang, S.; Zhu, L.; Zhang, G.; Wang, J.; Yang, K.; Yurchenko, D. A hybrid piezo-dielectric wind energy harvester for high-performance vortex-induced vibration energy harvesting. Mech. Syst. Signal Process. 2021, 150, 107212. [Google Scholar] [CrossRef]
- Li, Z.; Wang, K.; Hou, C.; Zhang, C.; Ren, F.; Wu, D.; Dong, L.; Zhao, J. Self-sensing intelligent microrobots for noninvasive and wireless monitoring systems. Microsyst. Nanoeng. 2023, 9, 102. [Google Scholar] [CrossRef]
- Guo, J.; Li, Y.; Huang, B.; Ding, L.; Gao, H.; Zhong, M. An online optimization escape entrapment strategy for planetary rovers based on Bayesian optimization. J. Field Robot. 2024, 41, 2518–2529. [Google Scholar] [CrossRef]
- Meng, J.; Fu, X.; Yang, C.; Zhang, L.; Yang, X.; Song, R. Design and simulation investigation of piezoelectric energy harvester under wake-induced vibration coupling vortex-induced vibration. Ferroelectrics 2021, 585, 128–138. [Google Scholar] [CrossRef]
- Sui, W.; Zhang, H.; Yang, C.; Zhang, D.; Song, R.; Yang, X. Modeling and experimental investigation of magnetically coupling bending-torsion piezoelectric energy harvester based on vortex-induced vibration. J. Intell. Mater. Syst. Struct. 2021, 33, 1147–1160. [Google Scholar] [CrossRef]
- Wei, X.; Liu, X.; Zheng, C.; Zhao, H.; Zhong, Y.; Amarasinghe, Y.W.R.; Wang, P. A piezoelectric power generator based on axisymmetrically distributed PVDF array for two-dimension vibration energy harvesting and direction sensing. Sustain. Energy Technol. Assess. 2021, 44, 101001. [Google Scholar] [CrossRef]
- Li, S.; He, X.; Li, J.; Feng, Z.; Yang, X.; Li, J. An in-plane omnidirectional piezoelectric wind energy harvester based on vortex-induced vibration. Appl. Phys. Lett. 2022, 120, 043901. [Google Scholar] [CrossRef]
- Zhang, B.; Li, H.; Zhou, S.; Liang, J.; Gao, J.; Yurchenko, D. Modeling and analysis of a three-degree-of-freedom piezoelectric vibration energy harvester for broadening bandwidth. Mech. Syst. Signal Process. 2022, 176, 109169. [Google Scholar] [CrossRef]
- Zou, H.-X.; Zhang, W.-m.; Li, W.-B.; Wei, K.-X.; Gao, Q.-H.; Peng, Z.-K.; Meng, G. Design and experimental investigation of a magnetically coupled vibration energy harvester using two inverted piezoelectric cantilever beams for rotational motion. Energy Convers. Manag. 2017, 148, 1391–1398. [Google Scholar] [CrossRef]
- Iqbal, M.; Nauman, M.; Khan, F.U.; Abas, P.; Cheok, Q.; Iqbal, A.; Aissa, B. Vibration-based piezoelectric, electromagnetic, and hybrid energy harvesters for microsystems applications: A contributed review. Int. J. Energy Res. 2020, 45, 65–102. [Google Scholar] [CrossRef]
- Sotoudeh, B.; Afrang, S.; Ghasemi, S.; Afrang, O. Design and simulation of a wide-range variable MEMS capacitor using electrostatic and piezoelectric actuators. Microsyst. Technol. 2023, 29, 1039–1051. [Google Scholar] [CrossRef]
- Zamanian, M.; Firouzi, B. Analysis and Optimal Design of Vibration-Based Paddle Type Piezoelectric Energy Harvester Under Electrostatic Actuation. J. Vib. Eng. Technol. 2024, 12, 6723–6740. [Google Scholar] [CrossRef]
- Gao, F.; Zhao, X.; Xun, X.; Huang, H.; Shi, X.; Li, Q.; Liu, F.; Gao, P.; Liao, Q.; Zhang, Y. Morphotropic Phase Boundary in Polarized Organic Piezoelectric Materials. Phys. Rev. Lett. 2023, 130, 246801. [Google Scholar] [CrossRef]
- Hou, C.; Shan, X.; Zhang, X.; Min, Z.; Song, H.; Xie, T. Magnetic frequency modulation mechanism of a non-contact magnetism-toggled rotary energy harvester coupling piezoelectric effect. Energy Convers. Manag. 2023, 295, 117660. [Google Scholar] [CrossRef]
- Wu, Z.; Xu, Q. Design of a structure-based bistable piezoelectric energy harvester for scavenging vibration energy in gravity direction. Mech. Syst. Signal Process. 2022, 162, 108043. [Google Scholar] [CrossRef]
- Liu, M.; Zhang, Y.; Fu, H.; Qin, Y.; Ding, A.; Yeatman, E.M. A seesaw-inspired bistable energy harvester with adjustable potential wells for self-powered internet of train monitoring. Appl. Energy 2023, 337, 120908. [Google Scholar] [CrossRef]
- Hou, C.; Zhang, X.; Yu, H.; Shan, X.; Sui, G.; Xie, T. Ori-inspired bistable piezoelectric energy harvester for scavenging human shaking energy: Design, modeling, and experiments. Energy Convers. Manag. 2022, 271, 116309. [Google Scholar] [CrossRef]
- Han, M.; Yang, X.; Wang, D.F.; Jiang, L.; Song, W.; Ono, T. A mosquito-inspired self-adaptive energy harvester for multi-directional vibrations. Appl. Energy 2022, 315, 119040. [Google Scholar] [CrossRef]
- Qian, F.; Hajj, M.R.; Zuo, L. Bio-inspired bi-stable piezoelectric harvester for broadband vibration energy harvesting. Energy Convers. Manag. 2020, 222, 113174. [Google Scholar] [CrossRef]
- Zhou, J.; Zhao, X.; Wang, K.; Chang, Y.; Xu, D.; Wen, G. Bio-inspired bistable piezoelectric vibration energy harvester: Design and experimental investigation. Energy 2021, 228, 120595. [Google Scholar] [CrossRef]
- Wang, W.; He, X.; Wang, X.; Wang, M.; Xue, K. A bioinspired structure modification of piezoelectric wind energy harvester based on the prototype of leaf veins. Sens. Actuators A Phys. 2018, 279, 467–473. [Google Scholar] [CrossRef]
- Doria, A.; Fanti, G.; Filipi, G.; Moro, F. Development of a Novel Piezoelectric Harvester Excited by Raindrops. Sensors 2019, 19, 3653. [Google Scholar] [CrossRef]
- Wong, V.-K.; Ho, J.-H.; Chai, A.-B. Performance of a piezoelectric energy harvester in actual rain. Energy 2017, 124, 364–371. [Google Scholar] [CrossRef]
Parts | Parameter | Symbol | Value | Unit |
---|---|---|---|---|
PZT | Length × width × thickness | Lp × wp × hp | 50 × 10 × 0.2 | mm |
density | ρp | 7200 | kg/m3 | |
Elastic modulus | Ep | 58 | GPa | |
Piezoelectric parameters | e31 | −11.6 | C/m2 | |
Dielectric constant | ε33 | 13.29 | nF/m | |
Petiole | Length × width × thickness | Ls × ws × hs | (80~96) × 15 × 0.4 | mm |
Density | ρs | 2700 | kg/m3 | |
Elastic modulus | Es | 70 | GPa | |
Rounded blades | Radius | R | 45~51 | mm |
Harvesterezoidal blades | Upper bottom | at | 64.3~72.8 | mm |
Below bottom | bt | 77.1~87.4 | mm | |
Height | Ht | 80~102 | mm | |
Triangular blades | Hemline | as | 141.4~160 | mm |
Height | Hs | 80~102 | mm |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, X.; Luo, L.; Tian, C.; Zhou, C.; Huang, B.; Song, R.; Guo, J. A Raindrop Energy Harvester for Application to Microrobots. Energies 2025, 18, 4233. https://doi.org/10.3390/en18164233
Li X, Luo L, Tian C, Zhou C, Huang B, Song R, Guo J. A Raindrop Energy Harvester for Application to Microrobots. Energies. 2025; 18(16):4233. https://doi.org/10.3390/en18164233
Chicago/Turabian StyleLi, Xibin, Lianjian Luo, Chenghua Tian, Chuan Zhou, Bo Huang, Rujun Song, and Junlong Guo. 2025. "A Raindrop Energy Harvester for Application to Microrobots" Energies 18, no. 16: 4233. https://doi.org/10.3390/en18164233
APA StyleLi, X., Luo, L., Tian, C., Zhou, C., Huang, B., Song, R., & Guo, J. (2025). A Raindrop Energy Harvester for Application to Microrobots. Energies, 18(16), 4233. https://doi.org/10.3390/en18164233