Coordinated Thermal and Electrical Balancing for Lithium-Ion Cells
Abstract
1. Introduction
2. Modeling of Battery Dynamics
2.1. Electrical Model of a Single Cell
2.2. Thermal Model of a Single Cell
2.3. Converter and Power Stage Model
2.4. Unified State-Space Model
3. Control Strategy for Multi-Objective Balancing
- State Estimator: Acquires real-time cell-level data, including SOC, temperature, and voltage, either through measurement or model-based estimation.
- Multi-Objective Cost Evaluator: Quantifies the global imbalance using a weighted cost function.
- Optimization Engine: Determines the optimal control input to minimize the total imbalance while satisfying operational constraints.
3.1. Generation of Weighting Factors via PSO
3.2. Reference Voltage Assignment for Each Converter
3.3. Duty Cycle Computation from Reference Voltages
4. Simulation and Analysis of SOC–Thermal Balancing
4.1. Simulation Configuration and Parameters
4.2. Simulation Results
4.3. Result Analysis and Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Eberle, U.; Von Helmolt, R. Sustainable Transportation Based on Electric Vehicle Concepts: A Brief Overview. Energy Environ. Sci. 2010, 3, 689–699. [Google Scholar] [CrossRef]
- Contestabile, M.; Offer, G.; Slade, R.; Jaeger, F.; Thoennes, M. Battery Electric Vehicles, Hydrogen Fuel Cells and Biofuels. Which Will Be the Winner? Energy Environ. Sci. 2011, 4, 3754–3772. [Google Scholar] [CrossRef]
- Lu, L.; Han, X.; Li, J.; Hua, J.; Ouyang, M. A Review on the Key Issues for Lithium-Ion Battery Management in Electric Vehicles. J. Power Sources 2013, 226, 272–288. [Google Scholar] [CrossRef]
- Shan, W.; Schwalm, M.; Shan, M. A Design Tool for Battery/Supercapacitor Hybrid Energy Storage Systems Based on the Physical–Electrochemical Degradation Battery Model BaSiS. Energies 2024, 17, 3481. [Google Scholar] [CrossRef]
- Schwalm, M.; Dabrowski, T. Directly Interconnected High-Energy and High-Power Battery Packs. Energies 2024, 17, 6306. [Google Scholar] [CrossRef]
- Zheng, Y.; Gao, W.; Ouyang, M.; Lu, L.; Zhou, L.; Han, X. State-of-Charge Inconsistency Estimation of Lithium-Ion Battery Pack Using Mean-Difference Model and Extended Kalman Filter. J. Power Sources 2018, 383, 50–58. [Google Scholar] [CrossRef]
- Machacek, D.T.; Barhoumi, K.; Ritzmann, J.M.; Huber, T.; Onder, C.H. Multi-Level Model Predictive Control for the Energy Management of Hybrid Electric Vehicles Including Thermal Derating. IEEE Trans. Veh. Technol. 2022, 71, 10400–10414. [Google Scholar] [CrossRef]
- Qahouq, J.A.A.; Xia, Z. Single-Perturbation-Cycle Online Battery Impedance Spectrum Measurement Method With Closed-Loop Control of Power Converter. IEEE Trans. Ind. Electron. 2017, 64, 7019–7029. [Google Scholar] [CrossRef]
- Chiu, K.-C.; Lin, C.-H.; Yeh, S.-F.; Lin, Y.-H.; Huang, C.-S.; Chen, K.-C. Cycle Life Analysis of Series Connected Lithium-Ion Batteries with Temperature Difference. J. Power Sources 2014, 263, 75–84. [Google Scholar] [CrossRef]
- Wang, C.; Cao, M.; Cao, Y. Battery Aging Estimation Algorithm with Active Balancing Control in Battery System. J. Energy Storage 2025, 108, 115055. [Google Scholar] [CrossRef]
- Abadie, P.T.; Jahan, T.R.; Docimo, D.J. A Joint Analysis and Estimation Effort for Cell-to-Cell Variations in Lithium-Ion Battery Packs. IEEE Trans. Control. Syst. Technol. 2025, 33, 760–774. [Google Scholar] [CrossRef]
- Ma, G.; Xu, S.; Yang, T.; Du, Z.; Zhu, L.; Ding, H.; Yuan, Y. A Transfer Learning-Based Method for Personalized State of Health Estimation of Lithium-Ion Batteries. IEEE Trans. Neural Netw. Learn. Syst. 2024, 35, 759–769. [Google Scholar] [CrossRef]
- Tian, J.; Xiong, R.; Shen, W. State-of-Health Estimation Based on Differential Temperature for Lithium Ion Batteries. IEEE Trans. Power Electron. 2020, 35, 10363–10373. [Google Scholar] [CrossRef]
- Ji, S.; Zhu, J.; Zhang, Z.; Xia, Z. Degradation Prognosis for Fast-Charging Batteries via Improved Domain Adaptation. IEEE Trans. Ind. Inform. 2025, 21, 1734–1743. [Google Scholar] [CrossRef]
- Docimo, D.J.; Fathy, H.K. Analysis and Control of Charge and Temperature Imbalance Within a Lithium-Ion Battery Pack. IEEE Trans. Contr. Syst. Technol. 2019, 27, 1622–1635. [Google Scholar] [CrossRef]
- Yao, P.; Liu, X. Electrochemical and Thermal Analysis of Lithium-Ion Batteries Based on Variable Solid-State Diffusion Coefficient Concept. World Electr. Veh. J. 2024, 15, 416. [Google Scholar] [CrossRef]
- Barreras, J.V.; Pinto, C.; De Castro, R.; Schaltz, E.; Andreasen, S.J.; Araujo, R.E. Multi-Objective Control of Balancing Systems for Li-Ion Battery Packs: A Paradigm Shift? In Proceedings of the 2014 IEEE Vehicle Power and Propulsion Conference (VPPC), Coimbra, Portugal, 27–30 October 2014; IEEE: Coimbra, Portugal, 2014; pp. 1–7. [Google Scholar]
- Shang, Y.; Zhu, C.; Fu, Y.; Mi, C.C. An Integrated Heater Equalizer for Lithium-Ion Batteries of Electric Vehicles. IEEE Trans. Ind. Electron. 2018, 66, 4398–4405. [Google Scholar] [CrossRef]
- Altaf, F.; Egardt, B.; Johannesson Mardh, L. Load Management of Modular Battery Using Model Predictive Control: Thermal and State-of-Charge Balancing. IEEE Trans. Contr. Syst. Technol. 2017, 25, 47–62. [Google Scholar] [CrossRef]
- De Castro, R.; Pereira, H.; Araujo, R.E.; Barreras, J.V.; Pangborn, H.C. qTSL: A Multilayer Control Framework for Managing Capacity, Temperature, Stress, and Losses in Hybrid Balancing Systems. IEEE Trans. Contr. Syst. Technol. 2022, 30, 1228–1243. [Google Scholar] [CrossRef]
- Wang, C.; Li, F.; Cao, Y. Dual-Frequency Dual-Type-Output Wireless Power Transfer System with Independent Adjustable Outputs. IEEE J. Emerg. Sel. Top. Power Electron. 2025, 1. [Google Scholar] [CrossRef]
- Cao, Y.; Liao, Y.; Chen, L.; Wang, C.; Hu, Y. A Wireless Power Feedback-Based Battery Equalizer with Multiple-Receiver. IEEE Trans. Transp. Electrif. 2025, 11, 9332–9345. [Google Scholar] [CrossRef]
- Xie, Y.; Li, B.; Hu, X.; Lin, X.; Zhang, Y.; Zheng, J. Improving the Air-Cooling Performance for Battery Packs via Electrothermal Modeling and Particle Swarm Optimization. IEEE Trans. Transp. Electrif. 2021, 7, 1285–1302. [Google Scholar] [CrossRef]
- Qin, Y.; Xu, Z.; Du, J.; Guo, H.; Lu, L.; Ouyang, M. External Liquid Cooling Method for Lithium-Ion Battery Modules under Ultra-Fast Charging. IEEE Trans. Ind. Appl. 2022, 58, 7658–7667. [Google Scholar] [CrossRef]
- Youssef, R.; Hosen, M.S.; He, J.; Al-Saadi, M.; Van Mierlo, J.; Berecibar, M. Novel Design Optimization for Passive Cooling PCM Assisted Battery Thermal Management System in Electric Vehicles. Case Stud. Therm. Eng. 2022, 32, 1–10. [Google Scholar] [CrossRef]
Parameter | Value | Parameter | Value |
---|---|---|---|
Qj | 3400 mAh | Cj | 47 μF |
OCV | 3.7 V | Dj | 0.2–0.8 |
Vbus,ref | 25 V–30 V | Cth | 89.5 J/K |
fs | 100 kHz | h | 5 W/(m2·K) |
Lj | 15 μH | A | 0.004184 m2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cao, Y.; Chen, L.; Wang, C. Coordinated Thermal and Electrical Balancing for Lithium-Ion Cells. Energies 2025, 18, 4231. https://doi.org/10.3390/en18164231
Cao Y, Chen L, Wang C. Coordinated Thermal and Electrical Balancing for Lithium-Ion Cells. Energies. 2025; 18(16):4231. https://doi.org/10.3390/en18164231
Chicago/Turabian StyleCao, Yuan, Long Chen, and Chunsheng Wang. 2025. "Coordinated Thermal and Electrical Balancing for Lithium-Ion Cells" Energies 18, no. 16: 4231. https://doi.org/10.3390/en18164231
APA StyleCao, Y., Chen, L., & Wang, C. (2025). Coordinated Thermal and Electrical Balancing for Lithium-Ion Cells. Energies, 18(16), 4231. https://doi.org/10.3390/en18164231