Study of Taconis-Based Cryogenic Thermoacoustic Engine with Hydrogen and Helium
Abstract
1. Introduction
2. Modeling of Thermoacoustic System
2.1. Governing Equations
2.2. Models for Thermoacoustic Engine and Refrigerator
3. Experimentation
3.1. Experimental Design
3.1.1. Standing-Wave Engine and Refrigerator
3.1.2. Stacks
3.1.3. Instrumentation
3.2. Experimental Processes
3.2.1. Thermoacoustic Engine
3.2.2. Thermoacoustic Refrigerator
4. Results and Discussion
4.1. Cryogenic Thermoacoustic Engine
4.1.1. Engine Performance with Different Stack Configurations
4.1.2. Engine Performance at Different Mean Pressures
4.1.3. Engine Performance with Helium and Hydrogen
4.1.4. Comparison with the Theoretical Model
4.2. Cryogenic Thermoacoustic Engine-Refrigerator Setup
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rayleigh, J.W.S.B. The Theory of Sound; Macmillan: London, UK, 1896. [Google Scholar]
- Putnam, A.A.; Dennis, W.R. Survey of organ-pipe oscillations in combustion systems. J. Acoust. Soc. Am. 1956, 28, 246–259. [Google Scholar] [CrossRef]
- Sondhauss, C. Ueber die Schallschwingungen der Luft in erhitzten Glasröhren und in gedeckten Pfeifen von ungleicher Weite. Ann. Der Phys. 1850, 155, 1–34. [Google Scholar] [CrossRef]
- Rijke, P. Notiz über eine neue Art, die in einer an beiden Enden offenen Röhre enthaltene Luft in Schwingungen zu versetzen. Ann. Der Phys. 1859, 183, 339–343. [Google Scholar] [CrossRef]
- Lehmann, K.O. Über die Theorie der Netztöne (thermisch erregte Schallschwingungen). Ann. Der Phys. 1937, 421, 527–555. [Google Scholar] [CrossRef]
- Merk, H. Analysis of heat-driven oscillations of gas flows: II. On the mechanism of the Rijke-tube phenomenon. Appl. Sci. Res. Sect. A 1957, 6, 402–420. [Google Scholar] [CrossRef]
- Rott, N. Damped and thermally driven acoustic oscillations in wide and narrow tubes. Z. Für Angew. Math. Und Phys. ZAMP 1969, 20, 230–243. [Google Scholar] [CrossRef]
- Swift, G.W. Thermoacoustics: A Unifying Perspective for Some Engines and Refrigerators; Acoustical Society of America: Melville, NY, USA, 2003. [Google Scholar]
- Keesom, W.H. Helium; Elsevier: Amsterdam, The Netherlands, 1942. [Google Scholar]
- Taconis, K.; Beenakker, J.; Nier, A.; Aldrich, L. Measurements concerning the vapour-liquid equilibrium of solutions of He3 in He4 below 2.19 K. Physica 1949, 15, 733–739. [Google Scholar] [CrossRef]
- Yazaki, T.; Tominaga, A.; Narahara, Y. Experiments on thermally driven acoustic oscillations of gaseous helium. J. Low Temp. Phys. 1980, 41, 45–60. [Google Scholar] [CrossRef]
- Rott, N. Thermally driven acoustic oscillations. Part II: Stability limit for helium. Z. Für Angew. Math. Und Phys. ZAMP 1973, 24, 54–72. [Google Scholar]
- Gu, Y. Thermal Acoustic Oscillations in Cryogenic Systems; University of Colorado: Boulder, CO, USA, 1993. [Google Scholar]
- Gu, Y.; Timmerhaus, K.D. Damping of thermal acoustic oscillations in hydrogen systems. Adv. Cryog. Eng. 1991, 37B, 265–273. [Google Scholar]
- Gu, Y.; Timmerhaus, K. Thermal acoustic oscillations in triple point liquid hydrogen systems. Int. J. Refrig. 1991, 14, 282–291. [Google Scholar] [CrossRef]
- Gu, Y.; Timmerhaus, K.D. Experimental verification of stability characteristics for thermal acoustic oscillations in a liquid helium system. Adv. Cryog. Eng. 1994, 39, 1733–1740. [Google Scholar]
- Shenton, M.P.; Leachman, J.W.; Matveev, K.I. Investigating Taconis oscillations in a U-shaped tube with hydrogen and helium. Cryogenics 2024, 143, 103940. [Google Scholar] [CrossRef]
- Matveev, K.I. Influence of porous inserts and compact resonators on onset of Taconis oscillations. J. Vib. Acoust. 2024, 146, 014501. [Google Scholar] [CrossRef]
- Leachman, J.W.; Wilhelmsen, Ø.; Matveev, K.I. Cool Fuel: The Science and Engineering of Cryogenic Hydrogen; Oxford University Press: Oxford, UK, 2025. [Google Scholar]
- Feldman, K.T.; Carter, R. A study of heat driven pressure oscillations in a gas. J. Heat Mass Transf. 1970, 92, 536–540. [Google Scholar] [CrossRef]
- Arnott, W.P.; Bass, H.E.; Raspet, R. Specific acoustic impedance measurements of an air-filled thermoacoustic prime mover. J. Acoust. Soc. Am. 1992, 92, 3432–3434. [Google Scholar] [CrossRef]
- Arnott, W.P.; Bass, H.E.; Raspet, R. General formulation of thermoacoustics for stacks having arbitrarily shaped pore cross sections. J. Acoust. Soc. Am. 1991, 90, 3228–3237. [Google Scholar] [CrossRef]
- Swift, G.W. Analysis and performance of a large thermoacoustic engine. J. Acoust. Soc. Am. 1992, 92, 1551–1563. [Google Scholar] [CrossRef]
- Backhaus, S.; Swift, G.W. A thermoacoustic-Stirling heat engine: Detailed study. J. Acoust. Soc. Am. 2000, 107, 3148–3166. [Google Scholar] [CrossRef]
- Ceperley, P.H. A pistonless Stirling engine—The traveling wave heat engine. J. Acoust. Soc. Am. 1979, 66, 1508–1513. [Google Scholar] [CrossRef]
- Zinovyev, E.; Vorotnikov, G.; Nekrasova, S.; Sarmin, D. Onset characteristics of the thermoacoustic engine with cryogenic cooling. In Proceedings of the 7th Asia Conference on Power and Electrical Engineering (ACPEE), Hangzhou, China, 15–17 April 2022; pp. 1106–1110. [Google Scholar]
- Wang, K.; Dubey, S.; Choo, F.H.; Duan, F. Thermoacoustic Stirling power generation from LNG cold energy and low-temperature waste heat. Energy 2017, 127, 280–290. [Google Scholar] [CrossRef]
- Sun, D.; Zhang, J.; Pan, H.; Shen, Q.; Qi, Y.; Qiao, X. Numerical study on a three-stage traveling-wave thermoacoustic generator with a simplified structure simultaneously utilizing cold and low-grade thermal energy. Cryogenics 2021, 120, 103385. [Google Scholar] [CrossRef]
- Radebaugh, R. Pulse tube cryocoolers. Low Temp. Cryog. Refrig. 2003, 99, 415–434. [Google Scholar]
- Jin, T.; Huang, J.; Feng, Y.; Yang, R.; Tang, K.; Radebaugh, R. Thermoacoustic prime movers and refrigerators: Thermally powered engines without moving components. Energy 2015, 93, 828–853. [Google Scholar] [CrossRef]
- Huang, J.; Yang, R.; Yang, Y.; Zhou, Q.; Luo, E. Generalized thermoacoustic heat engines with unconventional working substances: A review. Appl. Energy 2023, 347, 121447. [Google Scholar] [CrossRef]
- Matveev, K.I.; Leachman, J.W. The effect of liquid hydrogen tank size on self-pressurization and constant-pressure venting. Hydrogen 2023, 4, 444–455. [Google Scholar] [CrossRef]
- Matveev, K.I.; Leachman, J.W. Taconis-Based Means for Transporting Heat into Cryogenic Tanks and Means for Suppressing Taconis Oscillations. United States Patent and Trademark Office, Provisional Patent Application No. 63491711, 22 March 2023. [Google Scholar]
- Clark, J.P.; Ward, W.C.; Swift, G.W. Design environment for low-amplitude thermoacoustic energy conversion (DeltaEC). J. Acoust. Soc. Am. 2007, 122, 3014. [Google Scholar] [CrossRef]
- Clark, J.P.; Ward, W.C.; Swift, G.W. Design Environment for Low-Amplitude Thermoacoustic Energy Conversion (DeltaEC): Users Guide; Version 6.4b2.7; Los Alamos National Laboratory: Los Alamos, NM, USA, 2017. [Google Scholar]
- Shenton, M.; Leachman, J.; Matveev, K. Development of a research cryostat for direct thermoacoustic cooling and conversion of hydrogen. IOP Conf. Ser. Mater. Sci. Eng. 2024, 1301, 012069. [Google Scholar] [CrossRef]
- Furnas, C.C. Grading aggregates-I.-Mathematical relations for beds of broken solids of maximum density. Ind. Eng. Chem. 1931, 23, 1052–1058. [Google Scholar] [CrossRef]
- Ekin, J. Experimental Techniques for Low-Temperature Measurements: Cryostat Design, Material Properties and Superconductor Critical-Current Testing. Oxford University Press: Oxford, UK, 2006.
- LabVIEW Sound and Vibration Toolkit User Manual, National Instruments Corporation. 2004. Available online: https://docsamples.wordpress.com/wp-content/uploads/2012/02/svt_um.pdf (accessed on 1 May 2024).
- Tone Measurements, National Instruments. 2024. Available online: https://www.ni.com/docs/en-US/bundle/labview-api-ref/page/vi-lib/express/express-analysis/toneblock-llb/ex-inst-tone-measurements-vi.html (accessed on 1 May 2024).
- Di Meglio, A.; Massarotti, N. CFD modeling of thermoacoustic energy conversion: A review. Energies 2022, 15, 3806. [Google Scholar] [CrossRef]
- Bhatti, U.N.; Bashmal, S.; Khan, S.; Ben-Mansour, R. Numerical modeling of standing wave thermoacoustic devices—A review. Int. J. Refrig. 2023, 146, 47–62. [Google Scholar] [CrossRef]
- Matveev, K.I.; Swift, G.W.; Backhaus, S. Temperatures near the interface between an ideal heat exchanger and a thermal buffer tube or pulse tube. Int. J. Heat Mass Transf. 2006, 49, 868–878. [Google Scholar] [CrossRef]
Guesses | Targets |
---|---|
Acoustic frequency (Begin segment) | (Compliance) |
Pressure amplitude at the solid end (Begin segment) | (Compliance) |
Wattage input at the hot heat exchanger (first TX segment) | (Compliance) |
Wattage removed from the cold heat exchanger (2nd TX segment) | (2nd TX segment) |
Wattage removed at the compliance heat exchanger (4th TX segment) | (4th TX segment) |
Component | Diameter (cm) | Length (cm) | |
---|---|---|---|
Inlet duct | 3.2 | 7.0 | N/A |
Hot heat exchanger | 3.2 | 2.5 | 0.5 |
Engine stack section | 3.2 | 16.9 | Stack dependent |
Cold heat exchanger | 3.2 | 2.5 | 0.5 |
Regenerator section | 3.2 | 10.2 | Stack dependent |
Inertance tube | 1.3 | 37.9 | N/A |
Compliance chamber | 7.6 | 10.2 | N/A |
Material | Size | Hydraulic Pore Radius (mm) | Porosity |
---|---|---|---|
Stainless 304 mesh | Mesh 10 | 0.6 | 0.80 |
Stainless 304 mesh | Mesh 20 | 0.3 | 0.75 |
Celcor® ceramic | 196 cpsi | 0.4 | 0.68 |
Celcor® ceramic | 600 cpsi | 0.2 | 0.59 |
Stainless 316 pellets | 2.5 mm | 0.4 | 0.4 |
Measurement | Instrument | Manufacturer | Uncertainty |
---|---|---|---|
Temperature | Cernox® 1080 | Lakeshore™ (Westerville, OH, USA) | |
Temperature | Silicon diode | Lakeshore™ (Westerville, OH, USA) | |
Temperature | Type K thermocouples | Omega™ (Swedesboro, NJ, USA) | |
Acoustic Pressure | 11b321 | PCB™ (Depew, NY, USA) | |
Mean Pressure | TDWLB-DL0500032 | Transducers Direct LLC™ (Cincinnati, OH, USA) | 0.25% absolute |
Stack | Onset Temperature (K) | Mean Pressure (kPa) | Onset Frequency (Hz) | |
---|---|---|---|---|
Mesh 20 | 100 | 360 | 175 | 2.7 |
Mesh 10 | 61 | 250 | 142 | 6.1 |
Celcor 600 | 102 | 374 | 183 | 1.8 |
Celcor 196 | 66 | 261 | 140 | 3.9 |
SS Pellets | 66 | 309 | 182 | 4.8 |
Dataset | Parameters |
---|---|
a | |
b | |
c | |
Dataset | (a) | (b) | (c) | |||
---|---|---|---|---|---|---|
Amp (Pa) | Freq (Hz) | Amp (Pa) | Freq (Hz) | Amp (Pa) | Freq (Hz) | |
Experimental | 7820 | 112.3 | 15,619 | 124.1 | 8875 | 157.1 |
Theoretical | 8454 | 103.8 | 16,570 | 114.4 | 6315 | 149.6 |
Deviation | 8% | −7.5% | 6.0% | −7.8% | −28.8% | −4.7% |
Engine Stack | Regenerator | Fluid | |||||
---|---|---|---|---|---|---|---|
Mesh 20 | Mesh 20 | He | 113 | 3.0 | 76.5 | 27.1 | −0.70 |
Mesh 20 | Mesh 20 | H2 | 113 | 3.6 | 104.8 | 28.0 | −0.90 |
Celcor 600 | Mesh 20 | H2 | 128 | 2.5 | 96.1 | 28.0 | −0.35 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shenton, M.P.; Leachman, J.W.; Matveev, K.I. Study of Taconis-Based Cryogenic Thermoacoustic Engine with Hydrogen and Helium. Energies 2025, 18, 4114. https://doi.org/10.3390/en18154114
Shenton MP, Leachman JW, Matveev KI. Study of Taconis-Based Cryogenic Thermoacoustic Engine with Hydrogen and Helium. Energies. 2025; 18(15):4114. https://doi.org/10.3390/en18154114
Chicago/Turabian StyleShenton, Matthew P., Jacob W. Leachman, and Konstantin I. Matveev. 2025. "Study of Taconis-Based Cryogenic Thermoacoustic Engine with Hydrogen and Helium" Energies 18, no. 15: 4114. https://doi.org/10.3390/en18154114
APA StyleShenton, M. P., Leachman, J. W., & Matveev, K. I. (2025). Study of Taconis-Based Cryogenic Thermoacoustic Engine with Hydrogen and Helium. Energies, 18(15), 4114. https://doi.org/10.3390/en18154114