Decision-Making Problems in Urban Transport Decarbonization Strategies: Challenges, Tools, and Methods
1. Introduction
- Distance, power demand, station availability, and capacity [14];
- Socio-economic and environmental factors such as population density, employment, income levels, and user preferences [13];
- Vehicle and charging station parameters, including battery state of charge (SOC), expected driving range, and station availability [14];
- Mobility policies, especially those promoting green mobility [13];
- Forecasting models for electric vehicle demand, incorporating origin–destination (OD) travel patterns and SOC levels [14];
- Types of chargers and public policy strategies for electromobility development, e.g., private (home) chargers, public chargers in residential areas, slow public chargers, and fast public chargers [13].
2. Literature Analysis
2.1. Strategies for Decarbonizing Urban Transport
2.2. Infrastructural Strategies
2.3. Technological Strategies
2.4. Financial and Legal Strategies
2.5. Behavioral Strategies
2.6. Organizational Strategies
3. Methods and Tools for Decarbonizing Transport
3.1. Characteristics of Methods and Tools Used in Transport
3.2. Sustainable Transport Development
3.3. Intelligent Transportation System
4. Conclusions, Challenges, and Directions for Further Work
- Modes of transport (subsystems) for the implementation of sustainable development strategies, including public land transport, public maritime transport, public air transport, bicycle transport, pedestrian transport, and mixed modes of transport such as park and ride [110].
- The ranking and identification of stakeholders responsible for shaping and implementing these strategies and managing transport decarbonization efforts [107].
- Logistical challenges specific to cold-chain vehicles related to maintaining cargo freshness while simultaneously planning battery charging [115].
- Formulating medium- and long-term green transport development plans, with a clear definition of the status and role of electric vehicles within the urban green transport network [107].
- Expanding charging infrastructure and optimizing its location. Forecasting the optimal placement of charging stations requires a comprehensive approach that significantly reduces range anxiety and ensures equitable access to infrastructure. The use of GIS tools and publicly available spatial data enables efficient identification of suitable locations for new charging stations [13].
- Advancing technological innovations, particularly in the development of sophisticated algorithms such as DHFO and ECNN, as well as artificial intelligence technologies that improve the accuracy of charging station location forecasting and management. For example, wireless power transfer (WPT) technology enables contactless and safe charging, which is particularly important for autonomous systems and smart cities. Further breakthroughs are anticipated in battery technologies, including improvements in energy density, charging speed, and battery lifespan [14,113].
- Design of dynamic tariff systems aimed at maximizing photovoltaic energy self-consumption by EV users, which according to simulations can increase the self-consumption rate by at least 13 percent and reduce charging costs by approximately 25 percent [114].
- Optimization of cold-chain vehicle schedules using advanced algorithms to minimize energy consumption and prevent the degradation of cold-chain quality [115].
- Improvement of energy efficiency in logistics hubs through the optimal selection of management strategies, which helps reduce emissions and operational costs in urban terminals [116].
- Implementation of signal prioritization algorithms in traffic management to reduce energy consumption while maintaining traffic flow continuity in coordinated systems [110].
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Jelti, F.; Allouhi, A.; Tabet Aoul, K.A. Transition Paths towards a Sustainable Transportation System: A Literature Review. Sustainability 2023, 15, 15457. [Google Scholar] [CrossRef]
- Li, S.; Wang, B.; Zhou, H. Decarbonizing Passenger Transportation in Developing Countries: Lessons and Perspectives1. Reg. Sci. Urban Econ. 2024, 107, 103977. [Google Scholar] [CrossRef]
- Meyer, T. Decarbonizing Road Freight Transportation—A Bibliometric and Network Analysis. Transp. Res. Part D Transp. Environ. 2020, 89, 102619. [Google Scholar] [CrossRef]
- Patil, G.; Pode, G.; Diouf, B.; Pode, R. Sustainable Decarbonization of Road Transport: Policies, Current Status, and Challenges of Electric Vehicles. Sustainability 2024, 16, 8058. [Google Scholar] [CrossRef]
- Noussan, M.; Hafner, M.; Tagliapietra, S. The Future of Transport Between Digitalization and Decarbonization: Trends, Strategies and Effects on Energy Consumption; SpringerBriefs in Energy; Springer: Cham, Switzerland, 2020. [Google Scholar] [CrossRef]
- Yan, Y.; Fu, Z.; Yue, J. Study on the environmental benefits of truck parking space for trucks waiting to enter freight terminal—A case study of Gangchen Logistics Park. Arch. Transp. 2024, 71, 7–23. [Google Scholar] [CrossRef]
- Kozyra, J.; Łukasik, Z.; Kuśmińska-Fijałkowska, A.; Janota, A. Reduction of CO2 emission as a result of the use of 48-volt electrical installations in passenger cars. Arch. Transp. 2023, 66, 7–20. [Google Scholar] [CrossRef]
- Saeid Atabaki, M.; Bagheri, M.; Aryanpur, V. Exploring the Role of Electrification and Modal Shift in Decarbonizing the Road Passenger Transport in British Columbia. Sustain. Energy Technol. Assess. 2023, 56, 103070. [Google Scholar] [CrossRef]
- Jaździk-Osmólska, A.M.; Kalbarczyk, M.K.; Trzaskowski, D.; Wojtachnik, R.; Trzaskowska-Dmoch, A. Economic impact of road accidents on costs of employee turnover: A quantitative study from Poland. Arch. Transp. 2024, 72, 151–165. [Google Scholar] [CrossRef]
- Nochta, T.; Wan, L.; Schooling, J.M.; Parlikad, A.K. A Socio-Technical Perspective on Urban Analytics: The Case of City-Scale Digital Twins. J. Urban Technol. 2021, 28, 263–287. [Google Scholar] [CrossRef]
- Bhandary, R.R.; Gallagher, K.S.; Zhang, F. Climate Finance Policy in Practice: A Review of the Evidence. Clim. Policy 2021, 21, 529–545. [Google Scholar] [CrossRef]
- Dhulasi, P.S.; Saranya, K.G. Significance of artificial intelligence in the development of sustainable transportation. Sci. Temper 2023, 14, 418–425. [Google Scholar] [CrossRef]
- Soczówka, P.; Lasota, M.; Franke, P.; Żochowska, R. Method of Determining New Locations for Electric Vehicle Charging Stations Using GIS Tools. Energies 2024, 17, 4546. [Google Scholar] [CrossRef]
- Paul, R.; Selvan, M.P. Predicting and Forecasting of Vehicle Charging Station Using ECNN with DHFO Algorithm. Energies 2024, 17, 4308. [Google Scholar] [CrossRef]
- Jacyna, M.; Żochowska, R.; Sobota, A.; Wasiak, M. Decision support for choosing a scenario for organizing urban transport system with share of electric vehicles. Sci. J. Silesian Univ. Technology. Ser. Transp. 2022, 117, 69–89. [Google Scholar] [CrossRef]
- Jacyna-Gołda, I.; Izdebski, M.; Lewczuk, K. The multi-criteria location problem of the municipal plants. In Communications in Computer and Information Science Management Perspective for Transport Telematics; Springer: Cham, Switzerland, 2018; pp. 493–505. [Google Scholar] [CrossRef]
- Ibrahim, A.; Qader, H.; Latif, N. Use the Power of a Genetic Algorithm to Maximize and Minimize Cases to Solve Capacity Supplying Optimization and Travelling Salesman in Nested Problems. J. Comput. Commun. 2023, 11, 24–31. [Google Scholar] [CrossRef]
- Bendiab, G.; Hameurlaine, A.; Germanos, G.; Kolokotronis, N.; Shiaeles, S. Autonomous Vehicles Security: Challenges and Solutions Using Blockchain and Artificial Intelligence. IEEE Trans. Intell. Transp. Syst. 2023, 24, 3614–3637. [Google Scholar] [CrossRef]
- Khan, S.; Nazir, S.; García-Magariño, I.; Hussain, A. Deep learning-based urban big data fusion in smart cities: Towards traffic monitoring and flow-preserving fusion. Comput. Electr. Eng. 2021, 89, 106906. [Google Scholar] [CrossRef]
- Ullah, Z.; Al-Turjman, F.; Mostarda, L.; Gagliardi, R. Applications of Artificial Intelligence and Machine learning in smart cities. Comput. Commun. 2020, 154, 313–323. [Google Scholar] [CrossRef]
- Izdebski, M.; Jacyna, M. An Efficient Hybrid Algorithm for Energy Expenditure Estimation for Electric Vehicles in Urban Service Enterprises. Energies 2021, 14, 2004. [Google Scholar] [CrossRef]
- Wu, S.; Chen, Y.; Lin, X. Simulation and analysis of optimal energy-saving mode in microfield of underground rail transit. Arch. Transp. 2024, 70, 27–42. [Google Scholar] [CrossRef]
- Mrozik, M.; Merkisz-Guranowska, A. Modeling of Material and Energy Inputs in the Life Cycle of a Vehicle. Arch. Transp. 2024, 70, 117–136. [Google Scholar] [CrossRef]
- Saleem, M.; Abbas, S.; Ghazal, T.M.; Khan, M.A.; Sahawneh, N.; Ahmad, M. Smart cities: Fusion-based intelligent traffic congestion control system for vehicular networks using machine learning techniques. Egypt. Inform. J. 2022, 23, 417–426. [Google Scholar] [CrossRef]
- Garlík, B. The application of artificial intelligence in the process of optimizing energy consumption in intelligent areas. Neural Netw. World 2017, 27, 415–446. [Google Scholar] [CrossRef]
- Sablin, O.; Bosyi, D.; Kuznetsov, V.; Lewczuk, K.; Kebal, I.; Myamlin, S.S. Efficiency of energy storage control in the electric transport systems. Arch. Transp. 2022, 62, 105–122. [Google Scholar] [CrossRef]
- Jeong, J.; Ghaddar, B.; Zufferey, N.; Nathwani, J. Adaptive robust electric vehicle routing under energy consumption uncertainty. Transp. Res. Part C Emerg. Technol. 2024, 160, 104529. [Google Scholar] [CrossRef]
- Caballero, H.; Sang, Y.; Wang, S. An Energy-Efficient Routing Algorithm for Electric Delivery Trucks Considering Battery Constraints and Traffic Flow. In Proceedings of the 2024 56th North American Power Symposium (NAPS), El Paso, TX, USA, 13–15 October 2024; IEEE: New York, NY, USA, 2024; pp. 1–6. [Google Scholar] [CrossRef]
- Duda, J.; Fierek, S.; Karkula, M.; Kisielewski, P.; Puka, R.; Redmer, A.; Skalna, I. Determining lower bound on number of vehicle blocks in multi-depot vehicle scheduling problem with mixed fleet covering electric buses. Arch. Transp. 2023, 65, 27–38. [Google Scholar] [CrossRef]
- Trends in Heavy Electric Vehicles. Available online: https://www.iea.org/reports/global-ev-outlook-2024/trends-in-heavy-electric-vehicles (accessed on 10 July 2025).
- Global EV Outlook 2025. Expanding Sales in Diverse Markets. Available online: https://iea.blob.core.windows.net/assets/0aa4762f-c1cb-4495-987a-25945d6de5e8/GlobalEVOutlook2025.pdf (accessed on 10 July 2025).
- How Air Pollution Affects Our Health. Available online: https://www.eea.europa.eu/en/topics/in-depth/air-pollution/eow-it-affects-our-health (accessed on 10 July 2025).
- Europe’s Air Quality Status 2024. Available online: https://www.eea.europa.eu//publications/europes-air-quality-status-2024 (accessed on 10 July 2025).
- Carbon Intensity of the Power Sector in the European Union in 2023, by Country. Available online: https://www.statista.com/statistics/1291750/carbon-intensity-power-sector-eu-country/ (accessed on 10 July 2025).
- EV Life Cycle Assessment Calculator. Available online: https://www.iea.org/data-and-statistics/data-tools/ev-life-cycle-assessment-calculator (accessed on 10 July 2025).
- Comi, A.; Elnour, E. Challenges for Implementing Vehicle-to-Grid Services in Parking Lots: A State of the Art. Energies 2024, 17, 6240. [Google Scholar] [CrossRef]
- Biszko, K.; Oskarbski, J.; Żarski, K. Impact of different car-following models on estimating safety and emissions on signal-controlled intersections using microscopic simulations. Arch. Transp. 2024, 72, 43–73. [Google Scholar] [CrossRef]
- Izdebski, M.; Jacyna-Gołda, I.; Gołda, P. Minimisation of the probability of serious road accidents in the transport of dangerous goods. Reliab. Eng. Syst. Saf. 2022, 217, 108093. [Google Scholar] [CrossRef]
- European Cyclists’ Federation. Cycling Facts and Figures. Available online: https://ecf.com/resources/cycling-facts-and-figures (accessed on 10 July 2025).
- Central London Ultra Low Emission Zone—Ten Month Report. April 2020. Available online: https://www.london.gov.uk/sites/default/files/ulez_ten_month_evaluation_report_23_april_2020.pdf (accessed on 10 July 2025).
- Kilic, M.; Demirel, T. Fuzzy Decision Systems for Sustainable Public Transport: A Literature Review. Int. J. Comput. Intell. Syst. 2025, 18, 164. [Google Scholar] [CrossRef]
- Enjoy Mobile Freedom with WienMobil. Available online: https://www.wienerlinien.at/web/wl-en/wienmobil-enjoy-mobile-freedom (accessed on 10 July 2025).
- Link, C.; Heinemann, A.; Gerike, R.; Jonuschat, H.; Maryschka, M. Who uses a mobility card? A case study on the wienmobil card. Int. J. Transp. Dev. Integr. 2017, 1, 225–234. [Google Scholar] [CrossRef]
- Hyperconnected City Case Study. Mobility as a Service in Helsinki. Available online: https://econsultsolutions.com/wp-content/uploads/2019/11/Helsinki-Whim_CaseStudy_MaaS.pdf (accessed on 10 July 2025).
- Soczówka, P.; Kłos, M.J.; Żochowska, R.; Sobota, A. An analysis of the influence of travel time on access time in public transport. Sci. J. Silesian Univ. Technology. Ser. Transp. 2021, 111, 137–149. [Google Scholar] [CrossRef]
- Karoń, G.; Żochowska, R. Modelling of Expected Traffic Smoothness in Urban Transportation Systems for ITS Solutions. Arch. Transp. 2015, 33, 33–45. [Google Scholar] [CrossRef]
- Musa, A.A.; Malami, S.I.; Alanazi, F.; Ounaies, W.; Alshammari, M.; Haruna, S.I. Sustainable traffic management for smart cities using Internet-of-Things-oriented intelligent transportation systems (ITS): Challenges and recommendations. Sustainability 2023, 15, 9859. [Google Scholar] [CrossRef]
- Pamukcu-Albers, P.; Pauleit, S.; Ambrose-Oji, B. Building green infrastructure to enhance urban resilience to climate change and pandemics. Landsc. Ecol. 2021, 36, 665–673. [Google Scholar] [CrossRef]
- Drobniak, A.; Janiszek, M.; Plac, K. Zielona gospodarka i zielona infrastruktura jako mechanizmy wzmacniania gospodarczo-środowiskowego wymiaru prężności miejskiej. Współczesne Probl. Ekon. 2016, 12, 9–22. [Google Scholar] [CrossRef]
- Moura, P.; Mohan, A.; Lau, S.; Mohammadi, J. Maximizing Decarbonization Benefits of Transportation Electrification in the U.S. Electricity 2023, 4, 46–61. [Google Scholar] [CrossRef]
- Alanazi, F. Electric Vehicles: Benefits, Challenges, and Potential Solutions for Widespread Adaptation. Appl. Sci. 2023, 13, 6016. [Google Scholar] [CrossRef]
- Soleimani, A.; Dolatabadi, S.H.H.; Heidari, M.; Pinnarelli, A.; Khorrami, B.M.; Luo, Y.; Vizza, P.; Brusco, G. Progress in Hydrogen Fuel Cell Vehicles and Up-and-Coming Technologies for Eco-Friendly Transportation: An International Assessment. Multiscale Multidiscip. Model. Exp. Des. 2024, 7, 3153–3172. [Google Scholar] [CrossRef]
- Inderwildi, O.; Kraft, M. (Eds.) Intelligent Decarbonisation: Can Artificial Intelligence and Cyber-Physical Systems Help Achieve Climate Mitigation Targets? Springer: Cham, Switzerland, 2022. [Google Scholar] [CrossRef]
- Archibald, B.; Harvey, P.; Sevegnani, M. A digital twinning approach to decarbonisation: Research challenges. arXiv 2025, arXiv:2506.23733. [Google Scholar] [CrossRef]
- Plantinga, A.; Scholtens, B. The financial impact of fossil fuel divestment. Clim. Policy 2021, 21, 107–119. [Google Scholar] [CrossRef]
- Ekins, P.; Zenghelis, D. The costs and benefits of environmental sustainability. Sustain. Sci. 2021, 16, 949–965. [Google Scholar] [CrossRef] [PubMed]
- Pfoser, S. Policy Measures to Promote Sustainable Freight Transport. In Decarbonizing Freight Transport: Acceptance and Policy Implications; Springer: Cham, Switzerland, 2022. [Google Scholar] [CrossRef]
- Di Ciommo, F.; Shiftan, Y. Transport equity analysis. Transp. Rev. 2017, 37, 139–151. [Google Scholar] [CrossRef]
- Młodystach, Ł.; Orczyk, M.; Tomaszewski, F. Evaluation of public transport in Poland form the perspective of the deaf and hard of hearing people towards the improvement of mobility. Arch. Transp. 2023, 66, 61–76. [Google Scholar] [CrossRef]
- Gössling, S.; Scott, D.; Hall, C.M. Pathway to zero emissions in global tourism: Opportunities, challenges and policy implications. J. Sustain. Tour. 2024, 32, 751–772. [Google Scholar] [CrossRef]
- Shoaib, M.; Abbas, Z.; Yousaf, M.; Zámečník, R.; Ahmed, J.; Saqib, S. The role of GHRM practices towards organizational commitment: A mediation analysis of green human capital. Cogent Bus. Manag. 2020, 7, 1870798. [Google Scholar] [CrossRef]
- Motowidlak, U. Analiza strategii rozwoju transportu na rzecz redukcji emisji CO2. Stud. I Pr. Wydziału Nauk Ekon. I Zarządzania Uniw. Szczecińskiego 2015, 42, 69–78. [Google Scholar] [CrossRef]
- Lasota, M.; Zabielska, A.; Jacyna, M.; Gołębiowski, P.; Żochowska, R.; Wasiak, M. Method for Delivery Planning in Urban Areas with Environmental Aspects. Sustainability 2024, 16, 1571. [Google Scholar] [CrossRef]
- He, J.; Li, Z.; Zhang, X.; Wang, H.; Dong, W.; Chang, S.; Ou, X.; Guo, S.; Tian, Z.; Gu, A.; et al. Institute of Climate Change and Sus China’s Long-Term Low-Carbon Development Strategies and Pathways: Comprehensive Report; Springer: Singapore, 2022; ISBN 978-981-16-2523-7. [Google Scholar] [CrossRef]
- Argyriou, I. Bus regulation and the net-zero transition dynamics in Great Britain. Int. J. Sustain. Transp. 2025. [Google Scholar] [CrossRef]
- Izdebski, M.; Jacyna, M.; Bogdański, J. Minimisation of the Energy Expenditure of Electric Vehicles in Municipal Service Companies, Taking into Account the Uncertainty of Charging Point Operation. Energies 2024, 17, 2179. [Google Scholar] [CrossRef]
- Liu, R.; Xie, X.; Augusto, V.; Rodriguez, C. Heuristic algorithms for a vehicle routing problem with simultaneous delivery and pickup and time windows in home health care. Eur. J. Oper. Res. 2013, 230, 475–486. [Google Scholar] [CrossRef]
- Krasuski, K.; Lalak, M.; Gołda, P.; Ciećko, A.; Grunwald, G.; Mrozik, M.; Kozuba, J. Analysis of the precision of determination of aircraft coordinates using EGNOS+SDCM solution. Arch. Transp. 2023, 67, 105–117. [Google Scholar] [CrossRef]
- Kumar, S.N.; Panneerselvam, R. Development of an Efficient Genetic Algorithm for the Time Dependent Vehicle Routing Problem with Time Windows. Am. J. Oper. Res. 2017, 7, 1–25. [Google Scholar] [CrossRef]
- Joo, H.; Lim, Y. Ant colony optimized routing strategy for electric vehicles. J. Adv. Transp. 2018, 2018, 5741982. [Google Scholar] [CrossRef]
- Yu, B.; Yang, Z.Z. An ant colony optimization model: The period vehicle routing problem with time windows. Transp. Res. Part E 2011, 47, 166–181. [Google Scholar] [CrossRef]
- Wilck, J.H.; Cavalier, T.M. A genetic algorithm for the split delivery vehicle routing problem. Am. J. Oper. Res. 2012, 2, 207–216. [Google Scholar] [CrossRef]
- Lewczuk, K.; Żak, J.; Pyza, D.; Jacyna-Gołda, I. Vehicle routing in urban area: Environmental and technological determinants. WIT Trans. Built Environ. 2013, 130, 373–384. [Google Scholar] [CrossRef]
- Olayode, I.O.; Tartibu, L.K.; Okwu, M.O. Prediction and modeling of traffic flow of human-driven vehicles at a signalized road intersection using artificial neural network model: A South African road transportation system scenario. Transp. Eng. 2021, 6, 100095. [Google Scholar] [CrossRef]
- Ma, X.; Tao, Z.; Wang, Y.; Yu, H.; Wang, Y. Long short-term memory neural network for traffic speed prediction using remote microwave sensor data. Transp. Res. Part C Emerg. Technol. 2015, 54, 187–197. [Google Scholar] [CrossRef]
- Reis, M.J.C.S. Internet of Things and Artificial Intelligence for Secure and Sustainable Green Mobility: A Multimodal Data Fusion Approach to Enhance Efficiency and Security. Multimodal Technol. Interact. 2025, 9, 39. [Google Scholar] [CrossRef]
- Pielecha, J.; Skobiej, K.; Kurtyka, K. Exhaust Emissions and Energy Consumption Analysis of Conventional, Hybrid, and Electric Vehicles in Real Driving Cycles. Energies 2020, 13, 6423. [Google Scholar] [CrossRef]
- Erickson, L.; Ma, S. Solar-Powered Charging Networks for Electric Vehicles. Energies 2021, 14, 966. [Google Scholar] [CrossRef]
- Merkisz, J.; Sordyl, A.; Chłopek, Z. Non-repeatability of the WLTP vehicle test results. Arch. Transp. 2024, 71, 25–49. [Google Scholar] [CrossRef]
- Veres, M.; Moussa, M. Deep Learning for Intelligent Transportation Systems: A Survey of Emerging Trends. IEEE Trans. Intell. Transp. Syst. 2020, 21, 3152–3168. [Google Scholar] [CrossRef]
- Yuan, T.T.; Da Rocha Neto, W.; Rothenberg, C.E.; Obraczka, K.; Barakat, C.; Turletti, T. Machine learning for next-generation intelligent transportation systems: A survey. Trans. Emerg. Telecommun. Technol. 2022, 33, e4427. [Google Scholar] [CrossRef]
- Abduljabbar, R.; Dia, H.; Liyanage, S.; Bagloee, S.A. Applications of artificial intelligence in transport: An overview. Sustainability 2019, 11, 189. [Google Scholar] [CrossRef]
- Kchaou-Boujelben, M. Charging station location problem: A comprehensive review on models and solution approaches. Transp. Res. Part C Emerg. Technol. 2021, 132, 103376. [Google Scholar] [CrossRef]
- Xue, B.; Kwai-Sang, C.; Zhili, Z. A bi-objective model for location planning of electric vehicle charging stations with GPS trajectory data. Comput. Ind. Eng. 2019, 128, 591–604. [Google Scholar] [CrossRef]
- Dong, J.; Liu, C.; Lin, Z. Charging infrastructure planning for promoting battery electric vehicles: An activity-based approach using multiday travel data. Transp. Res. Part C Emerg. Technol. 2014, 38, 44–55. [Google Scholar] [CrossRef]
- Yi-Wen, C.; Chen-Yang, C.; Shu-Fen, L.; Chung-Hsuan, Y. Location optimization for multiple types of charging stations for electric scooters. Appl. Soft Comput. 2018, 67, 519–528. [Google Scholar] [CrossRef]
- Li, J.; Wang, F.; He, Y. Electric Vehicle Routing Problem with Battery Swapping Considering Energy Consumption and Carbon Emissions. Sustainability 2020, 12, 10537. [Google Scholar] [CrossRef]
- Erdeli’c, T.; Cari’c, T. A Survey on the Electric Vehicle Routing Problem: Variants and Solution Approaches. J. Adv. Transp. 2019, 54, 1–48. [Google Scholar] [CrossRef]
- Mohammed, A.; Fadhel, M.A.; Duhaim, A.M.; Saihood, A.; Sewify, A.; Al-Hamadani, M.N.A.; Albahri, A.S.; Alzubaidi, L.; Ashish Gupta, A.; Sayedali Mirjalili, S.; et al. Comprehensive systematic review of information fusion methods in smart cities and urban environments. Inf. Fusion 2024, 107, 102317. [Google Scholar] [CrossRef]
- Szpilko, D.; Jimenez Naharro, F.; Lăzăroiu, G.; Nica, E.; de la Torre Gallegos, A. Artificial intelligence in the smart city—A literature review. Eng. Manag. Prod. Serv. 2023, 15, 53–75. [Google Scholar] [CrossRef]
- Yigitcanlar, T.; Desouza, K.C.; Butler, L.; Roozkhosh, F. Contributions and risks of artificial intelligence (AI) in building smarter cities: Insights from a systematic review of the literature. Energies 2020, 13, 1473. [Google Scholar] [CrossRef]
- Yun, J.; Lee, D.; Ahn, H.; Park, K.; Yigitcanlar, T. Not deep learning but autonomous learning of open innovation for sustainable artificial intelligence. Sustainability 2016, 8, 797. [Google Scholar] [CrossRef]
- Chui, K.; Lytras, M.; Visvizi, A. Energy sustainability in smart cities: Artificial intelligence, smart monitoring, and optimization of energy consumption. Energies 2018, 11, 2869. [Google Scholar] [CrossRef]
- Guerrero-Ibáñez, J.; Zeadally, S.; Contreras-Castillo, J. Sensor technologies for intelligent transportation systems. Sensors 2018, 18, 1212. [Google Scholar] [CrossRef]
- Iyer, L.S. AI enabled applications towards intelligent transportation. Transp. Eng. 2021, 5, 100083. [Google Scholar] [CrossRef]
- Olayode, O.I.; Tartibu, L.K.; Okwu, M.O. Application of artificial intelligence in traffic control system of non-autonomous vehicles at signalized road intersection. Proc. CIRP 2020, 91, 194–200. [Google Scholar] [CrossRef]
- Niestadt, M.; Debyser, A.; Scordamaglia, D.; Pape, M. Artificial intelligence in transport. European Parliamentary Research Service. European Parliament, 19 October 2019. [Google Scholar] [CrossRef]
- Akhtar, M.; Moridpour, S. A review of traffic congestion prediction using artificial intelligence. J. Adv. Transp. 2021, 18, 8878011. [Google Scholar] [CrossRef]
- Zia, S.; Naseem, M.; Mala, I.; Mughal, J.A. Smart traffic light system by using Artificial intelligence. Sindh Univ. Res. J. 2018, 50, 639–646. [Google Scholar] [CrossRef]
- Boppuru, P.R.; Kukatlapalli, P.K.; Chowdary, C.R.; Hussain, J. AI-based YOLO V4 Intelligent Traffic Light Control System. J. Autom. Mob. Robot. Intell. Syst. 2023, 16, 53–61. [Google Scholar] [CrossRef]
- Rani, P.; Shaw, K.D. Artificial neural networks approach induced by fuzzy logic for traffic delay estimation. J. Eng. Technol. 2018, 6, 127–141. [Google Scholar]
- Park, S.J.; Hong, S.; Kim, D.; Hussain, I.; Seo, Y. Intelligent in-car health monitoring system for elderly drivers in connected car. In Advances in Intelligent Systems and Computing; Springer International Publishing: Cham, Switzerland, 2019; pp. 40–44. ISBN 978-3-319-96073-9. [Google Scholar] [CrossRef]
- Garikapati, D.; Shetiya, S.S. Autonomous Vehicles: Evolution of Artificial Intelligence and the Current Industry Landscape. Big Data Cogn. Comput. 2024, 8, 42. [Google Scholar] [CrossRef]
- Fildes, B.; Keall, M.; Bos, N.; Lie, A.; Page, Y.; Pastor, C.; Tingvall, C. Effectiveness of low speed autonomous emergency braking in real-world rear-end crashes. Accid. Anal. Prev. 2015, 81, 24–29. [Google Scholar] [CrossRef] [PubMed]
- Norouzi, A.; Heidarifar, H.; Borhan, H.; Shahbakhti, M.; Koch, C.R. Integrating machine learning and model predictive control for automotive applications: A review and future directions. Eng. Appl. Artif. Intell. 2023, 120, 105878. [Google Scholar] [CrossRef]
- Zhou, H.; Zhou, A.L.J.; Wang, Y.; Wu, W.; Qing, Z.; Peeta, S. Review of learning-based longitudinal motion planning for autonomous vehicles: Research gaps between self-driving and traffic congestion. Transp. Res. Rec. 2021, 2676, 324–341. [Google Scholar] [CrossRef]
- Li, D.; Lau, A.D.; Gong, Y. Electric Vehicles Empowering the Construction of Green Sustainable Transportation Networks in Chinese Cities: Dynamic Evolution, Frontier Trends, and Construction Pathways. Energies 2025, 18, 1943. [Google Scholar] [CrossRef]
- Lewicki, W.; Coban, H.H.; Wróbel, J. Integration of Electric Vehicle Power Supply Systems—Case Study Analysis of the Impact on a Selected Urban Network in Türkiye. Energies 2024, 17, 3596. [Google Scholar] [CrossRef]
- Pokorska, A.; Wiśniewski, T. Electromobility as a Challenge of Modern City Logistics—Indicator Analysis. Energies 2024, 17, 3167. [Google Scholar] [CrossRef]
- Górka, A.; Czerepicki, A.; Krukowicz, T. The Impact of Priority in Coordinated Traffic Lights on Tram Energy Consumption. Energies 2024, 17, 520. [Google Scholar] [CrossRef]
- Brhane, G.Y.; Oh, E.; Son, S.-Y. Virtual Energy Storage System Scheduling for Commercial Buildings with Fixed and Dynamic Energy Storage. Energies 2024, 17, 3292. [Google Scholar] [CrossRef]
- Lemssaddak, S.; Ait Elmahjoub, A.; Tabaa, M.; El-Alami, A.; Zegrari, M. A Novel Multilevel Inverter Topology Generating a 19-Level Output Regulated by the PD-PWM Method. Energies 2025, 18, 3227. [Google Scholar] [CrossRef]
- Razek, A. One Health Ecological Approach to Sustainable Wireless Energy Transfer Aboard Electric Vehicles for Smart Cities. Energies 2024, 17, 4349. [Google Scholar] [CrossRef]
- Etxegarai, G.; Camblong, H.; Ezeiza, A.; Lie, T.T. Design of Three Electric Vehicle Charging Tariff Systems to Improve Photovoltaic Self-Consumption. Energies 2024, 17, 1806. [Google Scholar] [CrossRef]
- Gan, Z.; Dong, P.; Fu, Z.; Ju, Y.; Shen, Y. Optimizing Electric Cold-Chain Vehicle Scheduling for Sustainable Urban Logistics: A Novel Framework Balancing Freshness and Vehicle Charging. Energies 2025, 18, 1705. [Google Scholar] [CrossRef]
- Kłodawski, M.; Jachimowski, R.; Chamier-Gliszczyński, N. Analysis of the Overhead Crane Energy Consumption Using Different Container Loading Strategies in Urban Logistics Hubs. Energies 2024, 17, 985. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Szczepański, E.; Żochowska, R.; Izdebski, M.; Jacyna, M. Decision-Making Problems in Urban Transport Decarbonization Strategies: Challenges, Tools, and Methods. Energies 2025, 18, 3970. https://doi.org/10.3390/en18153970
Szczepański E, Żochowska R, Izdebski M, Jacyna M. Decision-Making Problems in Urban Transport Decarbonization Strategies: Challenges, Tools, and Methods. Energies. 2025; 18(15):3970. https://doi.org/10.3390/en18153970
Chicago/Turabian StyleSzczepański, Emilian, Renata Żochowska, Mariusz Izdebski, and Marianna Jacyna. 2025. "Decision-Making Problems in Urban Transport Decarbonization Strategies: Challenges, Tools, and Methods" Energies 18, no. 15: 3970. https://doi.org/10.3390/en18153970
APA StyleSzczepański, E., Żochowska, R., Izdebski, M., & Jacyna, M. (2025). Decision-Making Problems in Urban Transport Decarbonization Strategies: Challenges, Tools, and Methods. Energies, 18(15), 3970. https://doi.org/10.3390/en18153970