A Review on the State-of-the-Art and Commercial Status of Carbon Capture Technologies
Abstract
1. Introduction
- (i)
- Carbon capture technologies can be integrated into existing power and industrial facilities to prevent the release of up to 600 billion tonnes of CO2 over the next 50 years.
- (ii)
- Carbon capture technologies can provide a solution for some of the most challenging emissions such as those from heavy industries that account for almost 20% of global CO2 emission. For example, carbon capture technologies are virtually the only technological solution to reduce emission from the cement production, and a cost-effective approach to curb emissions also from iron, steel, chemical manufacturing.
- (iii)
- Carbon capture technologies play a crucial role in enabling cost-effective, low-carbon hydrogen production and can accelerate the scale-up needed to meet growing demand for zero-emission solutions in transport, industry, and buildings.
- (iv)
2. Technology Readiness Level (TRL) of Carbon Capture Technologies
3. CO2 Capture Pathways
3.1. Post-Combustion CO2 Capture
3.2. Pre-Combustion CO2 Capture (Decarbonization of Combustion Gas)
3.3. Oxyfuel Combustion
- -
- The boiler and the flue gas cleaning equipment utilize conventional designs, materials, and configurations.
- -
- The process can be used in any rank of coal.
- -
- This process can be retrofitted to existing coal-fired power plants with relatively low capital investment compared to post-combustion CO2 capture systems, offering a more cost-effective pathway for emissions reduction.
4. Carbon Capture from Emission Source
4.1. Chemical Separation
4.1.1. Chemical Absorption
Amine Based Solvent
- -
- Must treat large flue gas volumes with low CO2 concentration.
- -
- High energy penalty for solvent regeneration
- -
- Low boiling point of MEA results in solvent carryover into the CO2 capture and solvent regeneration steps.
- -
- CO2 and NOx present in the gas stream react with the amine to form heat-stable salts, which are non-regenerable under standard solvent regeneration conditions.
- -
- Hot flue gas causes solvent degradation which decreases absorber efficiency [11].
Ammonia
- -
- Alstom Chilled Ammonia Capture (CAP) Process (Tennessee, USA and Mongstad, Norway)
- -
- Powerspan ECO2 Ammonia-Based Capture Process (Ohio, USA).
- -
- CSIRO (Commonwealth Scientific and Industrial Research Organization) ammonia-based CO2 capture process (Munmorah Power station, Australia).
- -
- KIER (Korea Institute of Energy Research) ammonia-based CO2 capture technology (Daejeon, Republic of Korea).
- -
- RIST (Research Institute of Industrial Science & Technology) CO2 capture process (Posco, Republic of Korea).
Ionic Liquids
4.1.2. Calcium Looping (CaL)
4.1.3. Chemical Looping
4.2. Physical Separation
4.2.1. Physical Adsorption
Carbon-Based Adsorbent
Carbon-Based Materials | Note on the Carbon Material | BET Surface Area (m2/kg) | Adsorption Capacity (mmol/g) at 298 K | Ref. |
---|---|---|---|---|
Biochar | Biochar derived from pine nutshell using KOH as activating agent | 1486 | 5 | [77] |
Graphene | Reduced graphene oxide | 1300 | 2.45 | [78] |
CNTs | Double-walled CNTs | 423 | 3.5 | [79] |
Activated carbon | N and S-doped Activated carbons | 2040 | 5.19 | [80] |
Microporous carbon | N-doped microporous carbon with pore size < 2 nm | 1060 | 4.24 | [81] |
Mesoporous carbon | Pore size in between 2–50 nm | 3934 | 2.8 | [82] |
Hierarchical Carbon | Consist of micro, meso and microporous carbon | 2698 | 3.7 | [83] |
Zeolites
Metal Organic Frameworks (MOFs)
Adsorbent Type | Adsorption Temperature (K) | Regeneration Temperature (K) | Adsorption Pressure (atm) | Adsorption Capacity (mmolg−1) | Ref. |
---|---|---|---|---|---|
Activated carbon | 295 | 1 | 5.19 | [84] | |
Zeolite 13X | 295 | 473 | 1 | 4.61 | [88] |
MOFs (MOF-74(Mg)) | 313 | 0.15 | 5.5 | [89] | |
K2CO3 | 323 | 423 | 1 | 6.89 | [75] |
Na2CO3 | 323 | 423 | 1 | 0.66 | [90] |
4.2.2. Cyclic Adsorption Processes
4.2.3. Physical Absorption
Process | Solvent | Absorption Temperature (°C) | Pressure (Atm) | Advantage | Disadvantage | Refs. |
---|---|---|---|---|---|---|
RectisolTM | Methanol | −15–60 | 50 | -Non-foaming solvent | -High regeneration cost | [97,98] |
SelexolTM | Mixture of dimethyl ethers and polyethylene glycol | 0–5 | 30 | -Non-thermal solvent regeneration | -Most efficient at elevated pressure | [97,98] |
-Non-corrosive solvent | ||||||
PurisolTM | N-methyl pyrrolidone | −15 | 50 | -Non-foaming solvent | -High compression cost | [97,98] |
-High chemical and thermal stability | -Most efficient at high-pressure | |||||
SulfinolTM | Mixtures of diisopropylamine (DIPA) or methyldiethanolamine (MDEA) and tetrahydrothiophene dioxide (SULFOLANE) in different blends | 40 | 60–70 | -High capacity -Low solvent circulation rate | -Foaming issues | [97,98] |
-Corrosive solvent | ||||||
-Thermal regeneration | ||||||
FluorTM | Propylene carbonate | <25 | 30–80 | -High CO2 solubility | -High solvent circulation rates | [97,98] |
-Non-thermal regeneration | ||||||
-Simple operation | - Expensive solvent | |||||
-Non-corrosive solvent | ||||||
Morphysorb™ | N-formyl morpholine (NFM) and N-acetyl morpholine (NAM) mixtures as solvent | −20–+40 | 10–150 | -High solvent loading capacity | Not yet matured | [98] |
-Low energy requirement -Non-corrosive solvent | ||||||
-Low capital and operating costs |
4.2.4. Membrane Separation
Institute and Location | Industrial Process | Membrane Type and Material | Membrane Module | Duration | Size | Purity and Recovery (%) | Ref. |
---|---|---|---|---|---|---|---|
SINTEF and NTNU Norway | Coal-fired power plant | Polyvinylamine | Plate-and-Frame | 6.5 months | 1.5 m2 | 75 | [105] |
Helmholtz-Zentrum Geesthacht, Germany | Coal-fired power plant | Multilayer thin film composite membrane | Plate-and-Frame | 740 h | 12.5 m2 | 68.2 and 42.7 | [106] |
Membrane Technology & Research, USA | Coal-fired power plant | Polaris™ | Spiral-wound | 1800 h | 1 ton per day | 90 | [107] |
Membrane Technology & Research, USA | Coal-fired power plant | Polaris™ | Hollow-fiber and Spiral Wound | 1000 h | 20 ton per day | - | [107] |
The Ohio State University | Coal-fired power plant | Facilitated transport membrane (FTM) made of composite material | Spiral-wound | 500 h | 1.4 m2 | 94.5 and 40 | [108] |
4.2.5. State-of-the-Art in Physical Separation
Operation Year | Location | Project | Industrial Operation | Separation/Capture Technology | CO2 Capture Capacity (Mt/Year) |
---|---|---|---|---|---|
2020 | Alberta, Canada | ACTL with North West Sturgeon Refinery CO2 stream | Hydrogen production from bitumen gasification | Rectisol process | 1.3 |
2017 | Illinois, US | Illinois Industrial Capture and Storage Project | Ethanol production | Dehydration and compression | 1.1 |
2013 | Rio de Janeiro, Brazil | Petrobras Santos Basin pre-salt oilfield CCS | Natural gas processing | Membrane process | 3.0 |
2013 | Coffeyville, US | Coffeyville Gasification Plant | Hydrogen for fertilizer manufacture | Selexol process | 1.0 |
2013 | Lost Cabin, US | Lost Cabin Gas Plant | Natural gas processing | Selexol process | 1.0 |
2013 | Port Arthur, US | Air Products Port Arthur | Hydrogen production | Vacuum swing adsorption | 1.0 |
2013 | Wyoming, USA | The Lost Cabin Gas Plant | Natural gas processing | Selexol process | 1.0 |
2010 | Fort Stockton, US | Century Gas Processing Plant | Natural gas processing | Selexol process | 8.4 |
2008 | Midale, Canada | Weyburn-Midale CO2 Project | Synthetic natural gas from Coal gasification | Rectisol | 3.0 |
1986 | Wyoming, US | Shute Creek Gas Processing Facility | Natural gas processing | Selexol process | 7.0 |
1984 | Beulah, North Dakota | The Great Plains Synfuels Plant (GPSP) | Syngas production from coal | Rectisol process | 5.8 |
1972 | Texas, US | Terrel Natural Gas processing plant | Natural gas processing | Selexol process | 0.5 |
4.3. Future Commercial and Demonstration Scale Carbon Capture Plants
5. Direct Air Capture (DAC)
6. Bioenergy with Carbon Capture and Storage (BECCS)
7. Economics of CO2 Captures
8. Opportunities and Challenges in the Commercialization of Carbon Capture Technologies
9. Conclusions and Future Research Direction
Author Contributions
Funding
Conflicts of Interest
References
- IEA. Net Zero by 2050: A Roadmap for the Global Energy Sector; IEA: Paris, Italy, 2021. [Google Scholar]
- Wu, C.; Huang, Q.; Xu, Z.; Sipra, A.T.; Gao, N.; de Souza Vandenberghe, L.P.; Vieira, S.; Soccol, C.R.; Zhao, R.; Deng, S.; et al. A comprehensive review of carbon capture. Science and Technologies. Carbon Capture Sci. Technol. 2024, 11, 100178. [Google Scholar] [CrossRef]
- IEA. The Role of CCUS in Low-Carbon Power Systems; IEA: Paris, Italy, 2020. [Google Scholar]
- IEA. Global Energy-Related CO2 Emissions by Sector, IEA. Available online: https://www.iea.org/data-and-statistics/charts/global-energy-related-co2-emissions-by-sector (accessed on 18 June 2025).
- IEA. CCUS in Clean Energy Transitions; IEA: Paris, Italy, 2020; Available online: https://www.iea.org/reports/ccus-in-clean-energy-transitions (accessed on 18 June 2025).
- Hekmatmehr, H.; Esmaeili, A.; Pourmahdi, M.; Atashrouz, S.; Abedi, A.; Ali Abuswer, M.; Nedeljkovic, D.; Latifi, M.; Farag, S.; Mohaddespour, A. carbon capture technologies: A review on technology readiness level. Fuel 2024, 363, 130898. [Google Scholar] [CrossRef]
- Cuéllar-Franca, R.M.; Azapagic, A. Carbon capture, storage and utilisation technologies: A critical analysis and comparison of their life cycle environmental impacts. J. CO2 Util. 2015, 9, 82–102. [Google Scholar] [CrossRef]
- Markewitz, P.; Kuckshinrichs, W.; Leitner, W.; Linssen, J.; Zapp, P.; Bongartz, R.; Schreiber, A.; Müller, T.E. Worldwide innovations in the development of carbon capture technologies and the utilization of CO2. Energy Environ. Sci. 2012, 5, 7281–7305. [Google Scholar] [CrossRef]
- Sanz-Pérez, E.S.; Murdock, C.R.; Didas, S.A.; Jones, C.W. Direct Capture of CO2 from Ambient Air. Am. Chem. Rev. 2016, 116, 11840–11876. [Google Scholar] [CrossRef] [PubMed]
- Raza, A.; Gholami, R.; Rezaee, R.; Rasouli, V.; Rabiei, M. Significant aspects of carbon capture and storage—A review. Petroleum 2019, 5, 335–340. [Google Scholar] [CrossRef]
- Miller, B.G. Carbon Dioxide Emissions Reduction and Storage. In Clean Coal Engineering Technology, 2nd ed.; Butterworth-Heinemann: Oxford, UK, 2017; Chapter 13; pp. 609–668. [Google Scholar] [CrossRef]
- Elwell, L.C.; Grant, W.S. Technology options for capturing CO2. Power 2006, 150, 60–65. [Google Scholar]
- Mitsubishi Power Integrated Coal Gasification Combined Cycle (IGCC) Power Plants. Available online: https://power.mhi.com/products/igcc (accessed on 17 March 2022).
- Leung, D.Y.C.; Caramanna, G.; Maroto-Valer, M.M. An overview of current status of carbon dioxide capture and storage technologies. Renew. Sustain. Energy Rev. 2014, 39, 426–443. [Google Scholar] [CrossRef]
- National Energy Technology Laboratory (NETL). Oyx-Combuxtion. Available online: https://netl.doe.gov/node/7477 (accessed on 13 January 2022).
- World Nuclear Association. ‘Clean Coal’ Technologies, Carbon Capture & Sequestration. 2022. Available online: http://www.world-nuclear.org/information-library/energy-and-the-environment/clean-coal-technologies.aspx (accessed on 13 January 2025).
- Scottish Carbon Capture & Storage. SCCS Projects Home. Available online: https://www.geos.ed.ac.uk/sccs/ (accessed on 9 December 2021).
- Jansen, D.; Gazzani, M.; Manzolini, G.; Van Dijk, E.; Carbo, M. Pre-combustion CO2 capture. Int. J. Greenh. Gas Control 2015, 40, 167–187. [Google Scholar] [CrossRef]
- Davidson, R.M. Post-Combustion Carbon Capture from Coal Fired Plants–Solvent Scrubbing; IEA Clean Coal Centre: London, UK, 2007. [Google Scholar]
- MacDowell, N.; Florin, N.; Buchard, A.; Hallett, J.; Galindo, A.; Jackson, G.; Adjiman, C.S.; Williams, C.K.; Shah, N.; Fennell, P. An overview of CO2 capture technologies. Energy Environ. Sci. 2010, 3, 1645–1669. [Google Scholar] [CrossRef]
- Zhao, B.; Su, Y.; Tao, W.; Li, L.; Peng, Y. Post-combustion CO2 capture by aqueous ammonia: A state-of-the-art review. Int. J. Greenh. Gas Control 2012, 9, 355–371. [Google Scholar] [CrossRef]
- Han, K.; Ahn, C.K.; Lee, M.S.; Rhee, C.H.; Kim, J.Y.; Chun, H.D. Current status and challenges of the ammonia-based CO2 capture technologies toward commercialization. Int. J. Greenh. Gas Control 2013, 14, 270–281. [Google Scholar] [CrossRef]
- Qin, F.; Wang, S.; Kim, I.; Svendsen, H.F.; Chen, C. Heat of absorption of CO2 in aqueous ammonia and ammonium carbonate/carbamate solutions. Int. J. Greenh. Gas Control 2011, 5, 405–412. [Google Scholar] [CrossRef]
- Augustsson, O.; Baburao, B.; Dube, S.; Bedell, S.; Strunz, P.; Balfe, M.; Stallmann, O. Chilled Ammonia Process Scale-up and Lessons Learned. Energy Procedia 2017, 114, 5593–5615. [Google Scholar] [CrossRef]
- Herzog, H.J.; Meldon, J.; Hatton, A. Advanced Post-Combustion CO2 Capture; Clean Air Task Force: Boston, MA, USA, 2009; Available online: https://www.researchgate.net/publication/265454631_Advanced_Post-Combustion_CO_2._Capture (accessed on 3 July 2025).
- Wappel, D.; Gronald, G.; Kalb, R.; Draxler, J. Ionic liquids for post-combustion CO2 absorption. Int. J. Greenh. Gas Control 2010, 4, 486–494. [Google Scholar] [CrossRef]
- Aghaie, M.; Rezaei, N.; Zendehboudi, S. A systematic review on CO2 capture with ionic liquids: Current status and future prospects. Renew. Sustain. Energy Rev. 2018, 96, 502–525. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, X.; Dong, H.; Zhao, Z.; Zhang, S.; Huang, Y. Carbon capture with ionic liquids: Overview and progress. Energy Environ. Sci. 2012, 5, 6668–6681. [Google Scholar] [CrossRef]
- Xie, Y.; Zhang, Y.; Lu, X.; Ji, X. Energy consumption analysis for CO2 separation using imidazolium-based ionic liquids. Appl. Energy 2014, 136, 325–335. [Google Scholar] [CrossRef]
- Blanchard, L.A.; Gu, Z.; Brennecke, J.F. High-pressure phase behavior of ionic liquid/CO2 systems. J. Phys. Chem. B 2001, 105, 2437–2444. [Google Scholar] [CrossRef]
- Tong, J.; Zhao, Y.; Huo, F.; Guo, Y.; Liang, X.; von Solms, N.; He, H. The dynamic behavior and intrinsic mechanism of CO2 absorption by amino acid ionic liquids. Phys. Chem. Chem. Phys. 2021, 23, 3246–3255. [Google Scholar] [CrossRef] [PubMed]
- Lotto, M.A.; Nabity, J.A.; Klaus, D.M. Low-Pressure CO2 Capture Using Ionic Liquids to Enable Mars Propellant Production. J. Propuls. Power 2021, 37, 100–107. [Google Scholar] [CrossRef]
- Chaudhary, A.; Bhaskarwar, A.N. A Novel Ionic Liquid for Carbon Capture. Athens J. Sci. 2015, 2, 187–202. [Google Scholar] [CrossRef]
- Voskian, S.; Brown, P.; Halliday, C.; Rajczykowski, K.; Hatton, T.A. Amine-Based Ionic Liquid for CO2 Capture and Electrochemical or Thermal Regeneration. ACS Sustain. Chem. Eng. 2020, 8, 8356–8361. [Google Scholar] [CrossRef]
- Sood, A.; Thakur, A.; Ahuja, S.M. Recent advancements in ionic liquid based carbon capture technologies. Chem. Eng. Commun. 2021, 210, 933–954. [Google Scholar] [CrossRef]
- Zhao, Z.; Gao, J.; Luo, M.; Liu, X.; Zhao, Y.; Fei, W. Molecular Simulation and Experimental Study on Low-Viscosity Ionic Liquids for High-Efficient Capturing of CO2. Energy Fuels 2022, 36, 1604–1613. [Google Scholar] [CrossRef]
- Wang, H.; Zhu, J.; Tan, L.; Zhou, M.; Zhang, S. Encapsulated ionic liquids for CO2 capture. Mater. Chem. Phys. 2020, 251, 122982. [Google Scholar] [CrossRef]
- Aki, S.N.V.K.; Mellein, B.R.; Saurer, E.M.; Brennecke, J.F. High-Pressure Phase Behavior of Carbon Dioxide with Imidazolium-Based Ionic Liquids. J. Phys. Chem. B 2004, 108, 20355–20365. [Google Scholar] [CrossRef]
- Kamps, Á.P.-S.; Tuma, D.; Xia, J.; Maurer, G. Solubility of CO2 in the Ionic Liquid [bmim][PF6]. J. Chem. Eng. Data 2003, 48, 746–749. [Google Scholar] [CrossRef]
- Zheng, S.; Zeng, S.; Li, Y.; Bai, L.; Bai, Y.; Zhang, X.; Liang, X.; Zhang, S. State of the art of ionic liquid-modified adsorbents for CO2 capture and separation. AIChE J. 2022, 68, e17500. [Google Scholar] [CrossRef]
- Shukla, S.K.; Khokarale, S.G.; Bui, T.Q.; Mikkola, J.-P.T. Ionic Liquids: Potential Materials for Carbon Dioxide Capture and Utilization. Front. Mater. 2019, 6, 42. [Google Scholar] [CrossRef]
- El-Nagar, R.A.; Ghanem, A.A.; Nessim, M.I. Capture of CO2 from Natural Gas Using Ionic Liquids. In Shale Gas; Al-Juboury, A., Ed.; IntechOpen: Rijeka, Croatia, 2018; Chapter 5. [Google Scholar] [CrossRef]
- Inyang, V.M.; Abafe, O.T.D.; Azim, M.M. Functionalized ionic liquids for CO2 capture. In Ionic Liquid-Based Technologies for Environmental Sustainability; Jawaid, M., Ahmad, A., Reddy, A.V.B., Eds.; Elsevier: Amsterdam, The Netherlands, 2022; pp. 269–278. [Google Scholar] [CrossRef]
- Ramdin, M.; de Loos, T.W.; Vlugt, T.J.H. State-of-the-Art of CO2 Capture with Ionic Liquids. Ind. Eng. Chem. Res. 2012, 51, 8149–8177. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, S.; Yuan, X.; Zhang, Y.; Zhang, X.; Dai, W.; Mori, R. Solubility of CO2 in imidazolium-based tetrafluoroborate ionic liquids. Thermochim. Acta 2006, 441, 42–44. [Google Scholar] [CrossRef]
- Baltus, R.E.; Culbertson, B.H.; Dai, S.; Luo, H.; DePaoli, D.W. Low-Pressure Solubility of Carbon Dioxide in Room-Temperature Ionic Liquids Measured with a Quartz Crystal Microbalance. J. Phys. Chem. B 2004, 108, 721–727. [Google Scholar] [CrossRef]
- Bui, M.; Adjiman, C.S.; Bardow, A.; Anthony, E.J.; Boston, A.; Brown, S.; Fennell, P.S.; Fuss, S.; Galindo, A.; Hackett, L.A.; et al. Carbon capture and storage (CCS): The way forward. Energy Environ. Sci. 2018, 11, 1062–1176. [Google Scholar] [CrossRef]
- Ortiz, C.; Valverde, J.M.; Chacartegui, R.; Pérez-Maqueda, L.A.; Gimenez-Gavarrell, P. Scaling-up the Calcium-Looping Process for CO2 Capture and Energy Storage. KONA Powder Part. J. 2021, 38, 2021005. [Google Scholar] [CrossRef]
- Arias, B.; Alonso, M.; Abanades, C. CO2 Capture by Calcium Looping at Relevant Conditions for Cement Plants: Experimental Testing in a 30 kWth Pilot Plant. Ind. Eng. Chem. Res. 2017, 56, 2634–2640. [Google Scholar] [CrossRef]
- Hanak, D.P.; Michalski, S.; Manovic, V. From post-combustion carbon capture to sorption-enhanced hydrogen production: A state-of-the-art review of carbonate looping process feasibility. Energy Convers. Manag. 2018, 177, 428–452. [Google Scholar] [CrossRef]
- Shimizu, T.; Hirama, T.; Hosoda, H.; Kitano, K.; Inagaki, M.; Tejima, K. A Twin Fluid-Bed Reactor for Removal of CO2 from Combustion Processes. Chem. Eng. Res. Des. 1999, 77, 62–68. [Google Scholar] [CrossRef]
- SCARLE. Scale-Up of Calcium Carbonate Looping Technology for Efficient CO2 Capture from Power and Industrial Plants. Available online: https://cordis.europa.eu/project/id/608578/reporting (accessed on 10 July 2024).
- Horizon 2020. CO2 Capture from Cement Production. Available online: https://cordis.europa.eu/project/id/641185 (accessed on 27 January 2022).
- LEILAC. The LEILAC Pilot Plant. Available online: https://www.project-leilac.eu/leilac-pilot-plant (accessed on 27 January 2022).
- Chacartegui, R.; Alovisio, A.; Ortiz, C.; Valverde, J.M.; Verda, V.; Becerra, J.A. Thermochemical energy storage of concentrated solar power by integration of the calcium looping process and a CO2 power cycle. Appl. Energy 2016, 173, 589–605. [Google Scholar] [CrossRef]
- SOCRATCES. SOlar Calcium-Looping Integration for Thermo-Chemical Energy Storage. Available online: https://ec.europa.eu/inea/en/horizon-2020/projects/h2020-energy/solar-energy/socratces (accessed on 28 January 2022).
- Renwei, M. Carbon Dioxide Shuttling Thermochemical Storage Using Strontium Carbonate; University of Florida: Gainesville, FL, USA, 2015. [Google Scholar] [CrossRef]
- Gangwal, S.; Muto, A. Regenerative Carbonate-Based Thermochemical Energy Storage System for Concentrating Solar Power; Southern Research Institute: Golden, CO, USA, 2017. [Google Scholar] [CrossRef]
- Muto, A.; Hansen, T. Demonstration of High-Temperature Calcium-Based Thermochemical Energy Storage System for Use with Concentrating Solar Power Facilities; Southern Research Institute: Golden, CO, USA, 2019. [Google Scholar] [CrossRef]
- Flamant, G.; Hernandez, D.; Bonet, C.; Traverse, J.-P. Experimental aspects of the thermochemical conversion of solar energy; Decarbonation of CaCO3. Sol. Energy 1980, 24, 385–395. [Google Scholar] [CrossRef]
- Abuelgasim, S.; Wang, W.; Abdalazeez, A. A brief review for chemical looping combustion as a promising CO2 capture technology: Fundamentals and progress. Sci. Total Environ. 2021, 764, 142892. [Google Scholar] [CrossRef] [PubMed]
- Lewis, W.K.; Gilliland, E.R. Production of Pure Carbon Dioxide. U.S. Patent 2665972A, 12 January 1954. [Google Scholar]
- Ishida, M.; Jin, H. A Novel Combustor Based on Chemical-Looping Reactions and Its Reaction Kinetics. J. Chem. Eng. Jpn. 1994, 27, 296–301. [Google Scholar] [CrossRef]
- Mantripragada, H.C.; Rubin, E.S. Chemical Looping for Pre-combustion CO2 Capture—Performance and Cost Analysis. Energy Procedia 2013, 37, 618–625. [Google Scholar] [CrossRef]
- Lyngfelt, A.; Thunman, H. Construction and 100 h of Operational Experience of A 10-kW Chemical-Looping Combustor. In Carbon Dioxide Capture for Storage in Deep Geologic Formations; Elsevier: Amsterdam, The Netherlands, 2005; pp. 625–645. [Google Scholar] [CrossRef]
- Lyngfelt, A.; Kronberger, B.; Adanez, J.; Morin, J.X.; Hurst, P. The grace project: Development of oxygen carrier particles for chemical-looping combustion. Design and operation of a 10 kW chemical-looping combustor. In Greenhouse Gas Control Technologies; Elsevier: Amsterdam, The Netherlands, 2005; pp. 115–123. [Google Scholar] [CrossRef]
- Ryu, H.J.; Jin, G.T.; Yi, C.K. Demonstration of inherent CO2 separation and no NOx emission in a 50 kW chemical-looping combustor: Continuous reduction and oxidation experiment. In Greenhouse Gas Control Technologies; Elsevier: Amsterdam, The Netherlands, 2005; pp. 1907–1910. [Google Scholar] [CrossRef]
- Adánez, J.; Gayán, P.; Celaya, J.; de Diego, L.F.; García-Labiano, F.; Abad, A. Chemical Looping Combustion in a 10 kWth Prototype Using a CuO/Al2O3 Oxygen Carrier: Effect of Operating Conditions on Methane Combustion. Ind. Eng. Chem. Res. 2006, 45, 6075–6080. [Google Scholar] [CrossRef]
- Adánez, J.; De Diego, L.F.; García-Labiano, F.; Gayán, P.; Abad, A.; Palacios, J.M. Selection of oxygen carriers for chemical-looping combustion. Energy Fuels 2004, 18, 371–377. [Google Scholar] [CrossRef]
- Ströhle, J.; Orth, M.; Epple, B. Chemical looping combustion of hard coal in a 1 MWth pilot plant using ilmenite as oxygen carrier. Appl. Energy 2015, 157, 288–294. [Google Scholar] [CrossRef]
- Iqbal, A.; Corinne, B.; Herbert, A.; Epple, B.; Lyngfelt, A.; Bruce, L. Alstom’s Chemical Looping Prototypes, Program Update. In Proceedings of the 37th International Technical Conference on Clean Coal & Fuel Systems, Clearwater, FL, USA, 3–7 June 2012. [Google Scholar]
- Bayham, S.C.; Kim, H.R.; Wang, D.; Tong, A.; Zeng, L.; McGiveron, O.; Kathe, M.V.; Chung, E.; Wang, W.; Wang, A.; et al. Iron-Based Coal Direct Chemical Looping Combustion Process: 200-h Continuous Operation of a 25-kWth Subpilot Unit. Energy Fuels 2013, 27, 1347–1356. [Google Scholar] [CrossRef]
- Hallberg, P.; Hanning, M.; Rydén, M.; Mattisson, T.; Lyngfelt, A. Investigation of a calcium manganite as oxygen carrier during 99 h of operation of chemical-looping combustion in a 10 kWth reactor unit. Int. J. Greenh. Gas Control 2016, 53, 222–229. [Google Scholar] [CrossRef]
- Vilches, T.B.; Lind, F.; Rydén, M.; Thunman, H. Experience of more than 1000 h of operation with oxygen carriers and solid biomass at large scale. Appl. Energy 2017, 190, 1174–1183. [Google Scholar] [CrossRef]
- Wang, Q.; Luo, J.; Zhong, Z.; Borgna, A. CO2 capture by solid adsorbents and their applications: Current status and new trends. Energy Environ. Sci. 2011, 4, 42–55. [Google Scholar] [CrossRef]
- Khandaker, T.; Hossain, M.S.; Dhar, P.K.; Rahman, M.S.; Hossain, M.A.; Ahmed, M.B. Efficacies of Carbon-Based Adsorbents for Carbon Dioxide Capture. Processes 2020, 8, 654. [Google Scholar] [CrossRef]
- Deng, S.; Wei, H.; Chen, T.; Wang, B.; Huang, J.; Yu, G. Superior CO2 adsorption on pine nut shell-derived activated carbons and the effective micropores at different temperatures. Chem. Eng. J. 2014, 253, 46–54. [Google Scholar] [CrossRef]
- Chowdhury, S.; Balasubramanian, R. Three-Dimensional Graphene-Based Porous Adsorbents for Postcombustion CO2 Capture. Ind. Eng. Chem. Res. 2016, 55, 7906–7916. [Google Scholar] [CrossRef]
- Rahimi, M.; Babu, D.J.; Singh, J.K.; Yang, Y.-B.; Schneider, J.J.; Müller-Plathe, F. Double-walled carbon nanotube array for CO2 and SO2 adsorption. J. Chem. Phys. 2015, 143, 124701. [Google Scholar] [CrossRef] [PubMed]
- Shi, W.; Wang, R.; Liu, H.; Chang, B.; Yang, B.; Zhang, Z. Biowaste-derived 3D honeycomb-like N and S dual-doped hierarchically porous carbons for high-efficient CO2 capture. RSC Adv. 2019, 9, 23241–23253. [Google Scholar] [CrossRef] [PubMed]
- Xing, W.; Liu, C.; Zhou, Z.; Zhang, L.; Zhou, J.; Zhuo, S.; Yan, Z.; Gao, H.; Wang, G.; Qiao, S.Z. Superior CO2 uptake of N-doped activated carbon through hydrogen-bonding interaction. Energy Environ. Sci. 2012, 5, 7323–7327. [Google Scholar] [CrossRef]
- Cox, M.; Mokaya, R. Ultra-high surface area mesoporous carbons for colossal pre combustion CO2 capture and storage as materials for hydrogen purification. Sustain. Energy Fuels 2017, 1, 1414–1424. [Google Scholar] [CrossRef]
- Estevez, L.; Barpaga, D.; Zheng, J.; Sabale, S.; Patel, R.L.; Zhang, J.-G.; McGrail, B.P.; Motkuri, R.K. Hierarchically Porous Carbon Materials for CO2 Capture: The Role of Pore Structure. Ind. Eng. Chem. Res. 2018, 57, 1262–1268. [Google Scholar] [CrossRef]
- Shi, Y.; Liu, Q.; He, Y. CO2 Capture Using Solid Sorbents. In Handbook of Climate Change Mitigation and Adaptation; Chen, W.-Y., Suzuki, T., Lackner, M., Eds.; Springer: New York, NY, USA, 2014; pp. 1–56. [Google Scholar] [CrossRef]
- Gonzalez-Olmos, R.; Gutierrez-Ortega, A.; Sempere, J.; Nomen, R. Zeolite versus carbon adsorbents in carbon capture: A comparison from an operational and life cycle perspective. J. CO2 Util. 2022, 55, 101791. [Google Scholar] [CrossRef]
- Samanta, A.; Zhao, A.; Shimizu, G.K.H.; Sarkar, P.; Gupta, R. Post-Combustion CO2 Capture Using Solid Sorbents: A Review. Ind. Eng. Chem. Res. 2012, 51, 1438–1463. [Google Scholar] [CrossRef]
- Younas, M.; Rezakazemi, M.; Daud, M.; Wazir, M.B.; Ahmad, S.; Ullah, N.; Inamuddin; Ramakrishna, S. Recent progress and remaining challenges in post-combustion CO2 capture using metal-organic frameworks (MOFs). Prog. Energy Combust. Sci. 2020, 80, 100849. [Google Scholar] [CrossRef]
- Harlick, P.J.E.; Tezel, F.H. An experimental adsorbent screening study for CO2 removal from N2. Microporous Mesoporous Mater. 2004, 76, 71–79. [Google Scholar] [CrossRef]
- Bae, T.-H.; Hudson, M.R.; Mason, J.A.; Queen, W.L.; Dutton, J.J.; Sumida, K.; Micklash, K.J.; Kaye, S.S.; Brown, C.M.; Long, J.R. Evaluation of cation-exchanged zeolite adsorbents for post-combustion carbon dioxide capture. Energy Environ. Sci. 2013, 6, 128–138. [Google Scholar] [CrossRef]
- Cai, T.; Chen, X.; Tang, H.; Zhou, W.; Wu, Y.; Zhao, C. Unraveling the disparity of CO2 sorption on alkali carbonates under high humidity. J. CO2 Util. 2021, 53, 101737. [Google Scholar] [CrossRef]
- Dhoke, C.; Zaabout, A.; Cloete, S.; Amini, S. Review on Reactor Configurations for Adsorption-Based CO2 Capture. Ind. Eng. Chem. Res. 2021, 60, 3779–3798. [Google Scholar] [CrossRef]
- Wang, L.; Yang, Y.; Shen, W.; Kong, X.; Li, P.; Yu, J.; Rodrigues, A.E. CO2 Capture from Flue Gas in an Existing Coal-Fired Power Plant by Two Successive Pilot-Scale VPSA Units. Ind. Eng. Chem. Res. 2013, 52, 7947–7955. [Google Scholar] [CrossRef]
- Zhang, W.; Liu, H.; Sun, Y.; Cakstins, J.; Sun, C.; Snape, C.E. Parametric study on the regeneration heat requirement of an amine-based solid adsorbent process for post-combustion carbon capture. Appl. Energy 2016, 168, 394–405. [Google Scholar] [CrossRef]
- Park, J.; Won, W.; Jung, W.; Lee, K.S. One-dimensional modeling of a turbulent fluidized bed for a sorbent-based CO2 capture process with solid–solid sensible heat exchange. Energy 2019, 168, 1168–1180. [Google Scholar] [CrossRef]
- Park, Y.K.; Seo, H.; Kim, K.; Kim, D.J.; Min, D.Y.; Kim, H.K.; Choi, W.C.; Kang, N.Y.; Park, S. An Energy Exchangeable Solid-sorbent Based Multi-stage Fluidized Bed Process for CO2 Capture. Energy Procedia 2017, 114, 2410–2420. [Google Scholar] [CrossRef]
- Joss, L.; Gazzani, M.; Mazzotti, M. Rational design of temperature swing adsorption cycles for post-combustion CO2 capture. Chem. Eng. Sci. 2017, 158, 381–394. [Google Scholar] [CrossRef]
- Rackley, S.A. Absorption Capture Systems. In Carbon Capture and Storage; Elsevier: Amsterdam, The Netherlands, 2010; pp. 103–131. [Google Scholar] [CrossRef]
- Vega, F.; Cano, M.; Camino, S.; Fernández, L.M.G.; Portillo, E.; Navarrete, B. Solvents for Carbon Dioxide Capture. In Carbon Dioxide Chemistry, Capture and Oil Recovery; Karamé, I., Shaya, J., Srour, H., Eds.; IntechOpen: Rijeka, Croatia, 2018; Chapter 8. [Google Scholar] [CrossRef]
- Palla, N.; Leppin, D. Technical and Operating Support for Pilot Demonstration of Morphysorb Acid Gas Removal Process; National Energy Technology Laboratory: Pittsburgh, PA, USA; Morgantown, WV, USA, 2003. [CrossRef]
- GTI Energy Morphysorb® Process for Gas-Treating Applications • GTI. 2022. Available online: https://www.gti.energy/using-the-morphysorb-process-for-gas-treating-applications/ (accessed on 6 March 2022).
- Xu, J.; Wang, Z.; Qiao, Z.; Wu, H.; Dong, S.; Zhao, S.; Wang, J. Post-combustion CO2 capture with membrane process: Practical membrane performance and appropriate pressure. J. Memb. Sci. 2019, 581, 195–213. [Google Scholar] [CrossRef]
- Kaldis, S.P.; Pantoleontos, G.T.; Koutsonikolas, D.E. Membrane Technology in IGCC Processes for Precombustion CO2 Capture; Elsevier Inc.: Amsterdam, The Netherlands, 2018. [Google Scholar] [CrossRef]
- Lindqvist, K.; Roussanaly, S.; Anantharaman, R. Multi-stage Membrane Processes for CO2 Capture from Cement Industry. Energy Procedia 2014, 63, 6476–6483. [Google Scholar] [CrossRef]
- Han, Y.; Yang, Y.; Ho, W.S.W. Recent Progress in the Engineering of Polymeric Membranes for CO2 Capture from Flue Gas. Membranes 2020, 10, 365. [Google Scholar] [CrossRef] [PubMed]
- Sandru, M.; Kim, T.J.; Capala, W.; Huijbers, M.; Hägg, M.B. Pilot Scale Testing of Polymeric Membranes for CO2 Capture from Coal Fired Power Plants. Energy Procedia 2013, 37, 6473–6480. [Google Scholar] [CrossRef]
- Pohlmann, J.; Bram, M.; Wilkner, K.; Brinkmann, T. Pilot scale separation of CO2 from power plant flue gases by membrane technology. Int. J. Greenh. Gas Control 2016, 53, 56–64. [Google Scholar] [CrossRef]
- White, L.S.; Wei, X.; Pande, S.; Wu, T.; Merkel, T.C. Extended flue gas trials with a membrane-based pilot plant at a one-ton-per-day carbon capture rate. J. Memb. Sci. 2015, 496, 48–57. [Google Scholar] [CrossRef]
- Han, Y.; Salim, W.; Chen, K.K.; Wu, D.; Ho, W.S.W. Field trial of spiral-wound facilitated transport membrane module for CO2 capture from flue gas. J. Memb. Sci. 2019, 575, 242–251. [Google Scholar] [CrossRef]
- Network Technology—Future CCS Technologies Temporary Working Group. Future CCS Technologies: European Zero Emission Technology and Innovation Platform; Zero Emissions Platform: Brussels, Belgium, 2017; Available online: https://strathprints.strath.ac.uk/61391/ (accessed on 3 July 2025).
- IEA. Energy Technology Perspectives 2020; IEA: Paris, Italy, 2020. [Google Scholar]
- Kaplan, R.; Kopacz, M.; Inkeri, E.; Tynjälä, T.; Fox, J.F.; Campbell, J.E.; Acton, P.M.; Rezaei, F.; Rezaei, A.; Jafari, S.; et al. Economic Conditions for Developing Hydrogen Production Based on Coal Gasification with Carbon Capture and Storage in Poland. Energies 2020, 13, 5074. [Google Scholar] [CrossRef]
- Gambhir, A.; Tavoni, M. Direct Air Carbon Capture and Sequestration: How It Works and How It Could Contribute to Climate-Change Mitigation. One Earth 2019, 1, 405–409. [Google Scholar] [CrossRef]
- Shi, X.; Xiao, H.; Azarabadi, H.; Song, J.; Wu, X.; Chen, X.; Lackner, K.S. Sorbents for the Direct Capture of CO2 from Ambient Air. Angew. Chem. Int. Ed. 2020, 59, 6984–7006. [Google Scholar] [CrossRef] [PubMed]
- Barzagli, F.; Giorgi, C.; Mani, F.; Peruzzini, M. Screening Study of Different Amine-Based Solutions as Sorbents for Direct CO2 Capture from Air. ACS Sustain. Chem. Eng. 2020, 8, 14013–14021. [Google Scholar] [CrossRef]
- Roberts, D. Sucking Carbon Out of the Air Won’t Solve Climate Change. Vox. Available online: https://www.vox.com/energy-and-environment/2018/6/14/17445622/direct-air-capture-air-to-fuels-carbon-dioxide-engineering (accessed on 17 March 2022).
- McQueen, N.; Gomes, K.V.; McCormick, C.; Blumanthal, K.; Pisciotta, M.; Wilcox, J. A review of direct air capture (DAC): Scaling up commercial technologies and innovating for the future. Prog. Energy 2021, 3, 32001. [Google Scholar] [CrossRef]
- Socolow, R.; Desmond, M.; Aines, R.; Blackstock, J.; Bolland, O.; Kaarsberg, T.; Lewis, N.; Mazzotti, M.; Pfeffer, A.; Sawyer, K. Direct Air Capture of CO2 with Chemicals: A Technology Assessment for the APS Panel on Public Affairs; American Physical Society: College Park, MD, USA, 2011. [Google Scholar]
- Napp, S.T.; Hills, T.; Soltani, C.M.; Bosch, J.; Mazur, C. A Survey of Key Technological Innovations for the Low-Carbon Economy; Grantham Institute: London, UK, 2017; Available online: https://perma.cc/5TK9-9YXZ?type=standard (accessed on 3 July 2025).
- McLaren, D. A comparative global assessment of potential negative emissions technologies. Process Saf. Environ. Prot. 2012, 90, 489–500. [Google Scholar] [CrossRef]
- Carbon Engineering. Carbon Engineering Our Story. Available online: https://carbonengineering.com/our-story/ (accessed on 17 March 2022).
- Carbon Engineering. Engineering of World’s Largest Direct Air Capture Plant Begins. Available online: https://carbonengineering.com/news-updates/worlds-largest-direct-air-capture-and-sequestration-plant (accessed on 17 March 2022).
- Caskie, A. Technical, Policy and Stakeholder Analysis of Direct Air Capture. Master’s Thesis, Delft University of Technology, Delft, The Netherlands, 2020. [Google Scholar]
- Beuttler, C.; Charles, L.; Wurzbacher, J. The Role of Direct Air Capture in Mitigation of Anthropogenic Greenhouse Gas Emissions. Front. Clim. 2019, 1, 10. [Google Scholar] [CrossRef]
- Viebahn, P.; Scholz, A.; Zelt, O. The Potential Role of Direct Air Capture in the German Energy Research Program—Results of a Multi-Dimensional Analysis. Energies 2019, 12, 3443. [Google Scholar] [CrossRef]
- National Academies of Sciences, Engineering, and Medicine. Direct Air Capture and Mineral Carbonation Approaches for Carbon Dioxide Removal and Reliable Sequestration: Proceedings of a Workshop–in Brief; The National Academies Press: Washington, DC, USA, 2018. [Google Scholar] [CrossRef]
- Smith, P. Soil carbon sequestration and biochar as negative emission technologies. Glob. Change Biol. 2016, 22, 1315–1324. [Google Scholar] [CrossRef] [PubMed]
- Griscom, B.W.; Adams, J.; Ellis, P.W.; Houghton, R.A.; Lomax, G.; Miteva, D.A.; Schlesinger, W.H.; Shoch, D.; Siikamäki, J.V.; Smith, P.; et al. Natural climate solutions. Proc. Natl. Acad. Sci. USA 2017, 114, 11645–11650. [Google Scholar] [CrossRef] [PubMed]
- Smith, P.; Davis, S.J.; Creutzig, F.; Fuss, S.; Minx, J.; Gabrielle, B.; Kato, E.; Jackson, R.B.; Cowie, A.; Kriegler, E.; et al. Biophysical and economic limits to negative CO2 emissions. Nat. Clim. Change 2016, 6, 42–50. [Google Scholar] [CrossRef]
- Woolf, D.; Amonette, J.E.; Street-Perrott, F.A.; Lehmann, J.; Joseph, S. Sustainable biochar to mitigate global climate change. Nat. Commun. 2010, 1, 56. [Google Scholar] [CrossRef] [PubMed]
- Bhave, A.; Taylor, R.H.S.; Fennell, P.; Livingston, W.R.; Shah, N.; Mac Dowell, N.; Dennis, J.; Kraft, M.; Pourkashanian, M.; Insa, M. Screening and techno-economic assessment of biomass-based power generation with CCS technologies to meet 2050 CO2 targets. Appl. Energy 2017, 190, 481–489. [Google Scholar] [CrossRef]
- National Research Council. Climate Intervention: Carbon Dioxide Removal and Reliable Sequestration; The National Academies Press: Washington, DC, USA, 2015. [Google Scholar] [CrossRef]
- Harrison, D.P. A method for estimating the cost to sequester carbon dioxide by delivering iron to the ocean. Int. J. Glob. Warm. 2013, 5, 231–254. [Google Scholar] [CrossRef]
- Renforth, P. The potential of enhanced weathering in the UK. Int. J. Greenh. Gas Control 2012, 10, 229–243. [Google Scholar] [CrossRef]
- González, M.F.; Ilyina, T. Impacts of artificial ocean alkalinization on the carbon cycle and climate in Earth system simulations. Geophys. Res. Lett. 2016, 43, 6493–6502. [Google Scholar] [CrossRef]
- Renforth, P.; Jenkins, B.G.; Kruger, T. Engineering challenges of ocean liming. Energy 2013, 60, 442–452. [Google Scholar] [CrossRef]
- Keith, D.W.; Holmes, G.; Angelo, D.S.; Heidel, K. A Process for Capturing CO2 from the Atmosphere. Joule 2018, 2, 1573–1594. [Google Scholar] [CrossRef]
- Ganeshan, P.; Vigneswaran, V.S.; Gowd, S.C.; Mishra, R.; Singh, E.; Kumar, A.; Kumar, S.; Pugazhendhi, A.; Rajendran, K. Bioenergy with carbon capture, storage and utilization: Potential technologies to mitigate climate change. Biomass Bioenergy 2023, 177, 106941. [Google Scholar] [CrossRef]
- Bioenergy with Carbon Capture and Storage–Energy System—IEA. Available online: https://www.iea.org/energy-system/carbon-capture-utilisation-and-storage/bioenergy-with-carbon-capture-and-storage#tracking (accessed on 6 July 2024).
- Huang, B.; Xu, S.; Gao, S.; Liu, L.; Tao, J.; Niu, H.; Cai, M.; Cheng, J. Industrial test and techno-economic analysis of CO2 capture in Huaneng Beijing coal-fired power station. Appl. Energy 2010, 87, 3347–3354. [Google Scholar] [CrossRef]
- Hetland, J.; Kvamsdal, H.M.; Haugen, G.; Major, F.; Kårstad, V.; Tjellander, G. Integrating a full carbon capture scheme onto a 450 MWe NGCC electric power generation hub for offshore operations: Presenting the Sevan GTW concept. Appl. Energy 2009, 86, 2298–2307. [Google Scholar] [CrossRef]
- Zhang, Z. Techno-economic assessment of carbon capture and storage facilities coupled to coal-fired power plants. Energy Environ. 2015, 26, 1069–1080. [Google Scholar] [CrossRef]
- Ekström, C.; Schwendig, F.; Biede, O.; Franco, F.; Haupt, G.; de Koeijer, G.; Papapavlou, C.; Røkke, P.E. Techno-Economic Evaluations and Benchmarking of Pre-combustion CO2 Capture and Oxy-fuel Processes Developed in the European ENCAP Project. Energy Procedia 2009, 1, 4233–4240. [Google Scholar] [CrossRef]
- Hong, W.Y. A techno-economic review on carbon capture, utilisation and storage systems for achieving a net-zero CO2 emissions future. Carbon Capture Sci. Technol. 2022, 3, 100044. [Google Scholar] [CrossRef]
- Roussanaly, S.; Berghout, N.; Fout, T.; Garcia, M.; Gardarsdottir, S.; Nazir, S.M.; Ramirez, A.; Rubin, E.S. Towards improved cost evaluation of Carbon Capture and Storage from industry. Int. J. Greenh. Gas Control. 2021, 106, 103263. [Google Scholar] [CrossRef]
- García, S.; Gil, M.V.; Martín, C.F.; Pis, J.J.; Rubiera, F.; Pevida, C. Breakthrough adsorption study of a commercial activated carbon for pre-combustion CO2 capture. Chem. Eng. J. 2011, 171, 549–556. [Google Scholar] [CrossRef]
- Zhai, H.; Rubin, E.S. Systems Analysis of Physical Absorption of CO2 in Ionic Liquids for Pre-Combustion Carbon Capture. Environ. Sci. Technol. 2018, 52, 4996–5004. [Google Scholar] [CrossRef] [PubMed]
- Hospital-Benito, D.; Lemus, J.; Moya, C.; Santiago, R.; Ferro, V.R.; Palomar, J. Techno-economic feasibility of ionic liquids-based CO2 chemical capture processes. Chem. Eng. J. 2021, 407, 127196. [Google Scholar] [CrossRef]
- Akinola, T.E.; Oko, E.; Wang, M. Study of CO2 removal in natural gas process using mixture of ionic liquid and MEA through process simulation. Fuel 2019, 236, 135–146. [Google Scholar] [CrossRef]
- Ashkanani, H.E.; Wang, R.; Shi, W.; Siefert, N.S.; Thompson, R.L.; Smith, K.; Steckel, J.A.; Gamwo, I.K.; Hopkinson, D.; Resnik, K.; et al. Levelized Cost of CO2 Captured Using Five Physical Solvents in Pre-combustion Applications. Int. J. Greenh. Gas Control. 2020, 101, 103135. [Google Scholar] [CrossRef]
- Fasihi, M.; Efimova, O.; Breyer, C. Techno-economic assessment of CO2 direct air capture plants. J. Clean. Prod. 2019, 224, 957–980. [Google Scholar] [CrossRef]
- What Are the Most Promising Carbon Capture Technologies in 2025?—ChemEng Consulting. Available online: https://www.chemengconsulting.com/blog/2025/02/24/most-promising-carbon-capture-technologies-2025-dac-amine-membrane/1093/ (accessed on 20 June 2025).
- Bahman, N.; Al-Khalifa, M.; Al Baharna, S.; Abdulmohsen, Z.; Khan, E. Review of carbon capture and storage technologies in selected industries: Potentials and challenges. Rev. Environ. Sci. Biotechnol. 2023, 22, 451–470. [Google Scholar] [CrossRef]
- Wang, Y. Comparative Analysis of Carbon Dioxide Capture Technologies for the Flue Gas from Combustion. Bachelor’s Thesis, Lappeenranta–Lahti University of Technology LUT, Lappeenranta, Finland, 2024. [Google Scholar]
- Strojny, M.; Gładysz, P.; Hanak, D.P.; Nowak, W. Comparative analysis of CO2 capture technologies using amine absorption and calcium looping integrated with natural gas combined cycle power plant. Energy 2023, 284, 128599. [Google Scholar] [CrossRef]
- Rao, G.V.; Pachamuthu, S.; Dhairiyasamy, R.; Rajendran, S. Comparative assessment of amine-based absorption and calcium looping techniques for optimizing energy efficiency in post-combustion carbon capture. Glob. Nest J. 2024, 26, e20240850. [Google Scholar] [CrossRef]
- 10 Carbon Capture Methods Compared: Costs, Scalability, Permanence, Cleanness—Energy Post. Available online: https://energypost.eu/10-carbon-capture-methods-compared-costs-scalability-permanence-cleanness/ (accessed on 20 June 2025).
- Knudsen, J.N.; Jensen, J.N.; Vilhelmsen, P.J.; Biede, O. Experience with CO2 capture from coal flue gas in pilot-scale: Testing of different amine solvents. Energy Procedia 2009, 1, 783–790. [Google Scholar] [CrossRef]
- Lam, M.K.; Lee, K.T.; Mohamed, A.R. Current status and challenges on microalgae-based carbon capture. Int. J. Greenh. Gas Control 2012, 10, 456–469. [Google Scholar] [CrossRef]
- Cole, I.S.; Corrigan, P.; Sim, S.; Birbilis, N. Corrosion of pipelines used for CO2 transport in CCS: Is it a real problem? Int. J. Greenh. Gas Control 2011, 5, 749–756. [Google Scholar] [CrossRef]
- Li, G.; Xiao, P.; Webley, P.; Zhang, J.; Singh, R.; Marshall, M. Capture of CO2 from high humidity flue gas by vacuum swing adsorption with zeolite 13X. Adsorption 2008, 14, 415–422. [Google Scholar] [CrossRef]
- Kanniche, M.; Gros-Bonnivard, R.; Jaud, P.; Valle-Marcos, J.; Amann, J.M.; Bouallou, C. Pre-combustion, post-combustion and oxy-combustion in thermal power plant for CO2 capture. Appl. Therm. Eng. 2010, 30, 53–62. [Google Scholar] [CrossRef]
- Finkenrath, M. Cost and Performance of Carbon Dioxide Capture from Power Generation; OECD: Paris, France, 2011. [Google Scholar]
- Wilberforce, T.; Baroutaji, A.; Soudan, B.; Al-Alami, A.H.; Olabi, A.G. Outlook of carbon capture technology and challenges. Sci. Total Environ. 2019, 657, 56–72. [Google Scholar] [CrossRef] [PubMed]
- Wienchol, P.; Szlęk, A.; Ditaranto, M. Waste-to-energy technology integrated with carbon capture—Challenges and opportunities. Energy 2020, 198, 117352. [Google Scholar] [CrossRef]
- Zhang, S.; Shen, Y.; Zheng, C.; Xu, Q.; Sun, Y.; Huang, M.; Li, L.; Yang, X.; Zhou, H.; Ma, H.; et al. Recent advances, challenges, and perspectives on carbon capture. Front. Environ. Sci. Eng. 2024, 18, 75. [Google Scholar] [CrossRef]
- Kearns, D.T.; Barlow, H.; Shahi, S.S.M. Advancements in CCS Technologies and Costs; Global CCS Institute: Melbourne, Australia, 2025. [Google Scholar]
Operation Year | Location | Project | Process | Capacity |
---|---|---|---|---|
In operation | ||||
2018 | La Porte, TX, United States | NET Power Allam Cycle Demonstration Project | Thermal energy | 50 MW |
2014 | Tianjin, China | GreenGen | IGCC power plant | 250 MW |
2013 | Rancho Cordova, CA, United States | Trigen Clean Energy Systems Kimberlina power station | Electricity generation | 150 MW |
2025 | Mergelstetten, Germany | Catch4climate | Cement production | - |
Under design and construction | ||||
2027 | Cameron Parish, LA, United States | G2 Net-Zero LNG based on Allam Cycle | Natural gas processing | Multiple 300 MW Allam-cycle trains |
2025 | Alberta, Canada | Frog Lake’s NET Power plant based on Allam Cycle | Electricity generation | 300 MW |
2026 | La Porte, TX, United States | NET Power Allam Cycle commercial plant | Electricity generation | 300 MW |
Operation Year | Location | Project | Industrial Operation | Separation/Capture Technology | CO2 Capture Capacity (Mt/Year) |
---|---|---|---|---|---|
2020 | Redwater, AB, Canada | Alberta Carbon Trunk Line (ACTL) with Nutrien | Fertilizer production | Solvent-based chemical absorption, inorganic, Benfield process | 0.3 |
2019 | Barrow Island, Australia | Gorgon Carbon Dioxide Injection | Natural gas processing | Absorber and stripper system and an amine-based solvent | 4 |
2018 | Jilin, China | Jilin oilfield CO2- EOR | Natural gas processing | Solvent-based chemical absorption, amine. | 0.6 |
2017 | Illinois, US | Illinois Industrial Capture and Storage Project | Ethanol production | - | 1.1 |
2017 | Houston, US | Petra Nova Carbon Capture Project | Coal gasification | Amine (Econamine FG Plus) | 1 |
2016 | Abu Dhabi | Al Reyadah | Iron and steel production | Amine | 0.8 |
2015 | Alberta, Canada | Quest carbon capture and storage | Hydrogen production from natural gas | Solvent-based chemical absorption—Amine | 1.0 |
2015 | Al Hofuf, Saudi Arabia | Uthmaniyah CO2 EOR Demonstration Project | Natural gas processing | Solvent-based chemical absorption, amine. | 0.8 |
2014 | Saskatchewan, Canada | Boundary Dam | Power generation from coal gasification | Amine based solvent | 1.0 |
2008 | Hammerfest, Norway | Snohvit | Natural gas processing | Amine | 0.7 |
2008 | Midale, Canada | Weyburn-Midale CO2 Project | Synthetic natural gas from Coal gasification | - | 3.0 |
1996 | North Sea, Norway | Sleipner | Natural gas processing | Amine | 1.0 |
1982 | Oklahoma, US | Enid Fertilizer CO2-EOR Project | Fertiliser production | Solvent-based chemical absorption—Benfield process. | 0.7 |
Parameters | Amines | Ammonia |
---|---|---|
CO2 capture capacity | 0.5 mole of CO2 per mole of MEA | 1 mole of CO2 per mole of ammonia |
Regeneration energy | 4.0 Gj per ton of CO2 | <2.0 Gj per ton of CO2 |
Absorption/regeneration rate | Faster | fast |
Volatility | low | High |
Thermal degradation | Severe | Negligible |
Corrosiveness | Vulnerable | Resistant |
Chemical stability | Forms heat stable salt | Stable |
Absorbent cost | Expensive | Cheap |
Variables | Conventional ILs | Functionalized ILs | Amine (30% wt) | DEPG (Selexol Process) |
---|---|---|---|---|
Absorption type | Physical | Chemical | Chemical | Physical |
Viscosity (cP) | 20–2000 | 50–2000 | 18.98 | 5.8 |
Vapor pressure (bar) at 25 °C | 1.33 × 10−9 | 1.33 × 10−9 | 8.5 × 10−4 | 9.73 × 10−7 |
ΔHabs (kJ/mol CO2) at 1 bar and 40 °C | ~10–20 | ~40–50 | ~85 | ~14.3 |
CO2 solubility (mol/mol) at 1 bar and 20–40 °C | >2.51 | 1.6 | 0.50 | 3.63 |
Operation Year | Location | Project Name | Industrial Operation | Status/Notes | Refs. |
---|---|---|---|---|---|
2014–2017 | Technische Universität Darmstadt, Germany | SCARLET EU project 2014 | Power plants | Demonstration of successful operation and process optimization for scaling up to a 20 MWth pilot plant | [48,52] |
(2015–2018) | 15 EU participant Coordinated by SINTEF ENERGY AS, Trondheim, Norway | CEMPCAP EU project, 2015 | Cement production | The project aimed to leverage TRL 6 for CaL in cement industry with 90% capture rate | [48,53] |
2017–2022 | 13 EU participant coordinated by Laboratory of Energy and Environment of Piacenza—LEAP scarl, Piacenza Italy. | CLEANKER EU project, 2017 | Cement production | CLEANKER aims at demonstrating CaL at TRL > 7 | [48] |
2016–2019 | 7 EU partner coordinated by INESC TEC, Portugal. | FlexiCaL EU project, 2016 | Coal based power plants | Two process options were tested on a pilot-scale: a highly load-flexible plant concept and an energy storage system using CaO/ CaCO3 silos. | [48] |
2016–2020 | 14 industrial, technology and research & development partners across EU coordinated by CALIX-EUROPE, France | LEILAC EU project, 2016 | Lime and cement production | Based on the use of an entrained flow reactor for efficient capture of CO2 from lime and cement production. | [48,54] |
Oxygen Carrier (OCs) | Melting Temperature (°C) | Support Materials | Maximum Oxygen Transport Capacity (Ro,max) | Refs. |
---|---|---|---|---|
Ni-based | 1455 | Yttria-stabilized-Zirconia (YSZ), Al2O3, NiAl2O4, MgAl2O4, oxides of Si, Ti, Zr | 0.214 | [61,64] |
Cu-based | 1085 | Al2O3 and SiO2 | 0.201 | [61,64] |
Fe-based | 1538 | Al2O3 and MgAl2O4 | 0.1 | [61,64] |
Mn-based | 1246 | ZrO2 | 0.101 | [61,64] |
Project and Location | Fuel | Oxygen Carrier | Plant Capacity | Ref. |
---|---|---|---|---|
Technische Universität Darmstadt, Germany | Hard coal | Ilmenite | 1 MWth | [70] |
Alstom | Coal | Limestone | 3 MWth | [71] |
The Ohio State University | Bituminous and lignite coal | Iron-based | 25 kWth | [72] |
Chalmers University of Technology, Sweden | Natural gas | Calcium manganite | 10 kWth | [73] |
Korea Institute of Energy Research | Natural gas and syngas | - | 200 kWth | [61] |
Chalmers University of Technology, Sweden | Biomass | Manganese and ilmenite | 4 MWth | [74] |
Operational | Location | Project | Industrial Operation | Capture Technology | CO2 Capture Capacity (Mt/year) | Status | Scale |
---|---|---|---|---|---|---|---|
2027 | Ijmuiden, The Netherlands | Everest project | Steel, Fischer-Tropsch hydrocarbons | Amine | - | Speculative | Commercial |
2025 | North Dakota, USA | Project Tundra | Coal gasification, Electricity | Amine solvent | - | In planning | Commercial |
2025 | Teesside, UK | Clean Gas Project | Power, Gas | Aqueous ammonia/amine/amino acid system | 6 | In design | Commercial |
2025 | Sjobol, Sweden | Preem CCS | Oil, Refinery products | Chilled ammonia or amine solvent | 1.5 | In planning | Demonstration |
2024 | New Mexico, USA | San Juan Gen. Sta. Carbon Capture Retrofit Project | Coal gasification | MHI amine solvent | 6 | Speculative | Commercial |
2024 | St Fergus, UK | Acorn CCS Project, Acorn Hydrogen | Natural gas processing | Amine solvent | 0.3 | In design | Demonstration |
2023 | Hengelo, The Netherlands | Twence | Electricity, heat | Aqueous amine/solvent system | 0.1 | In build | Commercial |
2022 | Ariyalur, India | Dalmia Cement | Cement | amine-promoted buffer salt—proprietry solvent system | 0.5 | Speculative | Demonstration |
2021 | Klemetsrud, Norway | Fortum Oslo Varme | Electricity | Cansolv CO2 amine-based capture technology | 0.2 | In design | Demonstration |
2020 | Omuta city, Japan | Mikawa Demonstration Plant | Electricity | Amine solvent | 0.18 | In build | Demonstration |
2019 | Fredrikstad, Norway | Frevar capture plant | Electricity | Amine | 0.15 | Speculative | Demonstration |
2017 | Daejeon, Republic of Korea | Korea-CCS 1 | Electricity | Amine solvent | - | In planning | Demonstration |
2017 | Dongying, China | Sinopec Shengli Power Plant CCS Project | Electricity | amine (MEA based) | - | In design | Demonstration |
2017 | Xiaomo, China | Haifeng Power Plant CCS Plan | Electricity | Solvent-based chemical absorption—amine. | - | Speculative | Demonstration |
2017 | Jinjiezhen, China | Jinjie Power Plant CCS Demonstration Project | Electricity | solvent absorption and solid adsorption | 0.15 | In planning | Demonstration |
2017 | Brooks, Canada | Bow City Power Project | Electricity | Amine solvent | 1 | In planning | Demonstration |
2016 | Texas, USA | Ramsey Gas Processing Plant | Natural gas | Amine scrubbing | In build | Demonstration | |
2016 | Estevan, Canada | Shand CCS Project | Electricity | Amine solvent | 2 | speculative | Commercial |
2015 | Redwater, Canada | Nutrien Redwater Nitrogen Plant | Fertilisers | Solvent-based chemical absorption, inorganic, Benfield process. | - | In build | Commercial |
- | Teesside, UK | Lotte Chemicals CCUS Project | polyethylene terephthalate (PET) for plastic bottles | Amine solvent | 0.5 | In design | Demonstration |
- | Nebraska, USA | Gerald Gentleman Capture Project | Coal gasification, Electricity | Advanced solvent | 2 | In planning | Commercial |
Operational | Location | Project | Industrial Operation | Capture Technology | CO2 Capture Capacity (Mt/Year) | Status | Scale |
---|---|---|---|---|---|---|---|
2021 | Zibo, China | Sinopec Qilu Petrochemical CCS Project | Syngas for methanol and butyl alcohol | Rectisol | 1 | In build | Demonstration |
2020 | Louisiana, USA | Lake Charles Methanol Project | Petcoke, byproduct from oil refining, Methanol | Rectisol | 4 | In design | Commercial |
2019 | Mississippi, USA | Mississippi Clean Energy Project | Petcoke, Oil, Methanol and Gasoline | Rectisol | 4 | Speculative | Commercial |
2019 | Osaki-Kamizima Island, Japan | Osaki CoolGen Project | Electricity | Physical absoprtion | Operational | Demonstration | |
2017 | Jinjiezhen, China | Jinjie Power Plant CCS Demonstration Project | Electricity | Solvent absorption and solid adsorption | 0.15 | In planning | Demonstration |
2017 | Jingbian City, China | Yangchang Jingbian Phase 2 | Liquid fuels/chemicals | Rectisol process | 0.36 | In design | Demonstration |
2016 | Redwater, Canada | North West Redwater | Liquid fuels and feedstocks | Rectisol | 1 | In build | Commercial |
2014 | Nanjing, China | Sinopec Eastern China CCS Project | Ammonia | Rectisol | 0.5 | speculative | Demonstration |
Colorado, USA | Holcim Portland Cement Plant CCS Project | Coal and limestone gasification, Cement | Structured solid absorbent | Speculative | Commercial |
Intended Operational Year | Location | Project | Industrial Operation | Capture Technology | CO2 Capture Capacity (Mt/year) | Status | Scale |
---|---|---|---|---|---|---|---|
2020 | Colleferro, Italy | Colleferro Oxyfuel | Cement | Oxyfuel | - | In planning | Demonstration |
2020 | Retznei, Austria | Retznei Oxyfuel Demonstration | Cement | Oxyfuel | - | In planning | Demonstration |
2019 | Taean, Republic of Korea | Korea-CCS 2 | Electricity | Oxyfuel | - | Speculative | Demonstration |
2018 | Scotland, UK | Caledonia Clean Energy Project | Gas, Electricty and hydrogen | Pre- and post-combustion, and oxyfuel | 3 | In planning | Demonstration |
2014 | Taiyuan, China | Shanxi International Energy Oxyfuel Project | Electricity | Oxyfuel | 2 | speculative | Demonstration |
Intended Operational Year | Location | Project | Industrial Operation | CO2 Capture Capacity (Mt/Year) | Status | Scale |
---|---|---|---|---|---|---|
2026 | Southern North Sea, UK | V Net Zero Humber Cluster | Gas, oil, municipal waste, Steam, electricity, refinery products | 8 | In design | Demonstration |
2025 | Dunkirk, France | Dartagnan | chemicals, petrochemicals and steel | 3 | In planning | Demonstration |
2025 | North Sea, Denmark | Project Greensand | 0.4 | In planning | Demonstration | |
2025 | Copenhagen, Denmark | C4—Carbon Capture Cluster Copenhagen | Power, heat | 3 | In planning | Demonstration |
2024 | Naturgassparken, Norway | Northern Lights | 1.5 | In build | Demonstration | |
2024 | Brevik, Norway | Longship (Langskip) | Electricity and heat (EfW), cement | In design | Demonstration | |
2024 | Rotterdam, The Netherlands | PORTHOS CCUS Project | Refinery including hydrogen | 2 | In design | Demonstration |
2023 | Rotterdam, The Netherlands | CO2TransPorts | Refinery including hydrogen | 10 | In design | Demonstration |
2023 | Schelde, Belgium | Carbon Connect Delta | chemicals, petrochemicals and steel | 1 | In planning | |
2021 | Texas, USA | White Energy Plainview CO2 Capture Project | Corn and ethanol | Speculative | Commercial | |
2020 | North Dakota, USA | Red Trail Energy CCS Project | Ethanol Production | 0.18 | Speculative | Demonstration |
2020 | South Yorkshire, UK | Don Valley | Gas, Electricty | In planning | Demonstration | |
2019 | Duisberg, Germany | H2morrow | Steel | 1.9 | In planning | Demonstration |
2019 | Dongguan, China | Dongguan Taiyangzhou IGCC | Electricity | In build | Demonstration | |
2019 | Edmonton, Canada | Lehigh CCS Feasibility Study | Cement | 0.6 | speculative | Commercial |
2018 | Rotterdam, The Netherlands | CO2 Smart Grid | Speculative | Demonstration | ||
2018 | Antwerp, Belgium | Antwerp@C | transport and storage | In design | Demonstration | |
2017 | North Dakota, USA | South Heart IGCC Project | Coal gasification, Electricity | 2 | Speculative | Commercial |
2017 | Yulin, China | Yulin Coal-to-Chemicals Project | Liquid fuel/chemicals | 3 | speculative | Commercial |
2016 | Abu Dhabi, UAE | Masdar CCS network | Steel, aluminium, electricity, water | In build | Commercial | |
2016 | North Lincolnshire, UK | Killingholme IGCC Project | Coal gasification, Electricity | 2 | In planning | Demonstration |
2015 | Sundance, Canada | TransAlta Sundance Carbon Capture | Electricity | speculative | Commercial | |
2015 | Collie, Australia | Collie South West CO2 Geosequestration Hub | Electricty and industrial products | In planning | Commercial | |
2012 | Redwater, Canada | Alberta Carbon Trunk Line | Petroleum fuels, fertiliser | 14.6 | In build | Commercial |
Wisconsin, USA | Dane County Landfill Carbon Capture Project | Gas, Electricity | Speculative | Demonstration | ||
St Fergus, UK | Acorn CO2 SAPLING PCI | 5 | In planning | Commercial | ||
2027 | Humber, UK | Humber Zero | Steam, electricity, refinery products | 5 | In design | Demonstration |
2026 | Teesside, UK | Teesside Collective Industrial CCS Project | Electricity, ammonia, hydrogen, PET, other industrial products and services | 10 | In design | Commercial |
2025 | Liverpool, Manchester, Chester, Wrexham, UK | HyNet North West | Hydrogen Gas | 10 | In design | Commercial |
2025 | Liwa Desert, UAE | ADNOC CO2 Capture Project | Natural gas | 4.2 | In planning | Commercial |
2020 | Latrobe Valley, Australia | CarbonNet | Electricity | 3 | In design | Commercial |
2017 | Lynemouth, UK | B9 Coal | Coal gasification, Electricity | Speculative | Demonstration | |
- | Indiana, USA | Wabash Valley Resources | Petcoke, Ammonia | 1.75 | In planning | Commercial |
2026 | Scotland, UK | Peterhead Low Carbon CCGT Power Station Project | Gas, Electricty | 1.5 | In planning | Commercial |
2026 | Yorkshire, UK | Zero Carbon Humber (ZCH) | Electricity, hydrogen, industrial products | 8.25 | In design | Commercial |
2023 | Millmerran, Australia | Integrated Surat Basin CCS Project | Electricity | 0.15 | In design | Demonstration |
2021 | Northwich, UK | Tata Chemicals Northwich CCU Project | Sodium bicarbonate | 0.4 | In planning | Demonstration |
2020 | Latrobe Valley, Australia | CarbonNet | Electricity | 3 | In design | Commercial |
2018 | Scotland, UK | Caledonia Clean Energy Project | Gas, Electricty and hydrogen | 3 | In planning | Demonstration |
2018 | Taichung City, Taiwan | Tai-chung CCS | Coal gasification, Electricity | 1 | In planning | Demonstration |
2018 | Yijiang, China | Baimashan Cement Plant CCU Demo | Cement | 0.05 | In build | Demonstration |
2015 | Dongying, China | Datang Dongying | Electricity | speculative | Demonstration | |
2013 | Delimara, Malta | Delimara | Electricity | In design | Demonstration | |
2013 | Beitang, China | China Guodian Capture and Use Project | Electricity | 0.01 | In build | Demonstration |
2010 | Le Havre, France | COCATE Project | transport and storage | Speculative | Demonstration |
Company | Location | Sector | Start-Up Year | CO2 Capture Capacity (tCO2/Year) |
---|---|---|---|---|
Climeworks | Switzerland | Greenhouse fertilization | 2017 | 900 |
Climeworks | Switzerland | Beverage carbonation | 2018 | 600 |
Climeworks | Germany | Power-to-X | 2019 | 3 |
Climeworks | The Netherlands | Power-to-X | 2019 | 3 |
Climeworks | Germany | Power-to-X | 2019 | 3 |
Climeworks | Switzerland | Power-to-X | 2018 | 3 |
Climeworks | Germany | Customer R&D | 2015 | 1 |
Climeworks | Switzerland | Power-to-X | 2016 | 50 |
Climeworks | Italy | Power-to-X | 2018 | 150 |
Climeworks | Germany | Power-to-X | 2020 | 50 |
Climeworks | Iceland | Mineralisation of CO2 | 2017 | 50 |
Carbon Engineering | Canada | Power-to-X | 2015 | 365 |
Method | Global CO2 Removal Potential (GtCO2 pa) | TRL | References |
---|---|---|---|
Afforestation/reforestation | 3–20 | 8–9 | [126,127] |
Forest management | 1–2 | 8–9 | [127,128] |
Biochar | 2–5 | 3–6 | [126,129] |
Bioenergy with carbon capture and storage (BECCS) | 10 | 7–9 | [128,130] |
Ocean fertilisation | 1–3 | 1–5 | [131,132] |
Building with biomass | 0.5–1 | 8–9 | [119] |
Enhanced weathering | 0.5–4 | 1–5 | [128,133] |
Ocean alkalinity | 40 | 2–4 | [134,135] |
Direct air capture | 0.5–5 | 8–9 | [9,136] |
Plant Name | Location | Sector | Start-Up Year | CO2 Capture Capacity (kt/Year) |
---|---|---|---|---|
Stockholm Exergi AB | Sweden | Combined heat and power | 2019 | Pilot |
Arkalon CO2 Compression Facility | USA | Ethanol production | 2009 | 290 |
OCAP | The Netherlands | Ethanol production | 2011 | <400 |
Bonanza BioEnergy CCUS EOR | USA | Ethanol production | 2012 | 100 |
Husky Energy CO2 Injection | Canada | Ethanol production | 2012 | 90 |
Calgren Renewable Fuels CO2 recovery plant | USA | Ethanol production | 2015 | 15 |
Lantmännen Agroetanol | Sweden | Ethanol production | 2015 | 200 |
AlcoBioFuel bio-refinery CO2 recovery plant | Belgium | Ethanol production | 2016 | 100 |
Cargill wheat processing CO2 purification plant | UK | Ethanol production | 2016 | 100 |
Illinois Industrial Carbon Capture and Storage | USA | Ethanol production | 2017 | 1000 |
Drax BECCS plant | UK | Power generation | 2019 | Pilot |
Mikawa post combustion capture plant | Japan | Power generation | 2020 | 180 |
Saga City waste incineration plant | Japan | Waste to energy | 2016 | 3 |
Technology | Capture Mechanism | Typical CO2 Source | Capture Efficiency | Cost (\$/Ton CO2) | Scalability | Pros | Cons |
---|---|---|---|---|---|---|---|
Amine Scrubbing | Chemical absorption using amine solvents (e.g., MEA) | Power plants, cement, steel | High (up to 95%) | 45–65 | High | Mature tech, high efficiency, retrofittable | Solvent degradation, high energy use, corrosion |
Calcium Looping | CO2 reacts with CaO to form CaCO3, then regenerated by calcination | Cement, lime, power plants | High (85–95%) | 30–70 | Medium | Uses cheap materials, high purity CO2 stream | High temperature, energy-intensive regeneration |
Chemical Looping | Metal oxides transfer oxygen to fuel, separating CO2 without air | Power generation, industrial | High (up to 99%) | 40–80 | Medium | No direct contact with air, inherent CO2 separation | Complex reactor design, limited commercial deployment |
Membrane Separation | Selective membranes allow CO2 to pass through based on size or solubility | Natural gas, biogas, flue gas | Moderate (50–90%) | 50–80 | High (modular) | Compact, no chemicals, low maintenance | Lower selectivity at low CO2 concentrations |
Direct Air Capture (DAC) | Chemical or physical capture of CO2 from ambient air | Ambient air | Low–Moderate (30–70%) | 250–600 | Growing (modular) | Negative emissions, location-flexible | High energy demand, expensive |
BECCS | Biomass combustion with CO2 capture and storage | Biomass power plants | High (70–90%) | 60–160 | Limited by biomass | Negative emissions, renewable-based | Land use, food vs. fuel, biodiversity concerns |
Physical Absorption | CO2 dissolves in solvents under high pressure (e.g., Selexol, Rectisol) | Natural gas, syngas | High (up to 95%) | 30–60 | Medium | Effective at high pressures, no chemical reaction | Requires compression, solvent losses |
Adsorption | CO2 adheres to solid surfaces (e.g., zeolites, MOFs) | Flue gas, biogas | Moderate–High (60–90%) | 40–100 | Medium | Regenerable, low energy, tunable materials | Sensitive to moisture, lower capacity than liquids |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Islam, M.H.; Patlolla, S.R. A Review on the State-of-the-Art and Commercial Status of Carbon Capture Technologies. Energies 2025, 18, 3937. https://doi.org/10.3390/en18153937
Islam MH, Patlolla SR. A Review on the State-of-the-Art and Commercial Status of Carbon Capture Technologies. Energies. 2025; 18(15):3937. https://doi.org/10.3390/en18153937
Chicago/Turabian StyleIslam, Md Hujjatul, and Shashank Reddy Patlolla. 2025. "A Review on the State-of-the-Art and Commercial Status of Carbon Capture Technologies" Energies 18, no. 15: 3937. https://doi.org/10.3390/en18153937
APA StyleIslam, M. H., & Patlolla, S. R. (2025). A Review on the State-of-the-Art and Commercial Status of Carbon Capture Technologies. Energies, 18(15), 3937. https://doi.org/10.3390/en18153937