Dilemma of Spent Geothermal Water Injection into Rock Masses for Geothermal Potential Development
Abstract
1. Introduction
1.1. Background and Motivation
1.2. Research Scope and Novelty
1.3. Practical Aplications
2. Proposed Obligatory Course of Assessment, Materials, and Methods
2.1. Drilling of a Geothermal Injection Borehole
2.2. Necessary Hydrogeological Research
2.2.1. Hydrodynamic Pumping Test
2.2.2. Thermal Lift and Head Pressure
2.2.3. Rock Massive Absorption Capacity Test
2.2.4. Determination of Skeletal Density, Bulk Density, and Total Porosity
2.2.5. Permeability Marking
2.2.6. Micro- and Macro-Fracture Designations
3. Sample Results in the Reference Borehole and Discussion
3.1. Drilling of the Reference Geothermal Injection Borehole Chochołów GT-1
3.2. Interpretation of the Research Pumping Results
- Step I: The average flow rate during this step was determined to be 24.3 m3/h, with the initial and final pressures at 5.11 and 4.77 bar, respectively, and the maximum recorded temperature at 54.02 °C. The pumping duration was 12 h, and during this period, 292 m3 of water was collected. Following the test, the reservoir pressure was restored over a period of 12 h.
- Step II: This step was conducted at an average flow rate of 23.7 m3/h, and the initial and final pressures were 5.10 and 1.85 bar, respectively, with the maximum recorded temperature being 60.23 °C. Furthermore, the pumping duration was 36 h, and during this period, 850 m3 of water was collected. After the test, a 36-hour reservoir pressure restoration period was observed, resulting in a final pressure of 5.40 bar.
Reduced Head Pressure Value
3.3. Determination of Hydrogeological Parameters
- Step I with restoration: Moench Fracture Flow, Theis, and Agarwal Skin (Figure 6).
- Recovery after Step I: recovery and Agarwal skin recovery (Figure 7).
- Step II with restoration: Moench Fracture flow, Theis skin, and Agarwal Skin (Figure 8)
- Recovery after Step II: Theis and Agarwal Skin Recovery (Figure 9).
3.4. Density, Porosity, and Permeability Results
3.5. Micro- and Macro-Fracturing Results
3.6. Rock Massive Absorption Capacity Test
3.7. Rock Massive Absorption Capacity Test
3.7.1. Preliminary Forecast of Hydrogeochemical Changes
3.7.2. Impact of Injection on Usable Aquifers
3.8. Dilemma Between Injection into Rock Mass and Discharge to the River (Environment–Economy Balance)
4. Conclusions
- The proposed assessment framework for SGW injection should be made mandatory during the planning of new geothermal power plants or complexes worldwide. Thus, the benefits of using renewable geothermal resources would not undermined by an insufficient rock mass absorption capacity or adverse impacts on river environments.
- Our method offers a direct and reasonable approach for evaluating geothermal water injection and provides new insights relative to traditional geothermal water exploitation assessment methods.
- The dilemma of choosing between discharging SGW into surface waters or injecting it into rock masses should not be based solely on the results of economic analysis.
- The long-term exploitation of thermal water intake in the Podhale Basin demonstrates that the exploitation and injection of thermal water do not induce any changes in rock mass or lead to any deformation or subsidence of the terrain.
- SGW management via the absorption well has a positive effect on thermal water reservoir resources as it allows the replenishment of exploited water, ensuring balance.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Shamoushaki, M.; Fiaschi, D.; Manfrida, G.; Niknam, P.H.; Talluri, L. Feasibility study and economic analysis of geothermal well drilling. Int. J. Environ. Stud. 2021, 78, 1022–1036. [Google Scholar] [CrossRef]
- Malek, A.E.; Adams, B.M.; Rossi, E.; Schiegg, H.O.; Saar, M.O. Techno-economic analysis of advanced geothermal systems (AGS). Renew Energy 2022, 186, 927–943. [Google Scholar] [CrossRef]
- Schlagermann, P.; Reinicke, K.M. Modeling and economic evaluation of deep geothermal heat supply systems using the example of the Wealden near Hannover, Germany. Geotherm. Energy 2023, 11, 33. [Google Scholar] [CrossRef]
- Soltani, M.; Moradi Kashkooli, F.M.; Souri, M.; Rafiei, B.; Jabarifar, M.; Gharali, K.; Nathwani, J.S. Environmental, economic, and social impacts of geothermal energy systems. Renew Sustain Energy Rev. 2021, 140, 110750. [Google Scholar] [CrossRef]
- Renoth, R.; Buchner, E.; Schmieder, M.; Keim, M.; Plechaty, M.; Drews, M. Social acceptance of geothermal technology on a global view: A systematic review. Energy Sustain. Soc. 2023, 13, 49. [Google Scholar] [CrossRef]
- Bayer, P.; Rybach, L.; Blum, P.; Brauchler, R. Review on life cycle environmental effects of geothermal power generation. Renew Sustain. Energy Rev. 2013, 26, 446–463. [Google Scholar] [CrossRef]
- Zuffi, C.; Manfrida, G.; Asdrubali, F.; Talluri, L. Life cycle assessment of geothermal power plants: A comparison with other energy conversion technologies. Geothermics 2022, 104, 102434. [Google Scholar] [CrossRef]
- Śliwa, T.; Sapińska-Śliwa, A.; Gonet, A.; Kowalski, T.; Sojczyńska, A. Geothermal boreholes in Poland—Overview of the current state of knowledge. Energies 2021, 14, 3251. [Google Scholar] [CrossRef]
- Menberg, K.; Pfister, S.; Blum, P.; Bayer, P. A matter of meters: State of the art in the life cycle assessment of enhanced geothermal systems. Energy Environ. Sci. 2016, 9, 2720–2743. [Google Scholar] [CrossRef]
- Operacz, A.; Bielec, B.; Tomaszewska, B.; Kaczmarczyk, M. Physicochemical composition variability and hydraulic conditions in a geothermal borehole—The latest study in Podhale Basin, Poland. Energies 2020, 13, 3882. [Google Scholar] [CrossRef]
- Chu, Z.; Dong, K.; Gao, P.; Wang, Y.; Sun, Q. Mine-oriented low-enthalpy geothermal exploitation: A review from spatio-temporal perspective. Energy Convers. Manag. 2021, 237, 114123. [Google Scholar] [CrossRef]
- Cui, G.; Wang, W.; Dou, B.; Liu, Y.; Tian, H.; Zheng, J.; Liu, Y. Geothermal energy exploitation and power generation via a single vertical well combined with hydraulic fracturing. J. Energy Eng. 2022, 148, 04021058. [Google Scholar] [CrossRef]
- Perego, R.; Dalla Santa, G.; Galgaro, A.; Pera, S. Intensive thermal exploitation from closed and open shallow geothermal systems at urban scale: Unmanaged conflicts and potential synergies. Geothermics 2022, 103, 102417. [Google Scholar] [CrossRef]
- Ha, D.; Zheng, G.; Zhou, H.; Zeng, C.; Zhang, H. Estimation of hydraulic parameters from pumping tests in a multiaquifer system. Underground Space 2020, 5, 210–222. [Google Scholar] [CrossRef]
- Dashti, Z.; Nakhaei, M.; Vadiati, M.; Karami, G.H.; Kisi, O. A literature review on pumping test analysis (2000–2022). Environ. Sci. Pollut. Res. Int. 2023, 30, 9184–9206. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Zhou, F.; Dong, Y.; Sun, D.; Yu, B. Experimental investigation of thermal effect on fracability index of geothermal reservoirs. Nat. Resour. Res. 2021, 30, 273–288. [Google Scholar] [CrossRef]
- Miecznik, M.; Pierzchała, K.; Pająk, L.; Kępińska, B. Thermal lift effect in deep geothermal wells. In Proceedings of the Fifth EAGE Global Energy Transition Conference & Exibition, Rotterdam, The Netherlands, 4–7 November 2024; pp. 1–5. [Google Scholar]
- Ma, X.; Li, H.; Luo, H.; Nie, S.; Gao, S.; Zhang, Q. Research on well selection method for high-pressure water injection in fractured-vuggy carbonate reservoirs in Tahe oilfield. J. Pet. Sci. Eng. 2022, 214, 110477. [Google Scholar] [CrossRef]
- Zhou, Y.; Yang, W.; Yin, D. Experimental investigation on reservoir damage caused by clay minerals after water injection in low permeability sandstone reservoirs. J. Pet. Explor. Prod. Technol. 2022, 12, 915–924. [Google Scholar] [CrossRef]
- Shabani, A.; Zivar, D. Detailed analysis of the brine-rock interactions during low salinity water injection by a coupled geochemical-transport model. Chem. Geol. 2020, 537, 119484. [Google Scholar] [CrossRef]
- Darcy, H. Les Fontaines Publiques de la Ville de Dijon; Dalmont: Paris, France, 1856. [Google Scholar]
- Whitaker, S. Flow in porous media I: A theoretical derivation of Darcy’s law. Transp. Porous Media 1986, 1, 3–25. [Google Scholar] [CrossRef]
- Boussinesq, J. Reserches théoretiques sur l’écoulement des nappes d’eau infiltrées dans le sol et sur débit de sources, Comptes Rendus H. Acad. Sci. 1903, 5, 363–394. [Google Scholar]
- Anczkiewicz, A.A.; Środoń, J.; Zattin, M. Thermal history of the Podhale Basin in the internal Western Carpathians from the perspective of apatite fission track analyses. Geol. Carpathica 2013, 64, 141–151. [Google Scholar] [CrossRef]
- Operacz, A.; Chowaniec, J. Perspectives of geothermal water use in the Podhale Basin according to geothermal step distribution. Geol. Geophys. Environ. 2018, 44, 379–389. [Google Scholar] [CrossRef]
- Kaczmarczyk, M.; Tomaszewska, B.; Operacz, A. Sustainable utilization of low enthalpy geothermal resources to electricity generation through a cascade system. Energies 2020, 13, 2495. [Google Scholar] [CrossRef]
- Chowaniec, J.; Poprawa, D.; Witek, K. Występowanie wód termalnych w polskiej części Karpat. Prz. Geol. 2001, 49, 734–742. [Google Scholar]
- Sánchez Nassif, F.G.A.; Davila, F.M.; Castellucio, A.; Collo, G.; Mora, A. Influence of fluid flows on low-temperature thermochronology: An example from the Podhale Basin, Internal Western Carpathians, Poland. Geol. Carpathica 2022, 37, 473–484. [Google Scholar] [CrossRef]
- Bielec, B.; Operacz, A. Dokumentacja hydrogeologiczna określająca warunki hydrogeologiczne w związku z wtłaczaniem wód otworem Chochołów GT-1. 2023, HYDROGEOTECH, 152 (non-published).
- Theis, C.V. The relation between the lowering of the piezometric surface and the rate and duration of discharge of a well using ground-water storage. Eos Trans. AGU 1935, 16, 519–524. [Google Scholar] [CrossRef]
- Kruseman, G.P.; de Ridder, N.A. Analysis and Evaluation of Pumping Test Data, 2nd ed.; International Institute for Land Reclamation and Improvement: The Hague, The Netherlands, 1990; 377p. [Google Scholar]
- Moench, A.F. Double-porosity models for a fissured groundwater reservoir with fracture skin. Water Resour. Res. 1984, 20, 831–846. [Google Scholar] [CrossRef]
- Agarwal, R.G. A new method to account for producing time effects when drawdown type curves are used to analyse pressure buildup and other test data 9289. In Proceedings of the 55th Annual Fall Technical Conference and Exhibition of the Society of Petroleum Engineers, Paper SPE, Dallas, TX, USA, 21–24 September 1980. [Google Scholar]
- Hołojuch, G. Design guidelines for improving absorption properties of reservoir rocks in thermal water injection in Polish geothermal plants—Research project under contract awarded by the Ministry of the Environment. Prz. Geol. 2010, 58, 632–634. [Google Scholar]
- Miecznik, M. Model zrównoważonej eksploatacji zbiornika wód geotermalnych w centralnej części Podhala do produkcji energi cieplnej i elektrycznej. Ph.D Thesis Level, IGSMiE PAN, Kraków, Poland, 2017. [Google Scholar]
- Chowaniec, J.; Witek, K. Mapa Hydrogeologiczna Polski w Skali 1: 50,000; Ministry of Environment Republic of Poland: Czarny Dunajec, Poland, 1997.
- Chai, R.; Liu, Y.; Xue, L.; Rui, Z.; Zhao, R.; Wang, J. Formation damage of sandstone geothermal reservoirs: During decreased salinity water injection. Appl. Energy 2022, 322, 119465. [Google Scholar] [CrossRef]
- Liu, H.; Wang, H.; Lei, H.; Zhang, L.; Bai, M.; Zhou, L. Numerical modeling of thermal breakthrough induced by geothermal production in fractured granite. J. Rock Mech. Geotech. Eng. 2020, 12, 900–916. [Google Scholar] [CrossRef]
- Operacz, A.; Zachora-Buławska, A.; Gonek, Z.; Tomaszewska, B.; Bielec, B.; Operacz, T.; Bundschuh, J. Stability of geothermal waters parameters as a major factor guaranteeing the possibility of its use and discharge into the environment. Water Resour. Ind. 2024, 31, 100233. [Google Scholar] [CrossRef]
Analytic Method | Hydraulic Transmissivity T [m2/s] | Permeability Coefficient k [m/s] | Skin Effect |
---|---|---|---|
I pumping step with recovery | |||
Moench Fracture Flow | 7.30·10−5 | 8.47·10−7 | 0.000000195 |
Theis | 7.98·10−5 | 9.26·10−7 | - |
Agarwal Skin | 7.85·10−5 | 9.11·10−7 | −2.89 |
Recovery after I pumping step | |||
Theis Recovery | 7.84·10−5 | 9.10·10−7 | - |
Agarwal Skin Recovery | 7.38·10−5 | 8.56·10−7 | −5.00 |
II pumping step with recovery | |||
Moench Fracture Flow | 2.50·10−5 | 2.90·10−7 | 0.0132 |
Theis | 4.37·10−5 | 5.07·10−7 | - |
Agarwal Skin | 1.83·10−5 | 2.12·10−7 | −2.40 |
Recovery after II pumping step | |||
Theis Recovery | 1.90·10−5 | 2.20·10−7 | - |
Agarwal Skin Recovery | 4.28·10−5 | 4.97·10−7 | −5.00 |
Medium value | 5.32·10−5 | 6.18·10−7 | - |
Sample No. | Total Porosity [%] | Skeletal Density [g/cm3] | Bulk Density [g/cm3] | Effective Permeability [mD] |
---|---|---|---|---|
1 | 0 | 2.761 | 2.757 | 0.008 |
2 | 0.8 | 2.729 | 2.705 | 0.021 |
3 | 0.5 | 2.693 | 2.678 | 0.004 |
Depth of Sampling [m] | Studies on Microsections | Thin Plate Studies | Micro-Fracture Balance | |||||
---|---|---|---|---|---|---|---|---|
Gap Width [mm] | Fracture Porosity [%] | Fracture Permeability [mD] | Volumetric Index of Gaps [1/cm] | Fracture Porosity [%] | Fracture Permeability [mD] | Fracture Porosity [%] | Fracture Permeability [mD] | |
3717.04–3717.08 | 0.2 | 0.6 | 51.94 | 5.33 | 3.05 | 4.23 | 3.65 | 56.17 |
4048.63–4048.68 | 0.1 | 0.2 | 5.2 | 1.10 | 0.63 | 0.88 | 0.83 | 6.08 |
4158.32–4158.38 | 0.1 | 0.3 | 9.8 | 1.01 | 0.58 | 0.81 | 0.88 | 10.61 |
4163.11–4163.18 | 0 | 0 | 0 | 2.66 | 1.53 | 2.12 | 1.53 | 2.12 |
Variant | SPBT [Years] |
---|---|
injection into rock mass | 1.66 |
discharge to the river | 0.07 |
Electricity Price Change | Estimated Annual Surplus [EUR] | SPBT [Years] |
---|---|---|
−20% | 4,784,000 | 1.84 |
−10% | 5,042,000 | 1.75 |
Base case | 5,300,000 | 1.66 |
10% | 5,558,000 | 1.59 |
20% | 5,816,000 | 1.52 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Operacz, A.; Bielec, B.; Operacz, T.; Zachora-Buławska, A.; Migdał, K. Dilemma of Spent Geothermal Water Injection into Rock Masses for Geothermal Potential Development. Energies 2025, 18, 3922. https://doi.org/10.3390/en18153922
Operacz A, Bielec B, Operacz T, Zachora-Buławska A, Migdał K. Dilemma of Spent Geothermal Water Injection into Rock Masses for Geothermal Potential Development. Energies. 2025; 18(15):3922. https://doi.org/10.3390/en18153922
Chicago/Turabian StyleOperacz, Agnieszka, Bogusław Bielec, Tomasz Operacz, Agnieszka Zachora-Buławska, and Karolina Migdał. 2025. "Dilemma of Spent Geothermal Water Injection into Rock Masses for Geothermal Potential Development" Energies 18, no. 15: 3922. https://doi.org/10.3390/en18153922
APA StyleOperacz, A., Bielec, B., Operacz, T., Zachora-Buławska, A., & Migdał, K. (2025). Dilemma of Spent Geothermal Water Injection into Rock Masses for Geothermal Potential Development. Energies, 18(15), 3922. https://doi.org/10.3390/en18153922