Assessment of Spatiotemporal Wind Complementarity
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area and Wind Speed Data
2.2. Analysis of Wind Complementarity
- -
- amplifications of in certain time periods, and wind power density exceeds what is explained by alone (positive contributions);
- -
- attenuations of at other times, and wind power density is reduced compared to (negative contributions).
3. Results and Discussion
3.1. Singular Value Decomposition of Wind Power Density Matrix
3.2. Temporal Structure of Wind Power Density
3.3. Spatial Pattern of Wind Power Density
3.4. Spatiotemporal Pattern of Wind Power Density
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
a | Wavelet scaling factor |
b | Wavelet translation factor |
C | SVD component-specific contributions to WPD |
EV | Variance explained by the SVD components (%) |
j | Index for orthonormal SVD components 2 to 10 |
k | Index for sorted orthonormal SVD components, e.g., 1 to 4 |
K | Total number of SVD components |
MAE | Mean absolute error (m/s) |
N | Number of wavelet scales |
Air density (kg/m3) | |
Mother wavelet function | |
P90 | 90th percentile |
R | Pearson correlation coefficient |
Re | Real part of wavelet coefficients |
s | Singular values |
S | Matrix containing singular values |
Sp | Spatial pattern of SVD components (W/m2) |
SpC | Spatial complementarity |
SVD | Singular value decomposition |
t | Time (hour) |
T | Hermitian transpose of V |
Te | Temporal structure of SVD components |
Tepos | Positive Te values (W/m2) |
Teneg | Negative Te values |
u | Left singular vector, temporal mode |
U | Matrix containing left singular vectors |
v | Right singular vector, temporal mode |
V | Matrix containing right singular vectors |
VS | Wavelet variance spectrum |
W | Wavelet coefficients |
WiCoMo | Wind speed complementarity model [44] |
WPD | Wind power density (W/m2) |
WPDmean | Mean wind power density (W/m2) |
WS | Wind speed (m/s) |
WS100m | Hourly WiCoMo wind speed at 100 m altitude (m/s) |
References
- Marquis, M.; Wilczak, J.; Ahlstrom, M.; Sharp, J.; Stern, A.; Smith, J.C.; Calvert, S. Forecasting the wind to reach significant penetration levels of wind energy. Bull. Am. Meteorol. Soc. 2011, 92, 1159–1171. [Google Scholar] [CrossRef]
- Jung, C.; Schindler, D. On the inter-annual variability of wind energy generation—A case study from Germany. Appl. Energy 2018, 230, 845–854. [Google Scholar] [CrossRef]
- Feser, F.; Krueger, O.; Woth, K.; van Garderen, L. North Atlantic winter storm activity in modern reanalyses and pressure-based observations. J. Clim. 2021, 34, 2411–2428. [Google Scholar] [CrossRef]
- Ciria, T.P.; Puspitarini, H.D.; Chiogna, G.; François, B.; Borga, M. Multi-temporal scale analysis of complementarity between hydro and solar power along an alpine transect. Sci. Total Environ. 2020, 741, 140179. [Google Scholar] [CrossRef]
- Martinez, A.; Iglesias, G. Hybrid wind-solar energy resources mapping in the European Atlantic. Sci. Total Environ. 2024, 928, 172501. [Google Scholar] [CrossRef]
- Cortesi, N.; Torralba, V.; González-Reviriego, N.; Soret, A.; Doblas-Reyes, F.J. Characterization of European wind speed variability using weather regimes. Clim. Dyn. 2019, 534, 961–976. [Google Scholar] [CrossRef]
- Garrido-Perez, J.M.; Ordóñez, C.; Barriopedro, D.; García-Herrera, R.; Paredes, D. Impact of weather regimes on wind power variability in western Europe. Appl. Energy 2020, 264, 114731. [Google Scholar] [CrossRef]
- Drücke, J.; Borsche, M.; James, P.; Kaspar, F.; Pfeifroth, U.; Ahrens, B.; Trentmann, J. Climatological analysis of solar and wind energy in Germany using the Grosswetterlagen classification. Renew. Energy 2021, 164, 1254–1266. [Google Scholar] [CrossRef]
- Mejia, A.H.; Brouwer, J.; Copp, D.A. Performance and dynamics of California offshore wind alongside Western US onshore wind and solar power. Renew. Energy Focus 2023, 47, 100490. [Google Scholar] [CrossRef]
- Krakauer, N.Y.; Cohan, D.S. Interannual variability and seasonal predictability of wind and solar resources. Resources 2017, 6, 29. [Google Scholar] [CrossRef]
- Schindler, D.; Schmidt-Rohr, S.; Jung, C. On the spatiotemporal complementarity of the European onshore wind resource. Energy Convers. Manag. 2021, 237, 114098. [Google Scholar] [CrossRef]
- Holt, E.; Wang, J. Trends in wind speed at wind turbine height of 80 m over the contiguous United States using the North American Regional Reanalysis (NARR). J. Appl. Meteorol. Climatol. 2012, 51, 2188–2202. [Google Scholar] [CrossRef]
- Wohland, J.; Omrani, N.-E.; Witthaut, D.; Keenlyside, N.S. Inconsistent wind speed trends in current twentieth century reanalyses. J. Geophys. Res. Atmos. 2019, 124, 1931–1940. [Google Scholar] [CrossRef]
- Schindler, D.; Behr, H.D.; Jung, C. On the spatiotemporal variability and potential of complementarity of wind and solar resources. Energy Convers. Manag. 2020, 218, 113016. [Google Scholar] [CrossRef]
- Miao, H.; Xu, H.; Yang, K.; Tang, H.; Deng, J.; Xu, M.; Ning, G.; Huang, G. The reversal of surface wind speed trend in Northeast China: Impact from aerosol emissions. Clim. Dyn. 2025, 63, 43. [Google Scholar] [CrossRef]
- Sun, Q.; Che, J.; Hu, K.; Qin, W. Deterministic and probabilistic wind speed forecasting using decomposition methods: Accuracy and uncertainty. Renew. Energy 2025, 243, 122515. [Google Scholar] [CrossRef]
- Jung, C.; Schindler, D. The annual cycle and intra-annual variability of the global wind power distribution estimated by the system of wind speed distributions. Sustain. Energy Technol. Assess. 2020, 42, 100852. [Google Scholar] [CrossRef]
- Grams, C.M.; Beerli, R.; Pfenninger, S.; Staffell, I.; Wernli, H. Balancing Europe’s wind-power output through spatial deployment informed by weather regimes. Nat. Clim. Chang. 2017, 7, 557–562. [Google Scholar] [CrossRef]
- Mockert, F.; Grams, C.M.; Brown, T.; Neumann, F. Meteorological conditions during periods of low wind speed and insolation in Germany: The role of weather regimes. Meteorol. Appl. 2023, 30, e2141. [Google Scholar] [CrossRef]
- Hart, E.K.; Stoutenberg, E.D.; Jacobson, M.Z. The potential of intermittent renewables to meet electric power demand: Current methods and emerging analytical techniques. Proc. IEEE 2012, 100, 322–334. [Google Scholar] [CrossRef]
- Raynaud, D.; Hingray, B.; François, B.; Creutin, J.D. Energy droughts from variable renewable energy sources in European climates. Renew. Energy 2018, 125, 578–589. [Google Scholar] [CrossRef]
- Weber, J.; Wohland, J.; Reyers, M.; Moemken, J.; Hoppe, C.; Pinto, J.G.; Witthaut, D. Impact of climate change on backup energy and storage needs in wind-dominated power systems in Europe. PLoS ONE 2018, 13, e0201457. [Google Scholar] [CrossRef] [PubMed]
- Bloomfield, H.C.; Brayshaw, D.J.; Troccoli, A.; Goodess, C.M.; De Felice, M.; Dubus, L.; Bett, P.E.; Saint-Drenan, Y.M. Quantifying the sensitivity of European power systems to energy scenarios and climate change projections. Renew. Energy 2021, 164, 1062–1075. [Google Scholar] [CrossRef]
- Jung, C.; Schindler, D. Development of onshore wind turbine fleet counteracts climate change-induced reduction in global capacity factor. Nat. Energy 2022, 7, 608–619. [Google Scholar] [CrossRef]
- Leahy, P.G.; McKeogh, E.J. Persistence of low wind speed conditions and implications for wind power variability. Wind Energy 2013, 16, 575–586. [Google Scholar] [CrossRef]
- Handschy, M.A.; Rose, S.; Apt, J. Is it always windy somewhere? Occurrence of low-wind-power events over large areas. Renew. Energy 2017, 101, 1124–1130. [Google Scholar] [CrossRef]
- Engeland, K.; Borga, M.; Creutin, J.D.; François, B.; Ramos, M.H.; Vidal, J.P. Space-time variability of climate variables and intermittent renewable electricity production—A review. Renew. Sustain. Energy Rev. 2017, 79, 600–617. [Google Scholar] [CrossRef]
- Kahn, E. The reliability of distributed wind generators. Electr. Power Syst. Res. 1979, 2, 1–14. [Google Scholar] [CrossRef]
- Takle, E.S.; Shaw, R.H. Complimentary nature of wind and solar energy at a continental mid-latitude station. Int. J. Energy Res. 1979, 3, 103–112. [Google Scholar] [CrossRef]
- Jurasz, J.; Canales, F.A.; Kies, A.; Guezgouz, M.; Beluco, A. A review on the complementarity of renewable energy sources: Concept, metrics, application and future research directions. Sol. Energy 2020, 195, 703–724. [Google Scholar] [CrossRef]
- Malvaldi, A.; Weiss, S.; Infield, D.; Browell, J.; Leahy, P.; Foley, A.M. A spatial and temporal correlation analysis of aggregate wind power in an ideally interconnected Europe. Wind Energy 2017, 20, 1315–1329. [Google Scholar] [CrossRef]
- Heide, D.; von Bremen, L.; Greiner, M.; Hoffmann, C.; Speckmann, M.; Bofinger, S. Seasonal optimal mix of wind and solar power in a future, highly renewable Europe. Renew. Energy 2010, 35, 2483–2489. [Google Scholar] [CrossRef]
- Monforti, F.; Gaetani, M.; Vignati, E. How synchronous is wind energy production among European countries? Renew. Sustain. Energy Rev. 2016, 59, 1622–1638. [Google Scholar] [CrossRef]
- Viviescas, C.; Lima, L.; Diuana, F.A.; Vasquez, E.; Ludovique, C.; Silva, G.N.; Huback, V.; Maglar, L.; Szklo, A.; Lucena, A.F.P.; et al. Contribution of Variable Renewable Energy to increase energy security in Latin America: Complementarity and climate change impacts on wind and solar resources. Renew. Sustain. Energy Rev. 2019, 113, 109232. [Google Scholar] [CrossRef]
- Canales, F.A.; Jurasz, J.; Beluco, A.; Kies, A. Assessing temporal complementarity between three variable energy sources through correlation and compromise programming. Energy 2020, 192, 116637. [Google Scholar] [CrossRef]
- Gallardo, R.P.; Ríos, A.M.; Ramírez, J.S. Analysis of the solar and wind energetic complementarity in Mexico. J. Clean. Prod. 2020, 268, 122323. [Google Scholar] [CrossRef]
- Henao, F.; Viteri, J.P.; Rodríguez, Y.; Gómez, J.; Dyner, I. Annual and interannual complementarities of renewable energy sources in Colombia. Renew. Sustain. Energy Rev. 2020, 134, 110318. [Google Scholar] [CrossRef]
- Couto, A.; Estanqueiro, A. Assessment of wind and solar PV local complementarity for the hybridization of the wind power plants installed in Portugal. J. Clean. Prod. 2021, 319, 128728. [Google Scholar] [CrossRef]
- Gao, Y.; Ma, S.; Wang, T.; Miao, C.; Yang, F. Distributed onshore wind farm siting using intelligent optimization algorithm based on spatial and temporal variability of wind energy. Energy 2022, 258, 124816. [Google Scholar] [CrossRef]
- Hou, W.; Zhang, X.; Wu, M.; Feng, Y.; Yang, L. Integrating stability and complementarity to assess the accommodable generation potential of multiscale solar and wind resources: A case study in a resource-based area in China. Energy 2022, 261, 125312. [Google Scholar] [CrossRef]
- Lv, A.; Li, T.; Zhang, W.; Liu, Y. Spatiotemporal distribution and complementarity of wind and solar energy in China. Energies 2022, 15, 7365. [Google Scholar] [CrossRef]
- Couto, A.; Estanqueiro, A. Wind power plants hybridised with solar power: A generation forecast perspective. J. Clean. Prod. 2023, 423, 138793. [Google Scholar] [CrossRef]
- Magaña-González, R.C.; Rodriguez-Hernandez, O.; Canul-Reyes, D.A. Analysis of seasonal variability and complementarity of wind and solar resources in Mexico. Sustain. Energy Technol. Assess. 2023, 60, 103456. [Google Scholar] [CrossRef]
- Jung, C.; Schindler, D. Introducing a new wind speed complementarity model. Energy 2023, 265, 126284. [Google Scholar] [CrossRef]
- Prol, J.L.; de Llano Paz, F.; Calvo-Silvosa, A.; Pfenninger, S.; Staffell, I. Wind-solar technological, spatial and temporal complementarities in Europe: A portfolio approach. Energy 2024, 292, 130348. [Google Scholar] [CrossRef]
- Lv, F.; Tang, H. Assessing the impact of climate change on the optimal solar–wind hybrid power generation potential in China: A focus on stability and complementarity. Renew. Sustain. Energy Rev. 2025, 212, 115429. [Google Scholar] [CrossRef]
- Gonzalez-Salazar, M.; Poganietz, W.R. Evaluating the complementarity of solar, wind and hydropower to mitigate the impact of El Niño Southern Oscillation in Latin America. Renew. Energy 2021, 174, 453–467. [Google Scholar] [CrossRef]
- Guezgouz, M.; Jurasz, J.; Chouai, M.; Bloomfield, H.; Bekkouche, B. Assessment of solar and wind energy complementarity in Algeria. Energy Convers. Manag. 2021, 238, 114170. [Google Scholar] [CrossRef]
- Jurasz, J.; Mikulik, J.; Dąbek, P.B.; Guezgouz, M.; Kaźmierczak, B. Complementarity and ‘resource droughts’ of solar and wind energy in Poland: An ERA5-based analysis. Energies 2021, 14, 1118. [Google Scholar] [CrossRef]
- Jurasz, J.; Guezgouz, M.; Campana, P.E.; Kaźmierczak, B.; Kuriqi, A.; Bloomfield, H.; Hingray, B.; Canales, F.A.; Hunt, J.D.; Sterl, S.; et al. Complementarity of wind and solar power in North Africa: Potential for alleviating energy droughts and impacts of the North Atlantic Oscillation. Renew. Sustain. Energy Rev. 2024, 191, 114181. [Google Scholar] [CrossRef]
- Canul-Reyes, D.A.; Rodríguez-Hernández, O.; Barragán-Peña, M.E.; del Rio, J.A. Analysis of offshore wind energy and solar photovoltaic production and its relationship with regional electricity demand in the Yucatan peninsula. Energy 2025, 314, 134060. [Google Scholar] [CrossRef]
- Meng, J.; Dong, Z.; Zhu, S. A copula-based wind-solar complementarity coefficient: Case study of two clean energy bases, China. Energy 2025, 318, 134904. [Google Scholar] [CrossRef]
- Han, S.; Zhang, L.N.; Liu, Y.-Q.; Zhang, H.; Yan, J.; Li, L.; Lei, X.-H.; Wang, X. Quantitative evaluation method for the complementarity of wind–solar–hydro power and optimization of wind–solar ratio. Appl. Energy 2019, 236, 973–984. [Google Scholar] [CrossRef]
- Ren, G.; Wan, J.; Liu, J.; Yu, D. Spatial and temporal assessments of complementarity for renewable energy resources in China. Energy 2019, 177, 262–275. [Google Scholar] [CrossRef]
- Ren, G.; Wan, J.; Liu, J.; Yu, D. Spatial and temporal correlation analysis of wind power between different provinces in China. Energy 2020, 191, 116514. [Google Scholar] [CrossRef]
- Ren, G.; Wang, W.; Wan, J.; Hong, F.; Yang, K. A novel metric for assessing wind and solar power complementarity based on three different fluctuation states and corresponding fluctuation amplitudes. Energy Convers. Manag. 2023, 278, 116721. [Google Scholar] [CrossRef]
- Kapica, J.; Canales, F.A.; Jurasz, J. Global atlas of solar and wind resources temporal complementarity. Energy Convers. Manag. 2021, 246, 114692. [Google Scholar] [CrossRef]
- Jani, H.K.; Kantipudi, M.V.V.P.; Nagababu, G.; Prajapati, D.; Kachhwaha, S.S. Simultaneity of wind and solar energy: A spatio-temporal analysis to delineate the plausible regions to harness. Sustain. Energy Technol. Assess. 2022, 53, 102665. [Google Scholar] [CrossRef]
- Delbecke, O.; Moschner, J.D.; Driesen, J. The complementarity of offshore wind and floating photovoltaics in the Belgian North Sea, an analysis up to 2100. Renew. Energy 2023, 218, 199253. [Google Scholar] [CrossRef]
- Li, P.; Lian, J.; Ma, C.; Zhang, J. Complementarity and development potential assessment of offshore wind and solar resources in China seas. Energy Convers. Manag. 2023, 296, 117705. [Google Scholar] [CrossRef]
- Fang, W.; Yang, C.; Liu, D.; Huang, Q.; Ming, B.; Cheng, L.; Wang, L.; Feng, G.; Shang, J. Assessment of wind and solar power potential and their temporal complementarity in China’s Northwestern provinces: Insights from ERA5 reanalysis. Energies 2023, 16, 7109. [Google Scholar] [CrossRef]
- Sun, Y.; Li, Y.; Wang, R.; Ma, R. Assessing the national synergy potential of onshore and offshore renewable energy from the perspective of resources dynamic and complementarity. Energy 2023, 279, 128106. [Google Scholar] [CrossRef]
- Cai, Q.; Qing, J.; Zhong, C.; Xu, Q.; Liang, Q.-M. Temporal and spatial heterogeneity analysis of wind and solar power complementarity and source-load matching characteristics in China. Energy Convers. Manag. 2024, 315, 118770. [Google Scholar] [CrossRef]
- Chen, Z.; Li, W.; Wang, X.; Bai, J.; Wang, X.; Guo, J. Evaluating wind and solar complementarity in China: Considering climate change and source-load matching dynamics. Energy 2024, 312, 133485. [Google Scholar] [CrossRef]
- Hajou, A.; El Mghouchi, Y.; Chaoui, M. Novel approaches for wind speed evaluating and solar-wind complementarity assessing. Renew. Energy Focus 2024, 48, 100547. [Google Scholar] [CrossRef]
- Frías-Paredes, L.; Gastón-Romeo, M. A new methodology to easy integrate complementarity criteria in the resource assessment process for hybrid power plants: Offshore wind and floating PV. Energy Convers. Manag. X 2025, 26, 100938. [Google Scholar] [CrossRef]
- Xu, L.; Wang, Z.; Liu, Y. The spatial and temporal variation features of wind-sun complementarity in China. Energy Convers. Manag. 2017, 154, 138–148. [Google Scholar] [CrossRef]
- Cantor, D.; Ochoa, A.; Mesa, O. Total variation-based metrics for assessing complementarity in energy resources time series. Sustainability 2022, 14, 8514. [Google Scholar] [CrossRef]
- Miglietta, M.M.; Huld, T.; Monforti-Ferrario, F. Local complementarity of wind and solar energy resources over Europe: An assessment study from a meteorological perspective. J. Appl. Meteorol. Climatol. 2017, 56, 217–234. [Google Scholar] [CrossRef]
- Jung, C.; Schindler, D. Projections of energy yield- and complementarity-driven wind energy expansion scenarios in the European Union. Energy Convers. Manag. 2022, 269, 116160. [Google Scholar] [CrossRef]
- Guo, Y.; Ming, B.; Huang, Q.; Yang, Z.; Kong, Y.; Wang, X. Variation-based complementarity assessment between wind and solar resources in China. Energy Convers. Manag. 2023, 278, 116726. [Google Scholar] [CrossRef]
- Li, K.; Duan, P.; Yue, Q.; Cheng, Y.; Hua, J.; Chen, J.; Guo, P. Enhancing reliability assessment in distributed generation networks: Incorporating dynamic correlation of wind-solar power output uncertainty. Sustain. Energy Grids Netw. 2024, 39, 101505. [Google Scholar] [CrossRef]
- Shen, L.; Wang, Q.; Wan, Y.; Xu, X.; Liu, Y. Multi-timescale scheduling optimization of cascade hydro-solar complementary power stations considering spatio-temporal correlation. Sci. Technol. Energy Transit. 2025, 80, 17. [Google Scholar] [CrossRef]
- Berger, M.; Radu, D.; Fonteneau, R.; Henry, R.; Glavic, M.; Fettweis, X.; Le Du, M.; Panciatici, P.; Balea, L.; Ernst, D. Critical time windows for renewable resource complementarity assessment. Energy 2020, 198, 117308. [Google Scholar] [CrossRef]
- Campos, R.A.; do Nascimento, L.R.; Rüther, R. The complementary nature between wind and photovoltaic generation in Brazil and the role of energy storage in utility-scale hybrid power plants. Energy Convers. Manag. 2020, 221, 113160. [Google Scholar] [CrossRef]
- Luz, T.; Moura, P. 100% Renewable energy planning with complementarity and flexibility based on a multi-objective assessment. Appl. Energy 2019, 255, 113819. [Google Scholar] [CrossRef]
- Moukam, T.D.T.; Sugawara, A.; Li, Y.; Bello, Y. Evaluation of power system stability for a hybrid power plant using wind speed and cloud distribution forecasts. Energies 2025, 18, 1540. [Google Scholar] [CrossRef]
- Mlilo, N.; Brown, J.; Ahfock, T. Impact of intermittent renewable energy generation penetration on the power system networks—A review. Technol. Econ. Smart Grids Sustain. Energy 2021, 6, 25. [Google Scholar] [CrossRef]
- Shahzad, S.; Alsenani, T.R.; Alrumayh, O.; Altamimi, A.; Kilic, H. Adaptive hydrogen buffering for enhanced flexibility in constrained transmission grids with integrated renewable energy system. Int. J. Hydrogen Energy 2025, 122, 103962. [Google Scholar] [CrossRef]
- Siddique, M.B.; Thakur, J. Assessment of curtailed wind energy potential for off-grid applications through mobile battery storage. Energy 2020, 201, 117601. [Google Scholar] [CrossRef]
- Thomaidis, N.S.; Santos-Alamillos, F.J.; Pozo-Vázquez, D.; Usaola-García, J. Optimal management of wind and solar energy resources. Comput. Oper. Res. 2016, 66, 284–291. [Google Scholar] [CrossRef]
- Wörman, A.; Pechlivanidis, I.; Mewes, D.; Riml, J.; Bertacchi Uvo, C. Spatiotemporal management of solar, wind and hydropower across continental Europe. Commun. Eng. 2024, 3, 3. [Google Scholar] [CrossRef]
- Xiong, H.; Xu, B.; Kheav, K.; Luo, X.; Zhang, X.; Patelli, E.; Chen, D. Multiscale power fluctuation evaluation of a hydro-wind-photovoltaic system. Renew. Energy 2021, 175, 153–166. [Google Scholar] [CrossRef]
- Wilks, D.S. Statistical Methods in the Atmospheric Sciences, 4th ed.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 576–577. [Google Scholar]
- Sander, L.; Jung, C.; Schindler, D. New concept of renewable energy priority zones for efficient onshore wind and solar expansion. Energy Convers. Manag. 2023, 294, 117575. [Google Scholar] [CrossRef]
- Torrence, C.; Compo, G.P. A practical guide to wavelet analysis. Bull. Am. Meteorol. Soc. 1998, 97, 61–78. [Google Scholar] [CrossRef]
- Torrence, C.; Webster, P.J. Interdecadal changes in the ENSO-monsoon system. J. Clim. 1999, 12, 2679–2690. [Google Scholar] [CrossRef]
- Kaiser, H.F. The application of electronic computers to factor analysis. Educ. Psychol. Meas. 1960, 20, 141–151. [Google Scholar] [CrossRef]
- Cattell, R.B. The Scree test for the number of factors. Multivar. Behav. Res. 1966, 1, 245–276. [Google Scholar] [CrossRef]
- Schindler, D.; Sander, L.; Jung, C. Importance of renewable resource variability for electricity mix transformation: A case study from Germany based on electricity market data. J. Clean. Prod. 2022, 379, 134728. [Google Scholar] [CrossRef]
- Heppelmann, T.; Steiner, A.; Vogt, S. Application of numerical weather prediction in wind power forecasting: Assessment of the diurnal cycle. Meteorol. Z. 2017, 26, 319–331. [Google Scholar] [CrossRef]
- Petrik, R.; Geyer, B.; Rockel, B. On the diurnal cycle and variability of winds in the lower planetary boundary layer: Evaluation of regional reanalyses and hindcasts. Tellus A 2021, 73, 1–28. [Google Scholar] [CrossRef]
- Jung, C.; Schindler, D. Introducing a new hazard and exposure atlas for European winter storms. Sci. Total Environ. 2024, 929, 172566. [Google Scholar] [CrossRef] [PubMed]
- Collins, S.; Deane, P.; Gallachóir, B.Ó.; Pfenninger, S.; Staffell, I. Impacts of inter-annual wind and solar variations on the European power system. Joule 2018, 2, 2076–2090. [Google Scholar] [CrossRef] [PubMed]
- Pryor, S.C.; Shepard, T.J.; Barthelmie, R.J. Interannual variability of wind climates and wind turbine annual energy production. Wind Energy Sci. 2018, 3, 651–655. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schindler, D.; Wehrle, J.; Sander, L.; Schlemper, C.; Bekel, K.; Jung, C. Assessment of Spatiotemporal Wind Complementarity. Energies 2025, 18, 3715. https://doi.org/10.3390/en18143715
Schindler D, Wehrle J, Sander L, Schlemper C, Bekel K, Jung C. Assessment of Spatiotemporal Wind Complementarity. Energies. 2025; 18(14):3715. https://doi.org/10.3390/en18143715
Chicago/Turabian StyleSchindler, Dirk, Jonas Wehrle, Leon Sander, Christopher Schlemper, Kai Bekel, and Christopher Jung. 2025. "Assessment of Spatiotemporal Wind Complementarity" Energies 18, no. 14: 3715. https://doi.org/10.3390/en18143715
APA StyleSchindler, D., Wehrle, J., Sander, L., Schlemper, C., Bekel, K., & Jung, C. (2025). Assessment of Spatiotemporal Wind Complementarity. Energies, 18(14), 3715. https://doi.org/10.3390/en18143715