The Energy Potential of White Mulberry Waste Biomass
Abstract
1. Introduction
2. Materials and Methods
2.1. Mulberry Biomass
2.2. Solid Biofuel Production from Mulberry Biomass
2.3. Analytical Methods
- -
- Moisture content using the oven-dry (gravimetric) method;
- -
- Cellulose using a mixture of acetylacetone and dioxane, according to Seifert;
- -
- Holocellulose using sodium chlorite;
- -
- Lignin using concentrated sulfuric acid, according to Tappi;
- -
- Pentosanes using the trihydroxybenzene method;
- -
- Mineral substances according to the DIN 51731 standard [30].
2.4. Calculations
- C—the heat capacity of the calorimeter (J‧K−1);
- Dt—the general increase in the main period temperature (K);
- K—a correction for the calorimeter’s heat exchange with its surroundings (K);
- C—the heat correction emitted during wire burning (J);
- M—the mass of the solid fuel sample (g) [35].
- Qs—the heat of combustion of the test sample fuel in the analytical state (J‧g−1);
- Wa—the moisture content in the test sample (%);
- Ha—the hydrogen content of the test sample (%) [27].
- m—harvested amount of mulberry biomass (Mg);
- Qs—calorific value of the test sample fuel in the analytical state (J‧g−1);
- S—unit of area (1 ha = 10,000 m2).
- EJ—produced energy amount (GJ‧ha−1);
- 1 MWh = 3.6 GJ [36].
2.5. Statistical Analysis
3. Results and Discussion
3.1. Mulberry Biomass Yield
3.2. Chemical Composition of Mulberry Biomass
3.3. Energy Properties and Potential of Mulberry Pellets
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Duca, D.; Toscano, G. Biomass Energy Resources: Feedstock Quality and Bioenergy Sustainability. Resources 2022, 11, 57. [Google Scholar] [CrossRef]
- European Commission: Directorate-General for Research and Innovation. European Green Deal—Research & Innovation Call; Publications Office of the European Union: Luxembourg City, Luxembourg, 2021; Available online: https://data.europa.eu/doi/10.2777/33415 (accessed on 25 April 2025).
- United Nations. General Assembly Resolution A/RES/70/1. Transforming Our World, the 2030 Agenda for Sustainable Development. 2015. Available online: https://digitallibrary.un.org/record/3923923?v=pdf (accessed on 25 April 2025).
- Regulation (EU) 2024/1735 of the European Parliament and of the Council of 13 June 2024 on Establishing a Framework of Measures for Strengthening Europe’s Net-Zero Technology Manufacturing Ecosystem and Amending Regulation (EU) 2018/1724. Available online: https://eur-lex.europa.eu/eli/reg/2024/1735/oj/eng (accessed on 25 April 2025).
- Directive (EU) 2018/2001. Available online: https://eur-lex.europa.eu/eli/dir/2018/2001/oj/eng (accessed on 25 April 2025).
- Stolarski, M.J.; Warmiński, K.; Krzyżaniak, M.; Olba–Zięty, E. Cascaded use of perennial industrial crop biomass: The effect of biomass type and pre-treatment method on pellet properties. Ind. Crops Prod. 2022, 185, 115104. [Google Scholar] [CrossRef]
- Szufa, S.; Piersa, P.; Adrian, Ł.; Czerwińska, J.; Lewandowski, A.; Lewandowska, W.; Sielski, J.; Dzikuć, M.; Wróbel, M.; Jewiarz, M.; et al. Sustainable drying and torrefaction processes of miscanthus for use as a pelletized solid biofuel and biocarbon-carrier for fertilizers. Molecules 2021, 26, 1014. [Google Scholar] [CrossRef]
- Szyszlak-Bargłowicz, J.; Słowik, T.; Zając, G.; Blicharz-Kania, A.; Zdybel, B.; Andrejko, D.; Obidziński, S. Energy parameters of miscanthus biomass pellets supplemented with copra meal in terms of energy consumption during the pressure agglomeration process. Energies 2021, 14, 4167. [Google Scholar] [CrossRef]
- Jezerska, L.; Sassmanova, V.; Prokes, R.; Gelnar, D. The pelletization and torrefaction of coffee grounds, garden chaff and rapeseed straw. Renew. Energy 2023, 210, 346–354. [Google Scholar] [CrossRef]
- Szyszlak-Bargłowicz, J.; Wasilewski, J.; Zając, G.; Kuranc, A.; Koniuszy, A.; Hawrot-Paw, M. Evaluation of particulate matter (PM) emissions from combustion of selected types of rapeseed biofuels. Energies 2022, 16, 239. [Google Scholar] [CrossRef]
- Jablonowski, N.D.; Ohrem, B.; Gitzen, M.; Kollmann, T. Converting an Established Sida hermaphrodita Field into Arable Farming. Agronomy 2024, 14, 411. [Google Scholar] [CrossRef]
- Schonhoff, A.; Jablonowski, N.D.; Zapp, P. Environmental competitiveness evaluation by life cycle assessment for solid fuels generated from Sida hermaphrodita biomass. Biomass Bioenergy 2021, 145, 105966. [Google Scholar] [CrossRef]
- Czekała, W. Solid fraction of digestate from biogas plant as a material for pellets production. Energies 2021, 14, 5034. [Google Scholar] [CrossRef]
- Sieracka, D.; Frankowski, J.; Wacławek, S.; Czekała, W. Hemp Biomass as a Raw Material for Sustainable Development. Appl. Sci. 2023, 13, 9733. [Google Scholar] [CrossRef]
- Malode, S.J.; Prabhu, K.K.; Mascarenhas, R.J.; Shetti, N.P.; Aminabhavi, T.M. Recent advances and viability in biofuel production. Energy Convers. Manag. X 2021, 10, 100070. [Google Scholar] [CrossRef]
- Miranda, M.T.; Sepúlveda, F.J.; Arranz, J.I.; Montero, I.; Rojas, C.V. Analysis of pelletizing from corn cob waste. J. Environ. Manag. 2018, 228, 303–311. [Google Scholar] [CrossRef]
- Ilari, A.; Foppa Pedretti, E.; De Francesco, C.; Duca, D. Pellet production from residual biomass of greenery maintenance in a small-scale company to improve sustainability. Resources 2021, 10, 122. [Google Scholar] [CrossRef]
- Tumuluru, J.S.; Wright, C.T.; Hess, J.R.; Kenney, K.L. A review of biomass densification systems to develop uniform feedstock commodities for bioenergy application. Biofuels Bioprod. Biorefin. 2011, 5, 683–707. [Google Scholar] [CrossRef]
- Łochyńska, M. Multi-use of the white mulberry (Morus alba L.). Ecol. Quest. 2011, 15, 91–95. [Google Scholar] [CrossRef]
- Grześkowiak, J.; Łochyńska, M. Bioactive compounds in white mulberry (Morus alba L.) and their therapeutic activity. Postępy Fitoter. 2017, 18, 31–35. [Google Scholar]
- Łochyńska, M. Nutritional properties of the white mulberry (Morus alba L.). J. Agric. Sci. Technol. 2015, 5, 709–716. [Google Scholar] [CrossRef]
- Jeszka, M.; Kobus-Cisowska, J.; Flaczyk, E. Mulberry leaves as a source of biologically active compounds. Postępy Fitoter. 2009, 3, 175–179. [Google Scholar]
- Erciski, S.; Orhan, E. Chemichal composition of white (Morus alba), red (Morus rubra) and black (Morus nigra) mulberry fruits. Food Chem. 2007, 103, 1380–1384. [Google Scholar] [CrossRef]
- Radojkovic, M.; Zekovic, Z.; Mashovic, P. Biological activities and chemical composition of Morus leaves extract obtained by maceration and supercritical fluid extraction. J. Supercrit. Fluids 2016, 117, 50–58. [Google Scholar] [CrossRef]
- Choi, S.W.; Lee, Y.J.; Ha, S.B.; Jeon, Y.H.; Lee, D.H. Evaluation of biological activity and analysis of functional constituents from different parts of mulberry (Morus alba L.) tree. J. Korean Soc. Food Sci. Nutr. 2015, 44, 823–831. [Google Scholar] [CrossRef]
- Łochyńska, M. Yield improvement of white mulberry in Poland by modern cultivation measures. EPRA Int. J. Res. Dev. 2018, 3, 103–109. [Google Scholar]
- Krajnc, A.; Ugulin, T.; Pausic, A.; Rabensteiner, J.; Bukovac, V.; Petkovsek, M.; Janzekovic, F.; Bakonyi, T.; Bercic, R.; Felicijan, M. Morphometric and biochemical screening of old mulberry trees (Morus alba L.) in the former sericulture region of Slovenia. Acta Soc. Bot. Pol. 2019, 88, 3614. [Google Scholar] [CrossRef]
- Sharma, S.; Madan, M. Potential of mulberry (Morus alba) biomass. J. Sci. IndRes 1994, 53, 710–714. [Google Scholar]
- Christoforou, E.A.; Fokaides, P.A. Thermochemical properties of pellets derived from agro-residues and the wood industry. Waste Biomass Valoriz. 2017, 8, 1325–1330. [Google Scholar] [CrossRef]
- DIN 51731; Testing of Solid Fuels—Compressed Untreated Wood—Requirements and Testing. Deutsches Institut Fur Normung E.V.: Berlin, Germany, 1996.
- Łochyńska, M.; Frankowski, J. Impact of Silkworm Excrement Organic Fertilizer on Hemp Biomass Yield and Composition. J. Ecol. Eng. 2019, 20, 63–71. [Google Scholar] [CrossRef]
- PN-EN 15104:2011; Solid Biofuels—Determination of total content of carbon, hydrogen and nitrogen—Instrumental Methods. Polish Committee for Standardization: Warszawa, Poland, 2013.
- PN-EN 15289:2011; Solid Biofuels—Determination of Total Content of Sulfur and Chlorine. Polish Committee for Standardization: Warszawa, Poland, 2013.
- PN-81/G-04513; Solid Fuels—Determination of Gross Calorific Value and Calculation of Net Calorific Value. Polish Committee for Standardization: Warszawa, Poland, 2013.
- Szambelan, K.; Nowak, J.; Frankowski, J.; Szwengiel, A.; Jeleń, H.; Burczyk, H. The comprehensive analysis of sorghum cultivated in Poland for energy purposes: Separate hydrolysis and fermentation and simultaneous saccharification and fermentation methods and their impact on bioethanol effectiveness and volatile by-products from the grain and the energy potential of sorghum straw. Bioresour. Technol. 2018, 250, 750–757. [Google Scholar] [CrossRef]
- Łochyńska, M.; Frankowski, J. The biogas production potential from silkworm waste. Waste Manag. 2018, 79, 564–570. [Google Scholar] [CrossRef]
- Ram, R.L.; Maji, C. A Comprehensive Review on Mulberry Sericulture in Kalimpong Hills. Int. J. Curr. Microbiol. Appl. Sci. 2018, 7, 4850–4860. [Google Scholar] [CrossRef]
- Srivastava, S.; Kapoor, R.; Thathola, A.; Srivastava, R.P. Mulberry (Morus alba) leaves as human food: A new dimension of sericulture. Int. J. Food Sci. Nutr. 2003, 54, 411–416. [Google Scholar] [CrossRef]
- Kadam, R.A.; Dhumal, N.D.; Khyade, V.B. The Mulberry, Morus alba (L.): The medicinal herbal source for human health. Int. J. Curr. Microbiol. Appl. Sci. 2019, 8, 2941–2964. [Google Scholar] [CrossRef]
- Ying, Z.; Han, X.; Li, J. Ultrasound-assisted extraction of polysaccharides from mulberry leaves. Food Chem. 2011, 127, 1273–1279. [Google Scholar] [CrossRef]
- Pappachan, A.; Bariampan, L.; Trivedy, K. Effect of application of Ascophyllum nodosum extract on the yield and quality of Mulberry leaves. Biosci. Discov. 2017, 8, 235–240. [Google Scholar]
- Guha, A.; Rasineni, G.K.; Reddy, A.R. Drought tolerance in mulberry (Morus spp.): A physiological approach with insights into growth dynamics and leaf yield production. Exp. Agric. 2010, 46, 471–488. [Google Scholar] [CrossRef]
- Cheng, J.; Geng, Z.C.; Zheng, J.L.; Qiu, L.; Jiao, F. Characterization of the pyroligneous acids generated from the pyrolysis of four types mulberry branches. Ind. Crops Prod. 2022, 183, 114949. [Google Scholar] [CrossRef]
- Ajayo, P.C.; Huang, M.; Zhao, L.; Tian, D.; He, J.; Zou, J.; Fang, D.; Zeng, Y.; Shen, F. High yield of fermentable sugar from paper mulberry woods using phosphoric acid plus hydrogen peroxide pretreatment: Multifactorial investigation and optimization. Ind. Crops Prod. 2022, 180, 114771. [Google Scholar] [CrossRef]
- Siraorarnroj, S.; Kaewtrakulchai, N.; Fuji, M.; Eiad-ua, A. High performance nanoporous carbon from mulberry leaves (Morus alba L.) residues via microwave treatment assisted hydrothermal-carbonization for methyl orange adsorption: Kinetic, equilibrium and thermodynamic studies. Materialia 2022, 21, 101288. [Google Scholar] [CrossRef]
- Lu, L.; Tang, Y.; Xie, J.S.; Yuan, Y.L. The role of marginal agricultural land-based mulberry planting in biomass energy production. Renew. Energy 2009, 34, 1789–1794. [Google Scholar] [CrossRef]
- Stolarski, M.J.; Krzyżaniak, M.; Olba-Zięty, E. Properties of Pellets from Forest and Agricultural Biomass and Their Mixtures. Energies 2025, 18, 3137. [Google Scholar] [CrossRef]
- Jasinskas, A.; Streikus, D.; Šarauskis, E.; Palšauskas, M.; Venslauskas, K. Energy Evaluation and Greenhouse Gas Emissions of Reed Plant Pelletizing and Utilization as Solid Biofuel. Energies 2020, 13, 1516. [Google Scholar] [CrossRef]
- Grześkowiak, J.; Łochyńska, M. Evaluation of herbal potential of dried white mulberry leaves (Morus alba L.) cultivar “Żółwińska wielkolistna”. Herba Pol. 2023, 69, 23–30. [Google Scholar] [CrossRef]
- Kim, D.; Kang, K.H. Anti-inflammatory and anti-bacterial potential of mulberry leaf extract on oral microorganisms. Int. J. Environ. Res. Public Health 2022, 19, 4984. [Google Scholar] [CrossRef]
- Kumkoon, T.; Srisaisap, M.; Boonserm, P. Biosynthesized Silver Nanoparticles Using Morus alba (White Mulberry) Leaf Extract as Potential Antibacterial and Anticancer Agents. Molecules 2023, 28, 1213. [Google Scholar] [CrossRef]
- Cui, Y.; Liu, Z.; Deng, D.; Tian, Z.; Song, M.; Lu, Y.; Yu, M.; Ma, X. Influence of Fermented Mulberry Leaves as an Alternative Animal Feed Source on Product Performance and Gut Microbiome in Pigs. Fermentation 2024, 10, 215. [Google Scholar] [CrossRef]
- Neamat-Allah, A.N.; Mahmoud, E.A.; Mahsoub, Y. Effects of dietary white mulberry leaves on hemato-biochemical alterations, immunosuppression and oxidative stress induced by Aeromonas hydrophila in Oreochromis niloticus. Fish Shellfish Immunol. 2021, 108, 147–156. [Google Scholar] [CrossRef]
Substance | Average Content [%] |
---|---|
Extractive substances | 20.26 |
Cellulose | 18.69 |
Lignin | 10.07 |
Holocellulose | 55.97 |
Pentosans | 12.46 |
Substances soluble in cold H2O | 15.09 |
Substances soluble in hot H2O | 16.69 |
Substances soluble in 1% NaOH | 80.99 |
Mineral substances | 16.62 |
Cellulose | Lignin | Holocellulose | Mineral Substances | |||||
---|---|---|---|---|---|---|---|---|
General Analysis—Results | ||||||||
Type of Analysis | ANOVA | ANOVA | ANOVA | ANOVA | ||||
df | 3; 20 | 3; 20 | 3; 20 | 3; 20 | ||||
F | 199,504 | 153,915 | 938,484,00 | 162,071 | ||||
p-value | <2 × 10−16 *** | <2 × 10−16 *** | <2 × 10−16 *** | <2 × 10−16 *** | ||||
Mean Values for Treatments/Results of Post Hoc Tests α = 0.05 | ||||||||
General mean | 33.37 | 18.02 | 59.17 | 6.19 | ||||
1 year old branches | 37.73 (±0.04) | b | 21.73 (±0.03) | a | 70.38 (±0.06) | b | 2.76 (±0.04) | c |
3 year old branches | 34.24 (±0.02) | c | 20.72 (±0.04) | b | 36.21 (±0.04) | d | 3.36 (±0.04) | b |
5 year old branches | 42.8 (±0.06) | a | 19.58 (±0.04) | c | 74.13 (±0.03) | a | 2.03 (±0.04) | d |
Leaves per year | 18.69 (±0.09) | d | 10.065 (±0.02) | d | 55.97 (±0.03) | c | 16.62 (±0.05) | a |
Sample of Pellet | [%] | N | C | H | Cl | S |
---|---|---|---|---|---|---|
1: Leaves | Content | 3.75 | 43.37 | 5.77 | 0.22 | 0.21 |
SD | 0.26 | 0.79 | 0.07 | 0.02 | 0.02 | |
2: 1-year old branches | Content | 0.43 | 47.59 | 6.33 | 0.02 | 0.07 |
SD | 0.03 | 0.87 | 0.05 | - | 0.01 | |
3: 3-year old branches | Content | 0.47 | 47.62 | 6.33 | 0.01 | 0.06 |
SD | 0.03 | 1.10 | 0.03 | - | 0.01 | |
4: 5-year old branches | Content | 0.48 | 48.04 | 6.28 | 0.01 | 0.04 |
SD | 0.03 | 0.89 | 0.04 | - | 0.01 |
Sample of Pellet | Produced Energy Amount [GJ∙ha−1] | Produced Energy Amount [MWh∙ha−1] |
---|---|---|
1: Leaves | 4.50 | 1.25 |
2: 1-year old branches | 159.30 | 44.25 |
3: 3-year old branches | 157.80 | 43.83 |
4: 5-year old branches | 159.90 | 44.42 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sieracka, D.; Frankowski, J.; Łacka, A.; Wacławek, S.; Czekała, W. The Energy Potential of White Mulberry Waste Biomass. Energies 2025, 18, 3541. https://doi.org/10.3390/en18133541
Sieracka D, Frankowski J, Łacka A, Wacławek S, Czekała W. The Energy Potential of White Mulberry Waste Biomass. Energies. 2025; 18(13):3541. https://doi.org/10.3390/en18133541
Chicago/Turabian StyleSieracka, Dominika, Jakub Frankowski, Agnieszka Łacka, Stanisław Wacławek, and Wojciech Czekała. 2025. "The Energy Potential of White Mulberry Waste Biomass" Energies 18, no. 13: 3541. https://doi.org/10.3390/en18133541
APA StyleSieracka, D., Frankowski, J., Łacka, A., Wacławek, S., & Czekała, W. (2025). The Energy Potential of White Mulberry Waste Biomass. Energies, 18(13), 3541. https://doi.org/10.3390/en18133541