Ruderal Habitats: A Source for Biomass and Biogas
Abstract
1. Introduction
2. Materials and Methods
2.1. Material Collection
2.2. Chemical Composition
2.3. Batch Test
2.4. Statistical Analysis
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cerevkova, A.; Ivashchenko, K.; Miklisova, D.; Ananyeva, N.; Renco, M. Influence of invasion by Sosnowsky’s hogweed on nematode communities and microbial activity in forest and grassland ecosystems. Glob. Ecol. Conserv. 2020, 21, e00851. [Google Scholar]
- Nielsen, C.; Ravn, H.P.; Nentwig, W.; Wade, M. (Eds.) The Giant Hogweed Best Practice Manual; Guidelines for the Management and Control of an Invasive Weed in Europe; Forest and Landscape Denmark: Hørsholm, Denmark, 2005. [Google Scholar]
- Thiele, J.; Otte, A. Analysis of habitats and communities invaded by Heracleum mantegazzianum Somm. et Lev. (Giant hogweed) in Germany. Phytocoenologia 2006, 36, 281–320. [Google Scholar] [CrossRef]
- Jahodova, S.; Froberg, L.; Pysek, P.; Geltman, D.; Trybush, S.; Karp, A. Taxonomy, identification, genetic relationships and distribution of large Heracleum species in Europe. In Ecology and Management of Giant Hogweed (Heracleum mantegazzianum); Pysek, P., Cock, M.J.W., Nentwig, W., Ravn, H.P., Eds.; CAB International: Wallingford, UK, 2007; p. 119. [Google Scholar]
- Jahodova, S.; Trybush, S.; Pysek, P.; Wade, M.; Karp, A. Invasive species of Heracleum in Europe: An insight into genetic relationships and invasion history. Divers. Distrib. 2007, 13, 99–114. [Google Scholar] [CrossRef]
- Grigorievskaya, A.Y.; Starodubtseva, E.A.; Khlyzova, N.Y.; Agafonov, V.A. Adventive Flora of the Voronezh Region: Historical, Biogeographical, Ecological Aspects; Publishing House of Voronezh State University: Voronezh, Russia, 2004. [Google Scholar]
- Geltman, D.V. Composition and ecological-phytocenotic features of communities with the participation of the invasive species Heracleum Sosnowskyi (Apiaceae) in north-west European Russia. Rastit. Resur. (Plant Res.) 2009, 3, 68–75. [Google Scholar]
- Mironova, D.Y.; Varadarajan, V.; Timakhovich, I.V.; Barakova, N.V.; Tokbaeva, A.A.; Rumiantceva, O.N.; Pomazkova, E.E.; Baranov, I.V.; Tishchenko, L.I. Methods of Commercialization and Usage of Sosnovsky hogweed Processing. Recycling 2022, 7, 77. [Google Scholar] [CrossRef]
- Ebrahimi, A.; Aghbabayi, M.; Rashidi-Monfared, S.; Falahi Charkhabi, N.; Gharanjik, S.; Ahmadi, N. Furanocoumarins from Heracleum persicum L.: Unveiling their biosynthesis and gene expression. Ind. Crops Prod. 2023, 203, 117160. [Google Scholar] [CrossRef]
- Matuszkiewicz, W. Przewodnik do Oznaczania Zbiorowisk Roślinnych Polski; Wydawnictwo Naukowe PWN: Warszawa, Poland, 2006. [Google Scholar]
- Taylor, K. Biological flora of British Isles: Urtica dioica L. J. Ecol. 2009, 97, 1436–1458. [Google Scholar] [CrossRef]
- Vogl, C.R.; Hardtl, A. Production and processing of organically grown fiber nettle (Urtica dioica L.) and its potential use in the natural textile industry. A review. Am. J. Altern. Agric. 2003, 18, 119–128. [Google Scholar] [CrossRef]
- Johnson, O.; More, D. Drzewa; Multico Oficyna Wydawnicza: Warszawa, Poland, 2009. [Google Scholar]
- Available online: https://pl.climate-data.org/europa/polska/greater-poland-voivodeship/niegolewo-146939/ (accessed on 14 March 2025).
- Available online: https://mapy.geoportal.gov.pl/imapnext/imap/index.html?moduleId=modulRol&mapview=52.366627%2C16.428465%2C10000s (accessed on 14 March 2025).
- Waliszewska, B.; Waliszewska, H.; Grzelak, M.; Majchrzak, L.; Gaweł, E.; Murawski, M.; Sieradzka, A.; Vaskina, I.; Spek-Dźwigała, A. Evaluation of Changes in the Chemical Composition of Grasses as a Result of the Methane Fermentation Process and Biogas Production Efficiency. Energies 2024, 17, 4100. [Google Scholar] [CrossRef]
- Seifert, K. Zur Frage der Cellulose-Schnellbestimmung nach der Acetylaceton-Methode. Das Pap. 1960, 14, 104–106. [Google Scholar]
- TAPPI T 9 wd-75; Holocellulose in Wood. Technical Association of the Pulp and Paper Industry (TAPPI): Atlanta, GA, USA, 2006.
- TAPPI T 222 om-06; Acid-Insoluble Lignin in Wood and Pulp. Technical Association of the Pulp and Paper Industry (TAPPI): Atlanta, GA, USA, 2006.
- TAPPI T 204 cm-07; Solvent Extractives of Wood and Pulp. Technical Association of the Pulp and Paper Industry (TAPPI): Atlanta, GA, USA, 2007.
- Lewicki, A.; Pilarski, K.; Janczak, D.; Czekała, W.; Rodríguez Carmona, P.C.; Cieślik, M.; Witaszek, K.; Zbytek, Z. The biogas production from herbs and waste from the herbal industry. J. Res. Appl. Agric. Eng. 2013, 58, 114–117. [Google Scholar]
- Cieślik, M.; Dach, J.; Lewicki, A.; Smurzyńska, A.; Janczak, D.; Pawlicka-Kaczorowska, J.; Boniecki, P.; Cyplik, P.; Czekała, W.; Jóźwiakowski, K. Methane fermentation of the maize straw silage under meso- and thermophilic conditions. Energy 2016, 115, 1495–1502. [Google Scholar] [CrossRef]
- Krzanowski, W.J. Principles of Multivariate Analysis: A User’s Perspective, 2nd ed.; Oxford University Press: New York, NY, USA, 2000; p. 608. [Google Scholar]
- Kayzer, D.; Czerwińska-Kayzer, D.; Florek, J.; Staniszewski, R. Financial Security as a Basis for the Sustainable Development of Small and Medium-Sized Renewable Energy Companies—A Polish Perspective. Sustainability 2024, 16, 5926. [Google Scholar] [CrossRef]
- Florek, J.; Staniszewski, R.; Czerwińska-Kayzer, D.; Kayzer, D. Functioning of the Energy Sector Under Crisis Conditions—A Polish Perspective. Energies 2024, 17, 6161. [Google Scholar] [CrossRef]
- Lejeune, M.; Caliński, T. Canonical analysis applied to multivariate analysis of variance. J. Multivar. Anal. 2000, 72, 100–119. [Google Scholar] [CrossRef]
- Hunter, J.D. Matplotlib: A 2D Graphics Environment. Comput. Sci. Eng. 2007, 9, 90–95. [Google Scholar] [CrossRef]
- Harris, C.R.; Millman, K.J.; van der Walt, S.J.; Gommers, R.; Virtanen, P.; Cournapeau, D.; Wieser, E.; Taylor, J.; Berg, S.; Smith, N.J.; et al. Array programming with NumPy. Nature 2020, 585, 357–362. [Google Scholar] [CrossRef] [PubMed]
- The Pandas Development Team. Pandas-Dev/Pandas: Pandas, version 2.2.3; Zenodo: Genève, Switzerland, 2024. [Google Scholar] [CrossRef]
- Wickham, H.; François, R.; Henry, L.; Müller, K.; Vaughan, D. dplyr: A Grammar of Data Manipulation, R package version 1.1.4; 2023. Available online: https://dplyr.tidyverse.org (accessed on 30 March 2025).
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2024; Available online: https://www.R-project.org/ (accessed on 30 March 2025).
- Wickham, H.; Vaughan, D.; Girlich, M. tidyr: Tidy Messy Data, R Package Version 1.3.1. 2024. Available online: https://tidyr.tidyverse.org (accessed on 30 March 2025).
- de Mendiburu, F. agricolae: Statistical Procedures for Agricultural Research, R package version 1.3-7; 2023. Available online: https://CRAN.R-project.org/package=agricolae (accessed on 30 March 2025).
- Schlager, S. Morpho and Rvcg—Shape Analysis in R. In Statistical Shape and Deformation Analysis; Zheng, G., Li, S., Szekely, G., Eds.; Academic Press: Cambridge, MA, USA, 2017; pp. 217–256. ISBN 9780128104934. [Google Scholar]
- Prosiński, S. Chemia Drewna; PWRiL: Warszawa, Poland, 1984. [Google Scholar]
- Pereira, B.L.C.; Carneiro, A.d.C.O.; Carvalho, A.M.M.L.; Colodette, J.L.; Oliveira, A.C.; Fontes, M.P.F. Influence of Chemical Composition of Eucalyptus Wood on Gravimetric Yield and Charcoal Properties. BioResources 2013, 8, 4574–4592. [Google Scholar] [CrossRef]
- Mancini, T.L.; Ramalho, G.F.M.; Trugilho, P.F.; Hein, G.P.R. Estimation of total extractive content of wood from planted and native forests by near infrared spectroscopy. iForest 2021, 14, 18–25. [Google Scholar] [CrossRef]
- Esteves, B.; Ayata, U.; Cruz-Lopez, L.; Bras, I.; Ferreira, J.; Domingos, I. Changes in the content and composition of the extractives in thermally modified tropical hardwoods. Maderas Cienc. Tecnol. 2022, 24, 22. [Google Scholar] [CrossRef]
- Platače, R.; Adamovičs, A. The evaluation of ash content in grass biomass used for energy production. WIT Trans. Ecol. Environ. 2014, 2, 1057–1065. [Google Scholar] [CrossRef]
- Gizińska-Górna, M.; Czekała, W.; Jóźwiakowski, K.; Lewicki, A.; Dach, J.; Marzec, M.; Pytka, A.; Janczak, D.; Kowalczyk-Juśko, A.; Listosz, A. The possibility of using plants from hybrid constructed wetland wastewater treatment plant for energy purposes. Ecol. Eng. 2016, 95, 534–541. [Google Scholar] [CrossRef]
- Kowalska, G.; Pankiewicz, U.; Kowalski, R. Evaluation of Chemical Composition of Some Silphium L. Species as Alternative Raw Materials. Agriculture 2020, 10, 132. [Google Scholar] [CrossRef]
- Godin, B.; Ghysel, F.; Agneessens, R.; Schmit, T.; Gofflot, S.; Lamaudiere, S.; Sinnaeve, G.; Goffart, J.-P.; Gerin, P.; Stilmant, D.; et al. Determination de la cellulose, des hemicelluloses, de la lignine et des cendres dans diverses cultures lignocellulosiques dediees a la production de bioethanol de deuxieme generation. Biotechnol. Agron. Soc. Environ. 2010, 14, 549–560. [Google Scholar]
- Acazacei, V.; Teleuaca, A.; Muntean, A. The Perspective of Cultivation and Utilization of the Species Silphium perfoliatum L. and Helianthus tuberosus L. in Moldova. Bull. Univ. Agric. Sci. Vet. Med. 2013, 70, 160–166. [Google Scholar] [CrossRef]
- Titei, V. Biological Peculiarities of Cup Plant (Silphium perfoliatum L.) and Utilization Possibilities in the Republic of Moldova; Lucrări Ştiinţifice. 2014, Volume 57, p. 1. Available online: http://193.231.26.26/handle/20.500.12811/2213 (accessed on 30 March 2025).
- Meserszmit, M.; Swacha, G.; Pavlů, L.; Pavlů, V.; Titěra, J.; Jabłoński, S.; Łukaszewicz, M.; Kącki, Z. Effect of mowing versus abandonment of mesic grasslands in Central Europe on biomass use for biogas production: Implications for semi-natural ecosystem conservation. J. Environ. Manag. 2024, 368, 122132. [Google Scholar] [CrossRef]
- Meserszmit, M.; Swacha, G.; Pavlů, L.; Pavlů, V.; Trojanowska-Olichwer, A.; Kącki, Z. Species composition of semi-natural mesic grasslands as a factor influencing the methane yield of plant biomass (Central Europe). GCB Bioenergy 2021, 14, 54–64. [Google Scholar] [CrossRef]
- Melts, I.; Normak, A.; Nurk, L.; Heinsoo, K. Chemical characteristics of biomass from nature conservation management for methane production. Bioresour. Technol. 2014, 167, 226–231. [Google Scholar] [CrossRef]
- Harahap, B.M. Degradation Techniques of Hemicellulose Fraction from Biomass Feedstock for Optimum Xylose Production: A Review. J. Keteknikan Pertan. Trop. Dan Biosist. 2020, 8, 107–124. [Google Scholar] [CrossRef]
- Díez, D.; Urueña, A.; Piñero, R.; Barrio, A.; Tamminen, T. Determination of Hemicellulose, Cellulose, and Lignin Content in Different Types of Biomasses by Thermogravimetric Analysis and Pseudocomponent Kinetic Model (TGA-PKM Method). Processes 2020, 8, 1048. [Google Scholar] [CrossRef]
- Wang, S.; Dai, G.; Yang, H.; Luo, Z. Lignocellulosic biomass pyrolysis mechanism: A state-of-the-art review. Prog. Energy Combust. Sci. 2017, 62, 33–86. [Google Scholar]
- Waliszewska, B.; Grzelak, M.; Gaweł, E.; Spek-Dźwigała, A.; Sieradzka, A.; Czekała, W. Chemical Characteristics of Selected Grass Species from Polish Meadows and Their Potential Utilization for Energy Generation Purposes. Energies 2021, 14, 1669. [Google Scholar] [CrossRef]
- Czubaszek, R.; Wysocka-Czubaszek, A.; Sienkiewicz, A.; Piotrowska-Niczyporuk, A.; Wassen, M.J.; Bajguz, A. Possibilities of Utilising Biomass Collected from Road Verges to Produce Biogas and Biodiesel. Energies 2024, 17, 1751. [Google Scholar] [CrossRef]
- Czekała, W.; Łukomska, A.; Pulka, J.; Bojarski, W.; Pochwatka, P.; Kowalczyk-Juśko, A.; Oniszczuk, A.; Dach, J. Waste-to-energy: Biogas potential of waste from coffee production and consumption. Energy 2023, 276, 127604. [Google Scholar] [CrossRef]
Species | Extraction Substances | Cellulose | Lignin | Holocellulose | Hemicellulose | Ash | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
[%] | ||||||||||||
Before | After | Before | After | Before | After | Before | After | Before | After | Before | After | |
Methane Fermentation | ||||||||||||
U. dioica | 10.78 c ± 0.36 | 2.34 d ± 0.15 | 31.82 b ± 0.24 | 40.87 a ± 0.17 | 19.37 b ± 1.68 | 30.10 e ± 0.77 | 58.81 ab ± 0.63 | 60.76 c ± 0.90 | 26.98 b ± 0.77 | 19.89 d ± 0.85 | 12.94 a ± 0.04 | NaN |
A. negundo | 15.10 a ± 0.25 | 4.95 c ± 0.03 | 27.21 d ± 0.33 | 39.60 b ± 0.13 | 23.57 a ± 0.22 | 40.21 a ± 0.33 | 59.23 ab ± 1.08 | 59.65 c ± 0.45 | 32.03 a ± 0.99 | 20.05 d ± 0.56 | 7.63 c ± 0.05 | NaN |
A. podagraria | 14.84 a ± 0.79 | 3.48 c ± 0.19 | 28.73 c ± 0.12 | 39.07 b ± 0.21 | 17.25 c ± 0.09 | 34.06 b ± 0.19 | 52.96 c ± 0.53 | 69.41 a ± 1.16 | 24.22 b ± 0.51 | 30.34 b ± 1.35 | 13.02 a ± 0.03 | NaN |
C. bulbosum | 13.49 b ± 0.18 | 5.69 a ± 0.09 | 27.35 d ± 0.30 | 34.35 d ± 0.12 | 20.19 b ± 0.03 | 32.91 c ± 0.28 | 61.70 a ± 0.91 | 70.46 a ± 0.69 | 34.35 a ± 1.20 | 36.11 a ± 0.61 | 6.82 d ± 0.03 | NaN |
H. sosnowskyi | 12.54 b ± 0.25 | 5.29 b ± 0.15 | 32.77 a ± 0.24 | 38.03 c ± 0.39 | 19.00 bc ± 0.05 | 31.66 d ± 0.16 | 58.52 b ± 1.87 | 64.29 b ± 0.25 | 25.75 b ± 1.93 | 26.26 c ± 0.61 | 12.35 b ± 0.03 | NaN |
Plant Species | DM | oDM |
---|---|---|
[%] | ||
U. dioica | 31.00 b ± 0.35 | 87.06 d ± 0.04 |
A. negundo | 39.01 a ± 1.31 | 92.37 b ± 0.05 |
A. podagraria | 15.61 c ± 0.37 | 86.98 d ± 0.03 |
C. bulbosum | 38.68 a ± 1.87 | 93.18 a ± 0.03 |
H. sosnowskyi | 16.51 c ± 0.44 | 87.65 c ± 0.03 |
Plant Species | Methane Content | Fresh Matter | Dry Matter | Degree of Decomposition Organic Matter | ||
---|---|---|---|---|---|---|
Methane Yield | Biogas Yield | Methane Yield | Biogas Yield | |||
[%] | m3∙Mg−1 | [%] | ||||
U. dioica | 49.62 ab ± 0.89 | 41.22 b ± 0.63 | 83.06 b ± 0.28 | 132.97 ab ± 2.05 | 267.95 ab ± 0.91 | 44.52 b ± 0.5 |
A. negundo | 48.97 ab ± 0.94 | 47.56 ab ± 1.1 | 97.17 ab ± 3.93 | 121.93 b ± 2.82 | 249.12 b ± 10.06 | 39.25 b ± 1.91 |
A. podagraria | 47.27 b ± 0.73 | 23.45 c ± 1.15 | 49.60 c ± 1.8 | 150.23 a ± 7.36 | 317.7 a ± 11.53 | 53.97 a ± 1.7 |
C. bulbosum | 49.78 ab ± 0.85 | 52.69 a ± 7.27 | 105.72 a ± 12.93 | 136.22 ab ± 18.8 | 273.3 ab ± 33.43 | 42.33 b ± 4.87 |
H. sosnowskyi | 50.25 a ± 1.2 | 18.29 c ± 1.77 | 36.47 c ± 4.34 | 110.8 b ± 10.75 | 220.9 b ± 26.28 | 36.27 b ± 4.69 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Murawski, M.; Czekała, W.; Majchrzak, L.; Waliszewska, B.; Lerczak, A.; Janyszek-Sołtysiak, M.; Zborowska, M.; Cieślik, M.; Sieradzka, A.; Dach, J. Ruderal Habitats: A Source for Biomass and Biogas. Energies 2025, 18, 3482. https://doi.org/10.3390/en18133482
Murawski M, Czekała W, Majchrzak L, Waliszewska B, Lerczak A, Janyszek-Sołtysiak M, Zborowska M, Cieślik M, Sieradzka A, Dach J. Ruderal Habitats: A Source for Biomass and Biogas. Energies. 2025; 18(13):3482. https://doi.org/10.3390/en18133482
Chicago/Turabian StyleMurawski, Maciej, Wojciech Czekała, Leszek Majchrzak, Bogusława Waliszewska, Alicja Lerczak, Magdalena Janyszek-Sołtysiak, Magdalena Zborowska, Marta Cieślik, Agnieszka Sieradzka, and Jacek Dach. 2025. "Ruderal Habitats: A Source for Biomass and Biogas" Energies 18, no. 13: 3482. https://doi.org/10.3390/en18133482
APA StyleMurawski, M., Czekała, W., Majchrzak, L., Waliszewska, B., Lerczak, A., Janyszek-Sołtysiak, M., Zborowska, M., Cieślik, M., Sieradzka, A., & Dach, J. (2025). Ruderal Habitats: A Source for Biomass and Biogas. Energies, 18(13), 3482. https://doi.org/10.3390/en18133482