Can New Quality Productivity Drive the Low-Carbon Transformation of Carbon-Intensive Industries? Macro and Micro Evidence from China
Abstract
1. Introduction
2. Literature and Theoretical Analysis
2.1. The Impact of NQP on Industrial Transformation
2.2. Intrinsic Impact Mechanism
3. Methodology and Data
3.1. Data Information and Sources
3.2. Variable Measurement
3.3. Model Specification
4. Analysis and Results
4.1. Baseline Regression Analysis
4.2. Robustness Test
4.3. Heterogeneity Results
4.3.1. Regional Distribution
4.3.2. Carbon Intensity
4.3.3. Carbon Emissions Trading Pilot
4.3.4. Energy-Rich and Ecologically Fragile
5. Further Analysis and Discussion
5.1. Macro-Mechanism Analysis
5.2. Micro-Mechanism Analysis
6. Conclusions and Implications
6.1. Conclusions
6.2. Implications
6.3. Limitations and Prospects
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
CIIs | carbon-intensive industries |
CEADs | China Emission Accounts and Datasets |
LCT | low-carbon transformation |
NQP | new quality productivity |
CISY | China Industrial Statistical Yearbook |
GML | global Malmquist–Luenberger |
SBM | Slack-Based Measure directional distance function |
CPI | carbon-intensive index |
EREFAs | energy-rich and ecologically fragile areas |
References
- Ding, Q.; Khattak, S.I.; Ahmad, M. Towards Sustainable Production and Consumption: Assessing the Impact of Energy Productivity and Eco-Innovation on Consumption-Based Carbon Dioxide Emissions (CCO2) in G-7 Nations. Sustain. Prod. Consum. 2021, 27, 254–268. [Google Scholar] [CrossRef]
- Sun, J.; Cui, J.; Dong, F.; Liu, Y. Regional Decomposition and Attribution Analysis of Carbon-Emission Intensity Using an Extended Approach Combined with a Meta-Frontier Non-Radial Malmquist-Luenberger Productivity Index. Environ. Impact Assess. Rev. 2024, 106, 107473. [Google Scholar] [CrossRef]
- Dong, F.; Li, Z.; Huang, Z.; Liu, Y. Extreme Weather, Policy Uncertainty, and Risk Spillovers between Energy, Financial, and Carbon Markets. Energy Econ. 2024, 137, 107761. [Google Scholar] [CrossRef]
- Ding, X.; Ma, G.; Cao, J. The Emission-Reduction Effect of Green Demand Preference in Carbon Market and Macro-Environmental Policy: A DSGE Approach. Sustainability 2024, 16, 6741. [Google Scholar] [CrossRef]
- Kilinc-Ata, N.; Rahman, M.P. Digitalization and Financial Development Contribution to the Green Energy Transition in Malaysia: Findings from the BARDL Approach. Nat. Resour. Forum, 2024; early view. [Google Scholar] [CrossRef]
- Wang, B.; Duan, M. Have China’s Emissions Trading Systems Reduced Carbon Emissions? Firm-Level Evidence from the Power Sector. Appl. Energy 2025, 378, 124802. [Google Scholar] [CrossRef]
- Duan, H.; Mo, J.; Fan, Y.; Wang, S. Achieving China’s Energy and Climate Policy Targets in 2030 under Multiple Uncertainties. Energy Econ. 2018, 70, 45–60. [Google Scholar] [CrossRef]
- Chen, Y.; Xu, Z.; Zhang, Z.; Ye, W.; Yang, Y.; Gong, Z. Does the Carbon Emission Trading Scheme Boost Corporate Environmental and Financial Performance in China? J. Clean. Prod. 2022, 368, 133151. [Google Scholar] [CrossRef]
- Huo, W.; Qi, J.; Yang, T.; Liu, J.; Liu, M.; Zhou, Z. Effects of China’s Pilot Low-Carbon City Policy on Carbon Emission Reduction: A Quasi-Natural Experiment Based on Satellite Data. Technol. Forecast. Soc. Change 2022, 175, 121422. [Google Scholar] [CrossRef]
- Yu, L.; Miao, O.; Tang, X. Smart City Construction and Quality Upgrading of Export Products: Evidence from China. J. Asian Econ. 2024, 95, 101813. [Google Scholar] [CrossRef]
- Liu, J.; Wei, D.; Wu, L.; Yang, H.; Song, X. Synergy and Heterogeneity of Driving Factors of Carbon Emissions in China’s Energy-Intensive Industries. Ecol. Indic. 2022, 142, 109161. [Google Scholar] [CrossRef]
- Xu, B. A Spatial Analysis of an Effective Path for Low-Carbon Development of Energy-Intensive Industries. Sustain. Prod. Consum. 2023, 37, 227–241. [Google Scholar] [CrossRef]
- Yue, S.; Bajuri, N.H.; Khatib, S.F.A.; Lee, Y. New Quality Productivity and Environmental Innovation: The Hostile Moderating Roles of Managerial Empowerment and Board Centralization. J. Environ. Manag. 2024, 370, 122423. [Google Scholar] [CrossRef] [PubMed]
- Fu, Q.; Zhao, S. Influence of Green Finance on New-Quality Productivity of Enterprises: Evidence from Chinese A-Share Listed Companies. Int. Rev. Financ. Anal. 2025, 105, 104356. [Google Scholar] [CrossRef]
- Wang, J.; Qiao, L.; Zhu, G.; Di, K.; Zhang, X. Research on the Driving Factors and Impact Mechanisms of Green New Quality Productive Forces in High-Tech Retail Enterprises under China’s Dual Carbon Goals. J. Retail. Consum. Serv. 2025, 82, 104092. [Google Scholar] [CrossRef]
- Xu, T.; Yang, G.; Chen, T. The Role of Green Finance and Digital Inclusive Finance in Promoting Economic Sustainable Development: A Perspective from New Quality Productivity. J. Environ. Manag. 2024, 370, 122892. [Google Scholar] [CrossRef] [PubMed]
- Yu, L.; Zhang, Q. Measurement of New Qualitative Productivity Kinetic Energy from the Perspective of Digital and Green Collaboration—Comparative Study Based on European Countries. J. Clean. Prod. 2024, 476, 143787. [Google Scholar] [CrossRef]
- Liu, X.; Liu, D. How Green Finance Drives New-Quality Productivity from the Perspective of Chinese Modernization. Financ. Res. Lett. 2025, 82, 107496. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhao, X. Can the Digital Economy Facilitate the Optimization of Industrial Structure in Resource-Based Cities? Struct. Change Econ. Dyn. 2024, 71, 405–416. [Google Scholar] [CrossRef]
- Pan, W.; Xie, T.; Wang, Z.; Ma, L. Digital Economy: An Innovation Driver for Total Factor Productivity. J. Bus. Res. 2022, 139, 303–311. [Google Scholar] [CrossRef]
- Gereffi, G. International Trade and Industrial Upgrading in the Apparel Commodity Chain. J. Int. Econ. 1999, 48, 37–70. [Google Scholar] [CrossRef]
- Cui, J.; Du, D. New Quality Productive Forces, Urban-Rural Integration and Industrial Chain Resilience. Int. Rev. Econ. Financ. 2025, 102, 104245. [Google Scholar] [CrossRef]
- Chung, Y.H.; Färe, R.; Grosskopf, S. Productivity and Undesirable Outputs: A Directional Distance Function Approach. J. Environ. Manag. 1997, 51, 229–240. [Google Scholar] [CrossRef]
- Mao, W.; Sun, H.; Wang, W.; Luo, D. Factor Reallocation Path for Low-Carbon Transformation: A Perspective of Manufacturing Industry Ecosystem. Energy Econ. 2024, 134, 107620. [Google Scholar] [CrossRef]
- Chen, L.; Xu, L.; Yang, Z. Accounting Carbon Emission Changes under Regional Industrial Transfer in an Urban Agglomeration in China’s Pearl River Delta. J. Clean. Prod. 2017, 167, 110–119. [Google Scholar] [CrossRef]
- Zhang, W.; Li, B. Energy-Use Rights Trading, Technological Innovation, and Green Transformation of Energy-Intensive Manufacturing Enterprises. Econ. Anal. Policy 2025, 86, 528–544. [Google Scholar] [CrossRef]
- Liu, Y.; He, Z. Synergistic Industrial Agglomeration, New Quality Productive Forces and High-Quality Development of the Manufacturing Industry. Int. Rev. Econ. Financ. 2024, 94, 103373. [Google Scholar] [CrossRef]
- He, A.; Xue, Q.; Zhao, R.; Wang, D. Renewable Energy Technological Innovation, Market Forces, and Carbon Emission Efficiency. Sci. Total Environ. 2021, 796, 148908. [Google Scholar] [CrossRef]
- Li, Z.; Wang, J. The Dynamic Impact of Digital Economy on Carbon Emission Reduction: Evidence City-Level Empirical Data in China. J. Clean. Prod. 2022, 351, 131570. [Google Scholar] [CrossRef]
- You, J.; Zhang, W. How Heterogeneous Technological Progress Promotes Industrial Structure Upgrading and Industrial Carbon Efficiency? Evidence from China’s Industries. Energy 2022, 247, 123386. [Google Scholar] [CrossRef]
- Zeng, S.; Li, T.; Wu, S.; Gao, W.; Li, G. Does Green Technology Progress Have a Significant Impact on Carbon Dioxide Emissions? Energy Econ. 2024, 133, 107524. [Google Scholar] [CrossRef]
- Wang, L.; Chen, L. Impacts of Digital Economy Agglomeration on Carbon Emission: A Two-Tier Stochastic Frontier and Spatial Decomposition Analysis of China. Sustain. Cities Soc. 2023, 95, 104624. [Google Scholar] [CrossRef]
- Chang, H.; Ding, Q.; Zhao, W.; Hou, N.; Liu, W. The Digital Economy, Industrial Structure Upgrading, and Carbon Emission Intensity——Empirical Evidence from China’s Provinces. Energy Strateg. Rev. 2023, 50, 101218. [Google Scholar] [CrossRef]
- Feng, J.-C.; Sun, L.; Yan, J. Carbon Sequestration via Shellfish Farming: A Potential Negative Emissions Technology. Renew. Sustain. Energy Rev. 2023, 171, 113018. [Google Scholar] [CrossRef]
- Leitão, J.; Ferreira, J.; Santibanez-González, E. New Insights into Decoupling Economic Growth, Technological Progress and Carbon Dioxide Emissions: Evidence from 40 Countries. Technol. Forecast. Soc. Change 2022, 174, 121250. [Google Scholar] [CrossRef]
- Zhou, P.; Ang, B.W.; Han, J.Y. Total Factor Carbon Emission Performance: A Malmquist Index Analysis. Energy Econ. 2010, 32, 194–201. [Google Scholar] [CrossRef]
- Guo, L.; Tan, W. Analyzing the Synergistic Influence of Green Credit and Green Technology Innovation in Driving the Low-Carbon Transition of the Energy Consumption Structure. Sustain. Energy Technol. Assess. 2024, 63, 103633. [Google Scholar] [CrossRef]
- Liu, H.; Cai, X.; Zhang, Z.; Wang, D. Can Green Technology Innovations Achieve the Collaborative Management of Pollution Reduction and Carbon Emissions Reduction? Evidence from the Chinese Industrial Sector. Environ. Res. 2025, 264, 120400. [Google Scholar] [CrossRef]
- Zhou, X.; Song, L. Low-Carbon Transformation of China’s Industry: Realistic Analysis and Policy Thinking. Quant. Tech. Econ. Res. 2022, 39, 22. [Google Scholar] [CrossRef]
- Ma, Q.; Tariq, M.; Mahmood, H.; Khan, Z. The Nexus between Digital Economy and Carbon Dioxide Emissions in China: The Moderating Role of Investments in Research and Development. Technol. Soc. 2022, 68, 101910. [Google Scholar] [CrossRef]
- Ozturk, I.; Ullah, S. Does Digital Financial Inclusion Matter for Economic Growth and Environmental Sustainability in OBRI Economies? An Empirical Analysis. Resour. Conserv. Recycl. 2022, 185, 106489. [Google Scholar] [CrossRef]
- Wang, J.; Dong, K.; Dong, X.; Taghizadeh-Hesary, F. Assessing the Digital Economy and Its Carbon-Mitigation Effects: The Case of China. Energy Econ. 2022, 113, 106198. [Google Scholar] [CrossRef]
- Yang, X.; Hunjra, A.I.; Grebinevych, O.; Roubaud, D.; Zhao, S. Roads to Sustainable Development: Pioneering Industrial Green Transformation through Digital Economy Policy. J. Environ. Manag. 2025, 387, 125721. [Google Scholar] [CrossRef]
- Ai, M.; Zhang, W.; Du, S.; Yu, X.; Bu, Y. The Impact of Digitalization on the Green Transformation of China’s Industrial Sectors: The Mediating Role of Green Technology Innovation and Technological Transformation. Int. Rev. Econ. Financ. 2024, 96, 103736. [Google Scholar] [CrossRef]
- Peng, W.; Yang, J.; Lu, X.; Mauzerall, D.L. Potential Co-Benefits of Electrification for Air Quality, Health, and CO2 Mitigation in 2030 China. Appl. Energy 2018, 218, 511–519. [Google Scholar] [CrossRef]
- Xu, M.; Qin, Z.; Zhang, S. Carbon Dioxide Mitigation Co-Effect Analysis of Clean Air Policies: Lessons and Perspectives in China’s Beijing–Tianjin–Hebei Region. Environ. Res. Lett. 2021, 16, 015006. [Google Scholar] [CrossRef]
- Ren, Z.; Zheng, J.; Jiao, L.; He, M.; Hou, X.; Coffman, D.; Wang, S. The Synergic Impacts of Air Pollution Control Policies on Pollutants and Carbon Emissions. J. Environ. Manag. 2024, 370, 122730. [Google Scholar] [CrossRef]
- Zhao, T.; Liu, Z. A Novel Analysis of Carbon Capture and Storage (CCS) Technology Adoption: An Evolutionary Game Model between Stakeholders. Energy 2019, 189, 116352. [Google Scholar] [CrossRef]
- Pingkuo, L.; Jiahao, W. Study on the Diffusion of CCUS Technology under Carbon Trading Mechanism: Based on the Perspective of Tripartite Evolutionary Game among Thermal Power Enterprises, Government and Public. J. Clean. Prod. 2024, 438, 140730. [Google Scholar] [CrossRef]
- Wang, S.; Liu, C.; Zhou, Z. Government-Enterprise Green Collaborative Governance and Urban Carbon Emission Reduction: Empirical Evidence from Green PPP Programs. Environ. Res. 2024, 257, 119335. [Google Scholar] [CrossRef]
- Che, S.; Wang, J.; Chen, H. Can China’s Decentralized Energy Governance Reduce Carbon Emissions? Evidence from New Energy Demonstration Cities. Energy 2023, 284, 128665. [Google Scholar] [CrossRef]
- Luo, J.; Jin, X.; Hu, Y. Top-down or Bottom-up? Government Policies, Public Awareness and Carbon Reduction. Econ. Anal. Policy 2024, 83, 118–129. [Google Scholar] [CrossRef]
- Ai, H.; Mangla, S.K.; Song, M.; Tan, X.; Zhang, S. Technology-Enabled Business Model Innovation and Carbon Emission Reduction: Evidence from a Place-Based Policy in China. Technovation 2024, 134, 103052. [Google Scholar] [CrossRef]
- Zhang, L.; Chen, X.; Xu, Z. Can Development Zones Reduce Energy Consumption and Carbon Emissions of Enterprises? Evidence from China. J. Asian Econ. 2024, 95, 101845. [Google Scholar] [CrossRef]
- Li, Z.; Wang, Y.; Bai, T. International Digital Trade and Synergetic Control of Pollution and Carbon Emissions: Theory and Evidence Based on a Nonlinear Framework. J. Environ. Manag. 2025, 376, 124450. [Google Scholar] [CrossRef]
- Liu, H.; Han, P.; Wang, D.; Wang, S.; Bao, H. Decoding Enterprise Digital Transformation: External Oversight and Carbon Emission Reduction Performance. J. Environ. Manag. 2024, 359, 121039. [Google Scholar] [CrossRef]
- Caglar, A.E.; Yavuz, E. The Role of Environmental Protection Expenditures and Renewable Energy Consumption in the Context of Ecological Challenges: Insights from the European Union with the Novel Panel Econometric Approach. J. Environ. Manag. 2023, 331, 117317. [Google Scholar] [CrossRef]
- Ma, Q.; Murshed, M.; Khan, Z. The Nexuses between Energy Investments, Technological Innovations, Emission Taxes, and Carbon Emissions in China. Energy Policy 2021, 155, 112345. [Google Scholar] [CrossRef]
- Yang, J.; Wang, Y.; Tang, C.; Zhang, Z. Can Digitalization Reduce Industrial Pollution? Roles of Environmental Investment and Green Innovation. Environ. Res. 2024, 240, 117442. [Google Scholar] [CrossRef]
- Zhong, Z.; Peng, B. Can Environmental Regulation Promote Green Innovation in Heavily Polluting Enterprises? Empirical Evidence from a Quasi-Natural Experiment in China. Sustain. Prod. Consum. 2022, 30, 815–828. [Google Scholar] [CrossRef]
- Tolstykh, T.; Shmeleva, N.; Gamidullaeva, L.; Krasnobaeva, V. The Role of Collaboration in the Development of Industrial Enterprises Integration. Sustainability 2023, 15, 7180. [Google Scholar] [CrossRef]
- Gamidullaeva, L.; Shmeleva, N.; Tolstykh, T.; Shmatko, A. An Assessment Approach to Circular Business Models within an Industrial Ecosystem for Sustainable Territorial Development. Sustainability 2022, 14, 704. [Google Scholar] [CrossRef]
- Yang, B.; Zhao, Q. The Effects of Environmental Regulation and Environmental Protection Investment on Green Technology Innovation of Enterprises in Heavily Polluting Industries—Based on Threshold and Mediation Effect Models. Front. Environ. Sci. 2023, 11, 1167581. [Google Scholar] [CrossRef]
- Wang, S.; Li, J. How Do Energy Input and Carbon Emission Constraints Affect the ESG Performance of Manufacturing Enterprises? Evidence from China. Sustain. Futures 2024, 8, 100318. [Google Scholar] [CrossRef]
- Xu, B. Environmental Regulations, Technological Innovation, and Low Carbon Transformation: A Case of the Logistics Industry in China. J. Clean. Prod. 2024, 439, 140710. [Google Scholar] [CrossRef]
- Oh, D. A Global Malmquist-Luenberger Productivity Index. J. Product. Anal. 2010, 34, 183–197. [Google Scholar] [CrossRef]
- Wang, Q.; Li, L.; Li, R. The Asymmetric Impact of Renewable and Non-Renewable Energy on Total Factor Carbon Productivity in 114 Countries: Do Urbanization and Income Inequality Matter? Energy Strateg. Rev. 2022, 44, 100942. [Google Scholar] [CrossRef]
- Zhao, X.; Liu, C.; Yang, M. The Effects of Environmental Regulation on China’s Total Factor Productivity: An Empirical Study of Carbon-Intensive Industries. J. Clean. Prod. 2018, 179, 325–334. [Google Scholar] [CrossRef]
- Bian, Z.; Liu, J.; Zhang, Y.; Peng, B.; Jiao, J. A Green Path towards Sustainable Development: The Impact of Carbon Emissions Trading System on Urban Green Transformation Development. J. Clean. Prod. 2024, 442, 140943. [Google Scholar] [CrossRef]
- Chen, J.; Meng, W.; Dong, Y.; Zhou, W. Geographic Matching Analysis between Green Finance Development and Carbon Emissions in China’s New Era of Environmental Transition. Res. Int. Bus. Financ. 2025, 73, 102581. [Google Scholar] [CrossRef]
- Ye, M.; Zeng, W. Government Innovation Preferences, Institutional Fragility, and Digital Economic Development. Econ. Anal. Policy 2024, 81, 541–555. [Google Scholar] [CrossRef]
- Cui, G. How Do Environmental Taxes Affect the Environmental Investment of High-Emission Enterprises: Evidence from China. J. Environ. Manag. 2024, 370, 122629. [Google Scholar] [CrossRef]
- Yang, F.; Chen, T.; Zhang, Z. Can Environmental, Social, and Governance Performance Drive Two-Way Foreign Direct Investment Behavior? Evidence from Chinese Listed Companies. J. Clean. Prod. 2023, 430, 139761. [Google Scholar] [CrossRef]
- Zhao, X.; Zhao, Y.; Zeng, S.; Zhang, S. Corporate Behavior and Competitiveness: Impact of Environmental Regulation on Chinese Firms. J. Clean. Prod. 2015, 86, 311–322. [Google Scholar] [CrossRef]
- Wang, C.; Qiu, J.; Chen, B.; Deng, X. Green Finance, Green Culture and Corporate Green Management Innovation: Evidence from Chinese Listed Companies. Financ. Res. Lett. 2024, 67, 105774. [Google Scholar] [CrossRef]
- Lindman, Å.; Söderholm, P. Wind Energy and Green Economy in Europe: Measuring Policy-Induced Innovation Using Patent Data. Appl. Energy 2016, 179, 1351–1359. [Google Scholar] [CrossRef]
- Nie, Y.; Li, Q.; Wang, E.; Zhang, T. Study of the Nonlinear Relations between Economic Growth and Carbon Dioxide Emissions in the Eastern, Central and Western Regions of China. J. Clean. Prod. 2019, 219, 713–722. [Google Scholar] [CrossRef]
- Tian, X.; Dai, H.; Geng, Y.; Huang, Z.; Masui, T.; Fujita, T. The Effects of Carbon Reduction on Sectoral Competitiveness in China: A Case of Shanghai. Appl. Energy 2017, 197, 270–278. [Google Scholar] [CrossRef]
- Zhao, H.; Liu, Y.; Lindley, S.; Meng, F.; Niu, M. Change, Mechanism, and Response of Pollutant Discharge Pattern Resulting from Manufacturing Industrial Transfer: A Case Study of the Pan-Yangtze River Delta, China. J. Clean. Prod. 2020, 244, 118587. [Google Scholar] [CrossRef]
- Huang, C.; Lin, Z.; Wu, J.; Li, P.; Zhang, C.; Liu, Y.; Chen, W.; Xu, X.; Deng, J. AI-Based Carbon Peak Prediction and Energy Transition Optimization for Thermal Power Industry in Energy-Intensive Regions of China. Energy Convers. Manag. X 2025, 25, 100884. [Google Scholar] [CrossRef]
- Zhang, Q.-Y.; Cai, B.-F.; Wang, M.-D.; Wang, J.-X.; Xing, Y.-K.; Dong, G.-X.; Zhang, Z.; Mao, X.-Q. City Level CO2 and Local Air Pollutants Co-Control Performance Evaluation: A Case Study of 113 Key Environmental Protection Cities in China. Adv. Clim. Chang. Res. 2022, 13, 118–130. [Google Scholar] [CrossRef]
- Zhao, M.; Fu, X.; Du, J.; Cui, L. Optimal Environmental Investment Strategies for Enterprise Green Technology Innovation: An Empirical Study Based on Multiple Drive Models. J. Environ. Manag. 2024, 370, 122624. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.; Zuo, X.; Li, H. The Dual Effects of Heterogeneous Environmental Regulation on the Technological Innovation of Chinese Steel Enterprises—Based on a High-Dimensional Fixed Effects Model. Ecol. Econ. 2021, 188, 107113. [Google Scholar] [CrossRef]
- Lin, B.; Li, M. Emerging Industry Development and Information Transmission in Financial Markets: Evidence from China’s Renewable Energy. Energy Econ. 2023, 128, 107192. [Google Scholar] [CrossRef]
- Boulanouar, Z.; Essid, L.; Omri, A. Achieving Carbon Neutrality in Emerging Markets: The Dual Impact of Energy Transition Investments on Economic Growth and Carbon Emissions. Int. Rev. Econ. Financ. 2024, 96, 103709. [Google Scholar] [CrossRef]
- Li, J.; Xu, X. Can ESG Rating Reduce Corporate Carbon Emissions?–An Empirical Study from Chinese Listed Companies. J. Clean. Prod. 2024, 434, 140226. [Google Scholar] [CrossRef]
Number | CIIs | Mean CPI | Number | CIIs | Mean CPI |
---|---|---|---|---|---|
1 | Electricity and heat production and supply | 5.3536 | 7 | Ferrous metal mining | 0.0609 |
2 | Ferrous metal smelting and rolling processing industry | 0.6414 | 8 | Petroleum processing, coking, and nuclear fuel processing | 0.0579 |
3 | Non-metallic Mineral Products | 0.4373 | 9 | Non-metallic mining | 0.0503 |
4 | Coal Mining and Washing | 0.3247 | 10 | Non-ferrous metal smelting and rolling processing | 0.0234 |
5 | Oil and Gas Mining | 0.1896 | 11 | Non-ferrous metal mining | 0.0162 |
6 | Chemical raw materials and chemical products manufacturing | 0.0751 |
Variables | Symbol | Measurement | Mean | Std. Dev. | VIF | |
---|---|---|---|---|---|---|
Explained Variables | LCT of CIIs | LTCP | Low-carbon total factor productivity | 0.7395 | 0.7755 | / |
Explanatory Variables | New quality productivity | NQP | Measured by the evaluation system (Due to space limitations, further inquiries will be made available on request.) | 0.4822 | 0.1081 | 3.37 |
Macro mechanism variables | Environmental governance investments | EGI | The ratio of investment in industrial governance to value-added of secondary production with 2010 as the base period | 0.2081 | 0.2089 | 1.36 |
Green innovation | GI | Number of green invention patents applied | 0.3355 | 0.4892 | 2.52 | |
Micro mechanism variables | Energy-saving and low-carbon investments | ESLI | Details of ESLI in the Annual Report | 3.0484 | 14.6907 | 1.07 |
ESG performance | ESG | ESG Rating Score in the CSI database | 4.0913 | 0.9956 | 1.15 | |
Green management innovation | GMI | Enterprise environmental regulation and disclosure 5-category summed scores | 1.4255 | 1.4886 | 1.20 | |
Green technology innovation | GTI | Total green invention patents applied by enterprise | 6.0017 | 52.2460 | 1.14 | |
Control variables | Economic development | PCGDP | GDP per capita for the 2010 base period | 10.8289 | 0.4546 | 2.14 |
Foreign trade | OPEN | The proportion of import and export volume to GDP | 0.2735 | 0.2799 | 1.86 | |
Financial development | FID | The proportion of various loan balances to GDP | 1.5861 | 0.5344 | 2.90 | |
Market competition | MAC | Number of industrial enterprises above designated size | 8.8637 | 1.1942 | 3.12 | |
Energy saving efforts | EPE | Expenditures on energy conservation and environmental protection | 0.8044 | 0.5107 | 2.41 |
Variables | (1) | (2) | (3) | (4) | (5) | (6) | (7) |
---|---|---|---|---|---|---|---|
NQP | 0.9222 ** | 0.9587 ** | 1.9285 *** | ||||
(0.4148) | (0.4431) | (0.5131) | |||||
PCGDP | −0.4345 ** | −0.5160 *** | 0.8756 ** | 0.7548 * | 0.6715 * | 0.9230 ** | 1.0973 *** |
(0.1697) | (0.1883) | (0.3989) | (0.4182) | (0.4061) | (0.4034) | (0.4037) | |
OPEN | 0.0048 | −0.2019 | −0.5860 ** | −0.5037 ** | −0.4349 * | −0.5892 ** | −0.6908 *** |
(0.1911) | (0.2062) | (0.2271) | (0.2366) | (0.2320) | (0.2301) | (0.2315) | |
FID | 0.1439 * | 0.1596 * | 0.1672 * | 0.1054 | 0.1258 | 0.1559 | 0.1843 * |
(0.0804) | (0.0876) | (0.0946) | (0.0982) | (0.0947) | (0.0957) | (0.0971) | |
MAC | −0.0663 | −0.0088 | −0.1634 * | −0.2112 ** | −0.1746 ** | −0.1889 ** | −0.1684 * |
(0.0615) | (0.0730) | (0.0842) | (0.0854) | (0.0838) | (0.0849) | (0.0861) | |
EPE | −0.1472 *** | −0.1522 *** | −0.1058 * | −0.0998 | −0.0863 | −0.1049 * | −0.0944 |
(0.0565) | (0.0571) | (0.0603) | (0.0610) | (0.0600) | (0.0610) | (0.0612) | |
TEI | 5.4156 ** | ||||||
(2.1750) | |||||||
INI | 9.4687 *** | ||||||
(2.3577) | |||||||
DGI | 3.9585 *** | ||||||
(1.4894) | |||||||
GRI | 1.3284 * | ||||||
(0.7219) | |||||||
Constant | 5.4769 *** | 5.8682 *** | −7.5612 ** | −5.3024 | −5.2106 | −7.2435 * | −9.4733 ** |
(1.5326) | (1.7139) | (3.8005) | (4.0431) | (3.8668) | (3.8617) | (3.8965) | |
Individual | N | Y | Y | Y | Y | Y | Y |
Year | N | N | Y | Y | Y | Y | Y |
R-squared | 0.0378 | 0.0428 | 0.1084 | 0.0863 | 0.1139 | 0.0888 | 0.0782 |
Obs | 360 | 360 | 360 | 360 | 360 | 360 | 360 |
Variables | (1) | (2) | (3) | (4) |
---|---|---|---|---|
ML | LTCP | LTCP | LTCP | |
NQP | 1.3373 * | 1.3021 *** | 4.3790 ** | 1.6507 *** |
(0.7160) | (0.4207) | (2.1988) | (0.4846) | |
L.LTCP | −0.4556 | |||
(0.3669) | ||||
Constant | −10.7287 ** | −6.6483 * | 16.2339 ** | |
(5.3033) | (3.4259) | (7.1227) | ||
Controls | YES | YES | YES | YES |
Individual | YES | YES | YES | YES |
Year | YES | YES | YES | YES |
Spatial rho | −37.9122 *** | |||
(5.7625) | ||||
σ2 | 0.0271 *** | |||
(0.0021) | ||||
AR(1) | 0.75 [0.454] | |||
AR(2) | 0.42 [0.674] | |||
Sargan test | 4.54 [0.337] | |||
R-squared/Wald chi2 | 0.3312 | 0.1019 | 27.33 *** | 0.0075 |
Obs | 360 | 300 | 330 | 360 |
Variables | Regional Distribution | Carbon Intensity | Carbon Trading Pilot | EREFAs | ||||
---|---|---|---|---|---|---|---|---|
Eastern | Central and Western | High | Low | Yes | No | Yes | No | |
(1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | |
NQP | 2.8072 ** | 0.6820 *** | 2.0358 *** | 3.9334 * | 4.4631 ** | 1.8682 *** | 0.4629 ** | 3.5840 *** |
(1.1184) | (0.2167) | (0.5225) | (2.1380) | (2.1417) | (0.5083) | (0.1927) | (1.0989) | |
Constant | −31.8885 *** | −1.5458 | −6.1865 * | −35.8864 ** | −12.1306 | −8.3741 ** | −2.5508 ** | −16.6629 |
(10.9186) | (1.2523) | (3.4445) | (17.5282) | (17.6677) | (3.4940) | (1.0753) | (11.9817) | |
Controls | Y | Y | Y | Y | Y | Y | Y | Y |
Individual | Y | Y | Y | Y | Y | Y | Y | Y |
Year | Y | Y | Y | Y | Y | Y | Y | Y |
Obs | 132 | 228 | 288 | 72 | 72 | 288 | 216 | 144 |
R-squared | 0.2896 | 0.3520 | 0.1812 | 0.3850 | 0.3454 | 0.1536 | 0.4803 | 0.2889 |
Variables | (1) | (2) | (3) | (4) |
---|---|---|---|---|
EGI | GI | LTCP | LTCP | |
NQP | 0.9166 *** | −0.0564 | ||
(0.3528) | (0.5601) | |||
EGI | 0.2374 *** | −0.0237 | ||
(0.0757) | (0.0773) | |||
GI | 0.4475 *** | 0.4539 *** | ||
(0.0556) | (0.0656) | |||
Constant | 0.2791 | −2.8400 | −7.1677 ** | −7.1788 ** |
(2.6130) | (3.5306) | (3.5338) | (3.5484) | |
Controls | Y | Y | Y | Y |
Individual | Y | Y | Y | Y |
Year | Y | Y | Y | Y |
Obs | 360 | 360 | 360 | 360 |
R-squared | 0.3965 | 0.5585 | 0.2277 | 0.2280 |
Variables | (1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | (9) | (10) | (11) |
---|---|---|---|---|---|---|---|---|---|---|---|
LTCP | LTCP | ESLI | GMI | GTI | LTCP | ESG | GMI | LTCP | GTI | LTCP | |
NQP—Low-Carbon Investment—Green Innovation—LCT | NQP—ESG—Green Innovation—LCT | ||||||||||
NQP2 | 6.7338 *** | 56.4197 *** | 6.6799 *** | 4.5577 *** | 6.6891 *** | ||||||
(0.3338) | (15.5780) | (0.3348) | (1.2383) | (0.3347) | |||||||
NQP | 0.2170 | −5.7132 *** | −62.4989 *** | −5.6529 *** | −4.9403 *** | −5.6648 *** | |||||
(0.2169) | (0.3550) | (16.5693) | (0.3562) | (1.3170) | (0.3560) | ||||||
ESLI | 0.0006 | −0.0450 | 0.0010 ** | ||||||||
(0.0022) | (0.0326) | (0.0005) | |||||||||
ESG | 0.1484 *** | −0.1191 | 0.0098 * | ||||||||
(0.0275) | (0.4101) | (0.0058) | |||||||||
GMI | 0.0051 | ||||||||||
(0.0049) | |||||||||||
Constant | −0.0185 | 4.0994 ** | −14.0497 | −11.0002 | −1.2021 | 4.1118 ** | −16.6300 *** | −8.2405 | 0.0819 | −0.7444 | 4.2623 ** |
(1.7882) | (1.6538) | (77.1814) | (7.8824) | (116.6345) | (1.6536) | (6.1348) | (7.8468) | (1.7884) | (116.8798) | (1.6559) | |
Controls | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y |
Individual | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y |
Year | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y |
Industry | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y |
R-squared | 0.8906 | 0.9079 | 0.6366 | 0.6242 | 0.9334 | 0.9081 | 0.4999 | 0.6298 | 0.8906 | 0.9333 | 0.9080 |
Obs | 2388 | 2388 | 2386 | 2386 | 2386 | 2386 | 2388 | 2388 | 2388 | 2388 | 2388 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, H.; Zhou, J.; Gu, K.; Dong, F. Can New Quality Productivity Drive the Low-Carbon Transformation of Carbon-Intensive Industries? Macro and Micro Evidence from China. Energies 2025, 18, 3278. https://doi.org/10.3390/en18133278
Wang H, Zhou J, Gu K, Dong F. Can New Quality Productivity Drive the Low-Carbon Transformation of Carbon-Intensive Industries? Macro and Micro Evidence from China. Energies. 2025; 18(13):3278. https://doi.org/10.3390/en18133278
Chicago/Turabian StyleWang, Hui, Jie Zhou, Kuiying Gu, and Feng Dong. 2025. "Can New Quality Productivity Drive the Low-Carbon Transformation of Carbon-Intensive Industries? Macro and Micro Evidence from China" Energies 18, no. 13: 3278. https://doi.org/10.3390/en18133278
APA StyleWang, H., Zhou, J., Gu, K., & Dong, F. (2025). Can New Quality Productivity Drive the Low-Carbon Transformation of Carbon-Intensive Industries? Macro and Micro Evidence from China. Energies, 18(13), 3278. https://doi.org/10.3390/en18133278