Optimized Demand Side Management for Refrigeration: Modeling and Case Study Insights from Kenya
Abstract
:1. Introduction
2. Particle Swarm Optimization
- It is able to reach a near-optimal solution with simpler implementation and less computational requirements than other heuristic algorithms, e.g., GAs.
- It needs fewer parameters for tuning adjustments.
- PSO uses historical memory of all particles in searching, unlike GAs which cannot harness historical memory because they change the population in each generation, replacing the old population with a newer and more efficient one.
- High applicability since it is less sensitive to the nature of the objective function and can be used for varying optimization problems. PSO can be used to optimize large dimensional problems.
3. Methods and Materials
3.1. Site and System Description
3.2. Appliance Measurement Setup
3.3. PSO Algorithm Description
4. PSO-Based Load Shifting Results
5. Refrigeration DSM Modeling for a Hybrid PV System with Battery Storage
- 12.45 kWp solar PV system with 30 JA Solar JAM72S10-415W solar PV modules, connected to 3 SMA Sunny Boy 5.0 inverters.
- 37.58 kWh battery energy storage system (BESS) with 36 Hoppecke Sun power VR M 12-105 lead acid batteries, connected to 3 SMA Sunny Island 8.0H-13 inverters.
- Scenario 1: No DSM + PV + battery storage + grid
- Scenario 2: DSM + PV + battery storage + grid
6. Results for Hybrid System Modeling
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
Acronyms | |
ACSO | Artificial Cell Swarm Optimization |
BESS | Battery Energy Storage System |
DLC | Direct Load Control |
DOD | Depth of Discharge |
DSM | Demand Side Management |
GA | Genetic algorithm |
GOA | Grasshopper Optimization Algorithm |
MILP | Mixed-Integer Linear Programming |
MINLP | Mixed-Integer Nonlinear Programming |
MPC | Model Predictive Control |
NASA | National Aeronautics and Space Administration |
PSO | Particle Swarm Optimization |
PV | Photovoltaic |
QP | Quadratic Programming |
RLM | Reducible Load Margin |
SOC | State of Charge |
STC | Standard Test Conditions |
TOU | Time-of-Use |
USD | United States Dollar |
WFSA | Wingsuit Flying Search Algorithm |
WFS2ACSO | Wingsuit Flying Search Algorithm and Artificial Cell Swarm Optimization |
Symbols | |
can start running | |
Cognitive acceleration constant | |
Social acceleration constant | |
Type of device | |
Battery energy (kWh) | |
Maximum battery energy (kWh) | |
Minimum battery energy (kWh) | |
can finish running | |
PV AC energy (kWh) | |
Hourly load energy (kWh) | |
Derating factor for PV modules | |
for PSO algorithm | |
Incident solar radiation (kW/m2) | |
(hours) | |
Incident solar radiation at STC (kW/m2) | |
Hour | |
Number of hours in a day | |
Number of a particle in the swarm population | |
Current iteration | |
Maximum number of iterations | |
Temperature coefficient of power for solar PV modules (/°C) | |
(kW) | |
(kW) | |
Number of particles in the swarm population | |
Battery inverter efficiency | |
Battery charging efficiency | |
Converter efficiency | |
Battery discharging efficiency | |
Total number of types of devices | |
Energy price (USD/kWh) | |
Battery power (kW) | |
PV AC power (kW) | |
Global best position from the entire swarm population | |
Grid power (kW) | |
Random independent numbers | |
Load power (kW) | |
th hour of operation | |
PV generated power (kW) | |
Rated PV capacity under standard test conditions (kW) | |
Time | |
Tamb | Ambient temperature (°C) |
Hourly target load power (kW) | |
Cell temperature (°C) | |
Reference temperature (°C) | |
Maximum value of velocity vector | |
Minimum value of velocity vector | |
Inertia weight | |
References
- IIR. The Role of Refrigeration in the Global Economy (2019). 38th Note on Refrigeration Technologies; IIR: Paris, France, 2019. [Google Scholar]
- IEA. Africa Energy Outlook 2022; IEA: Paris, France, 2022. [Google Scholar]
- Marambe, G.; Edl, M.; Thwala, M.; Blake, P. Overview of the Market on Refrigerating Appliances and Room Air Conditioners in East and Southern Africa. 2021. Available online: https://united4efficiency.org/wp-content/uploads/2021/04/SADC_EAC_Market-Assessment_Cooling_20210205_Final.pdf (accessed on 28 January 2025).
- Grein, A.; Pehnt, M. Load Management for Refrigeration Systems: Potentials and Barriers. Energy Policy 2011, 39, 5598–5608. [Google Scholar] [CrossRef]
- Meliani, M.; Barkany, A.E.; Abbassi, I.E.; Darcherif, A.M.; Mahmoudi, M. Energy Management in the Smart Grid: State-of-the-Art and Future Trends. Int. J. Eng. Bus. Manag. 2021, 13, 1–26. [Google Scholar] [CrossRef]
- Jaradat, M.; Jarrah, M.; Jararweh, Y.; Al-Ayyoub, M.; Bousselham, A. Integration of Renewable Energy in Demand-Side Management for Home Appliances. In Proceedings of the 2014 International Renewable and Sustainable Energy Conference (IRSEC), Ouarzazate, Morocco, 17–19 October 2014; pp. 571–576. [Google Scholar] [CrossRef]
- Sabegh, M.R.Z.; Bingham, C. Model Predictive Control with Binary Quadratic Programming for the Scheduled Operation of Domestic Refrigerators. Energies 2019, 12, 4649. [Google Scholar] [CrossRef]
- Das, C.K.; Bass, O.; Kothapalli, G.; Mahmoud, T.S.; Habibi, D. Overview of Energy Storage Systems in Distribution Networks: Placement, Sizing, Operation, and Power Quality. Renew. Sustain. Energy Rev. 2018, 91, 1205–1230. [Google Scholar] [CrossRef]
- Banday, Z.; Yadav, P. Demand Side Management in Power Grid Using Particle Swarm Optimization. Int. J. Sci. Res. Dev. 2020, 8, 817–821. [Google Scholar]
- Menos-aikateriniadis, C.; Lamprinos, I.; Georgilakis, P.S. Particle Swarm Optimization in Residential Demand-Side Management: A Review on Scheduling and Control Algorithms for Demand Response Provision. Energies 2022, 15, 2211. [Google Scholar] [CrossRef]
- Logenthiran, T.; Srinivasan, D.; Shun, T.Z. Demand Side Management in Smart Grid Using Heuristic Optimization. IEEE Trans. Smart Grid 2012, 3, 1244–1252. [Google Scholar] [CrossRef]
- Gupta, I.; Anandini, G.N.; Gupta, M. An Hour Wise Device Scheduling Approach for Demand Side Management in Smart Grid Using Particle Swarm Optimization. In Proceedings of the 2016 National Power Systems Conference (NPSC), Bhubaneswar, India, 19–21 December 2016. [Google Scholar] [CrossRef]
- Jamil, M.; Mittal, S. Hourly Load Shifting Approach for Demand Side Management in Smart Grid Using Grasshopper Optimisation Algorithm. IET Gener. Transm. Distrib. 2020, 14, 808–815. [Google Scholar] [CrossRef]
- Venkatesh, B.; Sankaramurthy, P.; Chokkalingam, B.; Mihet-popa, L. Managing the Demand in a Micro Grid Based on Load Shifting with Controllable Devices Using Hybrid WFS2ACSO Technique. Energies 2022, 15, 790. [Google Scholar] [CrossRef]
- Bhamidi, L.; Sivasubramani, S. Optimal Sizing of Smart Home Renewable Energy Resources and Battery under Prosumer-Based Energy Management. IEEE Syst. J. 2021, 15, 105–113. [Google Scholar] [CrossRef]
- Arun, S.L.; Selvan, M.P. Intelligent Residential Energy Management System for Dynamic Demand Response in Smart Buildings. IEEE Syst. J. 2018, 12, 1329–1340. [Google Scholar] [CrossRef]
- Lin, S.; Liu, D.; Hu, F.; Li, F.; Dong, W.; Li, D.; Fu, Y. Grouping Control Strategy for Aggregated Thermostatically Controlled Loads. Electr. Power Syst. Res. 2019, 171, 97–104. [Google Scholar] [CrossRef]
- Toffoletti, G.; Cortella, G.; D’Agaro, P. Thermodynamic and Economic Seasonal Analysis of a Transcritical CO2 Supermarket with HVAC Supply through Ice Thermal Energy Storage (ITES). J. Clean. Prod. 2024, 434, 139832. [Google Scholar] [CrossRef]
- Almenta, M.M.; Morrow, J.; Best, R.; Fox, B. Assessment of Domestic Load Suitable for Smart Consumer Load Participation. In Proceedings of the 2013 48th International Universities’ Power Engineering Conference (UPEC), Dublin, Ireland, 2–5 September 2013; IEEE: Piscataway, NJ, USA, 2013; pp. 1–6. [Google Scholar] [CrossRef]
- Philipo, G.H.; Kakande, J.N.; Krauter, S. Neural Network-Based Demand-Side Management in a Stand-Alone Solar PV-Battery Microgrid Using Load-Shifting and Peak-Clipping. Energies 2022, 15, 5215. [Google Scholar] [CrossRef]
- Omotoso, H.O.; Al-Shaalan, A.M.; Farh, H.M.H.; Al-Shamma’a, A.A. Techno-Economic Evaluation of Hybrid Energy Systems Using Artificial Ecosystem-Based Optimization with Demand Side Management. Electronics 2022, 11, 204. [Google Scholar] [CrossRef]
- Azlina, N.; Aziz, A.; Aziz, K.A. Particle Swarm Optimization for Constrained and Multiobjective Problems: A Brief Review. In Proceedings of the International Conference on Management and Artificial Intelligence IPEDR, Bali, Indonesia, 1–3 April 2011; Volume 6, pp. 146–150. [Google Scholar]
- Chen, H.L.; Yang, B.; Wang, S.J.; Wang, G.; Liu, D.Y.; Li, H.Z.; Liu, W. Bin Towards an Optimal Support Vector Machine Classifier Using a Parallel Particle Swarm Optimization Strategy. Appl. Math. Comput. 2014, 239, 180–197. [Google Scholar] [CrossRef]
- Lee, K.Y.; Park, J. Application of Particle Swarm Optimization to Economic Dispatch Problem: Advantages and Disadvantages. In Proceedings of the 2006 IEEE PES Power Systems Conference and Exposition, Atlanta, GA, USA, 29 October–1 November 2006; IEEE: Piscataway, NJ, USA, 2006; pp. 188–192. [Google Scholar] [CrossRef]
- Kakande, J.N.; Philipo, G.H.; Krauter, S. Demand Side Management Potential of Refrigeration Appliances. In Proceedings of the 2023 IEEE PES/IAS PowerAfrica, Marrakech, Morocco, 6–10 November 2023. [Google Scholar] [CrossRef]
- Ovca, A.; Skufca, T.; Jev, M. Temperatures and Storage Conditions in Domestic Refrigerators—Slovenian Scenario. Food Control 2021, 123, 107715. [Google Scholar] [CrossRef]
- Zaman, A.U.; Doyle, J. Smart Grid Control: Demand Side Management in Household Refrigerators as a Tool for Load Shifting. Macalester J. Phys. Astron. 2022, 10, 15. Available online: https://digitalcommons.macalester.edu/mjpa/vol10/iss1/15 (accessed on 26 May 2023).
- National Environment Agency. Guidelines on Proper Storage of Food in Refrigerators and Use of Refrigerators; National Environment Agency: Singapore, 2016. Available online: https://www.nea.gov.sg/docs/default-source/resource/guidelines-on-proper-storage-of-food-in-refrigerators.pdf (accessed on 25 March 2023).
- Food and Drug Administration (FDA). Are You Storing Food Safely? Available online: https://www.fda.gov/consumers/consumer-updates/are-you-storing-food-safely (accessed on 25 March 2023).
- EPRA. Retail Electricity Tariff Review for the 2022/23–2025/26 4th Tariff Control Period (TCP) Effective 1st April 2023; Energy and Petroleum Regulatory Authority: Nairobi, Kenya, 2023. [Google Scholar]
- Qi, Y.; Jia, H.; Mu, Y. Dynamic Frequency Control of Autonomous Microgrid Based on Family-Friendly Controllable Loads. In Proceedings of the 2013 IEEE PES Innovative Smart Grid Technologies Conference (ISGT), Washington, DC, USA, 24–27 February 2013. [Google Scholar] [CrossRef]
- Almenta, M.M.; Morrow, J.; Best, R.; Fox, B.; Foley, A. An Aggregated Fridge-Freezer Peak Shaving and Valley Filling Control Strategy for Enhanced Grid Operations. In Proceedings of the 2015 IEEE Power and Energy Society General Meeting, Denver, CO, USA, 26–30 July 2015; IEEE: Piscataway, NJ, USA, 2015; pp. 1–5. [Google Scholar] [CrossRef]
- Sheha, M.; Mohammadi, K.; Powell, K. Solving the Duck Curve in a Smart Grid Environment Using a Non-Cooperative Game Theory and Dynamic Pricing Profiles. Energy Convers. Manag. 2020, 220, 113102. [Google Scholar] [CrossRef]
- NASA. NASA Data Access Viewer. Available online: https://power.larc.nasa.gov/data-access-viewer/ (accessed on 31 May 2024).
- Brihmat, F.; Mekhtoub, S. PV Cell Temperature/PV Power Output Relationships Homer Methodology Calculation. In Proceedings of the Conférence Internationale des Energies Renouvelables, Sousse, Tunisia, 15–17 December 2013. [Google Scholar]
- Kumar, P.P.; Suresh, V.; Jasinski, M.; Leonowicz, Z. Off-grid Rural Electrification in India Using Renewable Energy Resources and Different Battery Technologies with a Dynamic Differential Annealed Optimization. Energies 2021, 14, 5866. [Google Scholar] [CrossRef]
- Hoppecke. Hoppecke Sun Power VR M Brochure. Available online: https://www.hoppecke.com/fileadmin/Redakteur/Hoppecke-Main/Products-Import/sun_power_vrm_brochure_en.pdf (accessed on 30 December 2024).
- SMA. SUNNY ISLAND 4.4M/6.0H/8.0H Datasheet. Available online: https://files.sma.de/downloads/SI44M-80H-13-DS-en-31.pdf (accessed on 7 July 2024).
- VHK and ARMINES. Ecodesign & Labelling Review Household Refrigeration: Preparatory/Review Study—Commission Regulation (EC) No. 643/2009 and Commission (Delegated) Regulation (EU) 1060/2010; Van Holsteijn en Kemna B.V.: Delft, Netherlands & Association pour la Recherche et le Développement des Méthodes et Processus Industriels: Paris, France, 2015; Available online: https://ecodesign-fridges.eu/sites/ecodesign-fridges.eu/files/HouseholdRefrigerationReviewTASK1_6DRAFTREPORT20151114.pdf (accessed on 8 December 2024).
- Delgado-Sanchez, J.M.; Lillo-Bravo, I. Influence of Degradation Processes in Lead-Acid Batteries on the Technoeconomic Analysis of Photovoltaic Systems. Energies 2020, 13, 4075. [Google Scholar] [CrossRef]
- Opiyo, N.N. Modelling Temporal Diffusion of PV Microgeneration Systems in a Rural Developing Community. Ph.D. Thesis, University of Leeds, Leeds, UK, 2016. [Google Scholar]
- Ouédraogo, S.; Faggianelli, G.A.; Pigelet, G.; Notton, G.; Duchaud, J.L. Performances of Energy Management Strategies for a Photovoltaic/Battery Microgrid Considering Battery Degradation. Sol. Energy 2021, 230, 654–665. [Google Scholar] [CrossRef]
- Ya’acob, N.; Apandi, A.S.G.A.; Yuso, A.L.; Kassim, M.; Naim, N.F. Prediction of Battery Lifetime Using Hybrid Solar Power System. Math. Stat. Eng. Appl. 2022, 71, 208–224. [Google Scholar] [CrossRef]
Appliance | Description | Average Measured Power (W) |
---|---|---|
Freezer 1 | Bruhm BCF-398SD | 123 |
Fridge 2 | Toshiba GR-EF 33 | 174 |
Freezer 3 | HTCF208A2 | 133 |
Fridge 5 | Haier | 62 |
Freezer 6 | ArmCoAF-C38(K) | 112 |
Fridge 8 | Goldstar GR-312S | 132 |
Freezer 9 | - | 204 |
Freezer 10 | Bruhm BCF-398SD | 114 |
Parameter | Freezer 1, Fridge 2, Freezer 3, Fridge 5, Fridge 8, Freezer 9, Freezer 10 | Freezer 6 |
---|---|---|
Switching cycle | 5:1 hourly ON:OFF cycle over 24 hours | 4:2 hourly ON:OFF cycle over 24 hours |
Parameter | No DSM | Strategic Conservation Only | DSM (Strategic Conservation and Load Shifting) |
---|---|---|---|
Total daily energy (kWh) | 59.11 | 54.45 | 54.45 |
Minimum daily energy (kWh) | 1.44 | 0.46 | 1.09 |
Peak daily load (kW) | 5.28 | 5.28 | 5.28 |
Peak hour daily (hour) | 5 | 5 | 5 |
Average daily load (kW) | 2.46 | 2.27 | 2.27 |
Peak evening load (kW) | 4.70 | 4.54 | 3.61 |
Peak evening hour (hour) | 19 | 20 | 20 |
Load Factor (Average to Peak ratio) | 0.47 | 0.43 | 0.43 |
Reduction in daily refrigeration energy (%) | 18% | 18% | |
Reduction in refrigeration energy annual cost (USD/year) | 306 | 306 | |
Overall reduction in total daily energy (%) | 8% | 8% |
Component | Parameter | Value | Parameter | Value |
---|---|---|---|---|
PV | PV module rating | 0.415 kWp | Derating factor | 0.9 |
PV capacity | 12.45 kWp | |||
Battery | Nominal capacity | 87 Ah | Charging efficiency | 98% |
Nominal voltage | 12 V | Discharging efficiency | 98% | |
System DC voltage | 48 V | Minimum SOC (%) | 50% | |
System storage capacity | 37.584 kWh | Maximum SOC (%) | 100% | |
Initial battery SOC (%) | 50% | |||
Converter | Power rating | 15 kW | Efficiency | 96% |
Battery inverter efficiency | 96% | |||
Grid | Tariff | 0.18 USD/kWh |
Parameter | No DSM | DSM |
---|---|---|
Average daily demand (kWh) | 2.46 | 2.27 |
Minimum daily demand (kWh) | 1.44 | 1.09 |
Maximum daily demand (kWh) | 5.28 | 5.28 |
Total daily demand (kWh) | 59.11 | 54.45 |
Total annual demand (kWh) | 21,576.24 | 19,874.00 |
Total daily grid energy (kWh) | 20.87 | 16.34 |
Grid fraction of load supply (%) | 35% | 30% |
Percentage reduction in daily grid energy (%) | 22% | |
Estimated Annual total grid energy (kWh) | 7618.21 | 5963.59 |
Grid tariff (USD/kWh) | 0.18 | 0.18 |
Estimated annual grid energy cost (USD) | 1371 | 1073 |
Reduction in annual grid energy cost (USD) | 297.88 | |
Total daily PV production (kWh) | 65.53 | 65.53 |
Total PV energy supplied daily to load (kWh) | 20.88 | 21.31 |
Percentage of PV in load supply (%) | 35% | 39% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kakande, J.N.; Philipo, G.H.; Krauter, S. Optimized Demand Side Management for Refrigeration: Modeling and Case Study Insights from Kenya. Energies 2025, 18, 3258. https://doi.org/10.3390/en18133258
Kakande JN, Philipo GH, Krauter S. Optimized Demand Side Management for Refrigeration: Modeling and Case Study Insights from Kenya. Energies. 2025; 18(13):3258. https://doi.org/10.3390/en18133258
Chicago/Turabian StyleKakande, Josephine Nakato, Godiana Hagile Philipo, and Stefan Krauter. 2025. "Optimized Demand Side Management for Refrigeration: Modeling and Case Study Insights from Kenya" Energies 18, no. 13: 3258. https://doi.org/10.3390/en18133258
APA StyleKakande, J. N., Philipo, G. H., & Krauter, S. (2025). Optimized Demand Side Management for Refrigeration: Modeling and Case Study Insights from Kenya. Energies, 18(13), 3258. https://doi.org/10.3390/en18133258