An Assessment of Replacing Aluminum Tubes Hosting Nuclear Fuels with Stainless Steel in a Subcritical Nuclear Reactor
Abstract
:1. Introduction
2. Methodology
2.1. Reactor
2.2. Source and Virtual Detector Modeling
2.3. Computational Model
2.4. Evaluated Scenarios
2.5. Data Analysis and Convergence Criteria
3. Results and Discussion
3.1. Effective Multiplication Factor (keff)
3.2. Neutron Spectra
3.3. Neutron Dosimetry
- Modulation of secondary gamma production: SS-316L modulates secondary gamma production by attenuating and modifying the neutron spectrum in a way that differs from Al-6061-T6 [56], which would influence the production of secondary gamma rays in other reactor components. Specifically, increased neutron absorption within the SS-316L tube could reduce secondary gamma production in adjacent moderators or coolants (due to the lower incident neutron fluence). In contrast, the activation of the steel tube itself would generate an additional source of gamma emission simultaneously.
- These findings are consistent with previous studies [5], which have reported a correlation between materials with high neutron absorption capacity and reduced gamma dose levels near activated radiation sources. An essential next step involves a detailed quantitative evaluation of the gamma dose contribution, including spectral analysis and identifying relevant activated radionuclides. The possibility, suggested by studies such as [5], that SS-316L may contribute to a reduction in external gamma dose due to the overall alteration of the radiation field, despite its activation, was one of the motivating hypotheses behind the present material evaluation. Confirming such an effect would significantly strengthen the suitability of SS-316L for applications where minimizing the total dose (neutron and gamma) is the primary goal, complementing its structural advantages and justifying its consideration despite the reduction in neutron fluence available for experimentation.
3.4. Gamma-Ray Spectra
3.5. Gamma-Ray Dosimetry Spectra
4. Summary of Findings, Implications, and Research Outlook
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
6061-T6 | A 6000 series aluminum alloy that has been heat-treated |
Al | Aluminum |
Be | Beryllium element |
Bq | Becquerel is the standard international unit of measurement for radioactivity |
ICRP | International Commission on Radiological Protection |
ICRU | International Commission on Radiation Units and Measurements |
MCNP | Monte Carlo N-Particle |
NC-9000 | Nuclear Chicago model 9000 |
Pu | Plutonium element |
SS-316L | 316L stainless steel (low carbon, highly corrosion-resistant). |
UAZ | Autonomous University of Zacatecas |
Φ | Neutron fluence |
References
- Jarrah, I.; Malkawi, S.; Radaideh, M.S.; Aldebie, F.; El-Mustafah, M. Experimental validation of the neutronic parameters in the Jordan subcritical assembly. Prog. Nucl. Energy 2018, 108, 71–80. [Google Scholar] [CrossRef]
- Ni, Z.; Xie, J.; Wasaye, M.A.; Zhang, E.; Yu, T. Effect of higher-order harmonics on the steady-state neutron flux in accelerator-driven subcritical reactors. Int. J. Energy Res. 2023, 2023, 4114886. [Google Scholar] [CrossRef]
- Yan, S.; Zhou, L.; Song, L.; Guo, H.; Wu, J.; Luo, R.; Zhao, F. Collaborative control and intelligent optimization of a lead–bismuth cooled reactor based on a modified PSO method. Energies 2025, 18, 567. [Google Scholar] [CrossRef]
- Papastefanou, C. Measurement of neutron flux and albedo of water for thermal neutrons with foils of indium in a subcritical nuclear reactor. J. Radioanal. Nucl. Chem. 2004, 261, 671–678. [Google Scholar] [CrossRef]
- Vega-Carrillo, H.R.; Garcia-Reyna, M.G.; Marquez-Mata, C.A.; Vazquez-Bañuelos, J.; Campillo-Rivera, G.E.; Bedenko, S.V. Effect of changing the neutron moderator in a thermal subcritical nuclear reactor. Appl. Radiat. Isot. 2022, 188, 110395. [Google Scholar] [CrossRef]
- Tilloy, A. Arbitrarily large neutron amplification in subcritical nuclear reactors. Phys. Rev. Appl. 2021, 16, 014059. [Google Scholar] [CrossRef]
- Malkawi, S.; Sweidan, F.; Khalifeh, H. Reactivity determination in a subcritical reactor: Computational, analytical and experimental methods. Ann. Nucl. Energy 2021, 161, 108432. [Google Scholar] [CrossRef]
- Deng, N.; Xie, C.; Hou, C.; Li, Z.; Xie, J.; Yu, T. The influence mechanism of neutron kinetics of the accelerator-driven subcritical reactor based on the fast/thermal neutron spectra by Monte Carlo homogenization method. Energies 2023, 16, 3545. [Google Scholar] [CrossRef]
- Xiong, H.-H.; Zeng, Q.-S.; Han, Y.-C.; Ren, L.; Baidoo, I.K.; Chen, N.; Zeng, Z.-K.; Wang, X.-Y. Neutronics analysis of a subcritical blanket system driven by a gas dynamic trap-based fusion neutron source for 99Mo production. Nucl. Sci. Tech. 2023, 34, 49. [Google Scholar] [CrossRef]
- Janczyszyn, J.; Domańska, G.; Oettingen, M. Simulation of the measured reactivity distributions in the subcritical MYRRHA reactor. Energies 2024, 17, 2565. [Google Scholar] [CrossRef]
- Du, W.; Zhao, X. Nuclear reaction modeling of neutron induced reactions on 208Pb. Eur. Phys. J. A 2025, 61, 52. [Google Scholar] [CrossRef]
- Yu, X.; Zhang, G.; Zhang, Z.; Wang, Y. Research on corrosion resistance of anodized and sealed 6061 aluminum alloy in 3.5% sodium chloride solution. Int. J. Electrochem. Sci. 2023, 18, 100092. [Google Scholar] [CrossRef]
- Vega-Carrillo, H.R.; Aguilar-Dominguez, A.L.; Bedenko, S.V.; García-Fernandez, G.F. Computational spectrometry and dosimetry of neutrons and γ rays outside a subcritical nuclear reactor with water and polyethylene moderators. Radiat. Phys. Chem. 2023, 204, 110719. [Google Scholar] [CrossRef]
- De la Torre-Aguilar, F.; Davila-Rangel, J.I.; Robles-Luna, A.; Mireles-García, F.; Ríos-Martínez, C.; Pinedo-Vega, J.L. History and current status of the subcritical nuclear reactor of the Universidad Autónoma de Zacatecas. In Proceedings of the 34th Annual Congress of the Mexican Nuclear Society: Small Modular Reactors, a New Perspective for Nuclear Energy in Mexico, La Paz, Mexico, 27–30 August 2023. [Google Scholar]
- Sganzerla, W.G.; Zabot, G.L.; Torres-Mayanga, P.C.; Buller, L.S.; Mussatto, S.I.; Forster-Carneiro, T. Techno-economic assessment of subcritical water hydrolysis process for sugars production from brewer’s spent grains. Ind. Crops Prod. 2021, 171, 113836. [Google Scholar] [CrossRef]
- Sganzerla, W.G.; Moreira, B.P.; Lachos-Perez, D.; Zabot, G.L.; Nochi Castro, L.E.; Forster-Carneiro, T.; Rostagno, M.A. Techno-economic analysis of amino acids production with subcritical water technology. J. Supercrit. Fluids 2025, 222, 106595. [Google Scholar] [CrossRef]
- Vega-Carrillo, H.R.; Villagrana-Muñoz, L.E.; Rivera-Perez, E.; de Leon-Martinez, H.A.; Soto-Bernal, T.G.; Hernández-Davila, V.M. Concrete enclosure for shielding a neutron source. Appl. Radiat. Isot. 2013, 79, 37–41. [Google Scholar] [CrossRef]
- Brown, F.B. MCNP5 development, verification, and performance. In Proceedings of the International Conference on Supercomputing in Nuclear Applications (SNA 2003), Paris, France, 22–24 September 2003. [Google Scholar]
- Sood, A.; Forster, R.A.; Archer, B.J.; Little, R.C. Neutronics calculation advances at Los Alamos: Manhattan Project to Monte Carlo. Nucl. Technol. 2021, 207 (Suppl. S1), S100–S133. [Google Scholar] [CrossRef]
- National Council on Radiation Protection and Measurements (NCRP). Calibration of Survey Instruments Used in Radiation Protection for the Assessment of Ionizing Radiation Fields and Radioactive Surface Contamination; NCRP Report No. 112; NCRP: Bethesda, MD, USA, 1991. [Google Scholar]
- International Commission on Radiological Protection (ICRP). Conversion Coefficients for Use in Radiological Protection Against External Radiation; ICRP Publication 74; Pergamon Press: Oxford, UK, 1997. [Google Scholar]
- International Commission on Radiation Units and Measurements (ICRU). Operational Quantities for External Radiation Exposure; ICRU Report 95; ICRU: Bethesda, MD, USA, 2020. [Google Scholar]
- Oettingen, M.; Döderlein, C.; D’Agata, E.; Tucek, K.; Cetnar, J. Comparison of MCB and FISPACT burn-up performances using the HELIOS experiment technical specifications. Nucl. Eng. Des. 2012, 242, 399–412. [Google Scholar] [CrossRef]
- Zinkle, S.J.; Was, G.S. Materials challenges in nuclear energy. Acta Mater. 2013, 61, 735–758. [Google Scholar] [CrossRef]
- Ma, H.; Fan, P.; Qian, Q.; Zhang, Q.; Li, K.; Zhu, S.; Yuan, D. Nanoindentation test of ion-irradiated materials: Issues, modeling and challenges. Materials 2024, 17, 3286. [Google Scholar] [CrossRef]
- El-Khayatt, A.M. Calculation of photon shielding properties for some neutron shielding materials. Nucl. Sci. Tech. 2017, 28, 69. [Google Scholar] [CrossRef]
- Akkurt, I.; Boodaghi Malidarre, R. Gamma photon-neutron attenuation parameters of marble concrete by MCNPX code. Radiat. Eff. Defects Solids 2021, 176, 906–918. [Google Scholar] [CrossRef]
- Duderstadt, J.J.; Hamilton, L.J. Nuclear Reactor Analysis; John Wiley & Sons: New York, NY, USA, 1976; Chapter 3; pp. 74–100. [Google Scholar]
- Griffiths, M. Effect of neutron irradiation on the mechanical properties, swelling and creep of austenitic stainless steels. Materials 2021, 14, 2622. [Google Scholar] [CrossRef] [PubMed]
- Ye, X.P.; Hu, J.B.; Gu, Y.Q.; Nan, X.L.; Li, X.M.; Duan, Z.W.; Ying, Y.Y.; Cai, L.C.; Liu, C.L. Effects of pre-stress on the mechanical properties and microstructure of neutron-irradiated high-purity aluminum. J. Nucl. Mater. 2023, 573, 154126. [Google Scholar] [CrossRef]
- Yang, S.; Yao, Y.; Wang, H.; Huang, H. A comparative study of neutron shielding performance in Al-based composites reinforced with various boron-containing particles for radiotherapy: A Monte Carlo simulation. Nanomaterials 2024, 14, 1696. [Google Scholar] [CrossRef]
- Donya, H.; Umer, M. Optimization of DD-110 neutron generator output for boron neutron capture therapy using Monte Carlo simulation. Quantum Beam Sci. 2025, 9, 12. [Google Scholar] [CrossRef]
- Aziz, F.; Rivai, A.K.; Panitra, M.; Dani, M.; Suharno, B. Accident tolerant fuel cladding materials for light water reactors: Analysis of neutronic characteristics. Int. J. Technol. 2024, 15, 608–617. [Google Scholar] [CrossRef]
- Hirsh, T.Y.; Leong, A.F.T.; Losko, A.S.; Wolfertz, A.; Savage, D.J.; Jäger, T.T.; Rakovan, J.; Wall, J.J.; Long, A.M.; Vogel, S.C. Energy-resolved neutron imaging and diffraction including grain orientation mapping using event camera technology. Sci. Rep. 2025, 15, 12901. [Google Scholar] [CrossRef]
- Hamrashdi, H.A.; Cheneler, D.; Monk, S.D. A fast and portable imager for neutron and gamma emitting radionuclides. Nucl. Instrum. Methods Phys. Res. Sect. A 2020, 953, 163253. [Google Scholar] [CrossRef]
- Košt’ál, M.; Losa, E.; Czakoj, T.; Schulc, M.; Šimon, J.; Juříček, V.; Rypar, V.; Ulmanová, J.; Trkov, A.; Capote, R. The effect of heavy reflector on neutronic parameters of core. Ann. Nucl. Energy 2022, 168, 108898. [Google Scholar] [CrossRef]
- Mirvakili, S.M.; Gholamzadeh, Z.; Davari, A. Neutronic and thermo-hydraulic analysis of a modeled subcritical uranyl nitrate aqueous reactor driven by 30-MeV protons. Ann. Nucl. Energy 2016, 97, 171–178. [Google Scholar] [CrossRef]
- Kolos, K.; Sobes, V.; Vogt, R.; Romano, C.E.; Smith, M.S.; Bernstein, L.A.; Brown, D.A.; Burkey, M.T.; Danon, Y.; Elsawi, M.A.; et al. Current nuclear data needs for applications. Phys. Rev. Res. 2022, 4, 021001. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, S.; Han, F.; Luo, Y.; Chen, J.; Hu, Z.-T.; Pan, Z.; Hu, M. Corrosion performance and mechanisms of tantalum coatings on 316 stainless-steel in subcritical aqueous solutions of NaCl and NaBr. Corros. Sci. 2024, 231, 112006. [Google Scholar] [CrossRef]
- Guo, F.; Zhang, L.; Gu, L.; Jiang, W. Optimization design and deterministic analyses based on the multitype PD ratio fuel assemblies of small long life lead cooled fast reactor. Nucl. Eng. Des. 2024, 428, 113478. [Google Scholar] [CrossRef]
- Poenitz, E.; Nolte, R.; Schmidt, D.; Chen, G. Study of the 15N(p,n)15O reaction as a monoenergetic neutron source for the measurement of differential scattering cross sections. J. Instrum. 2017, 12, P03016. [Google Scholar] [CrossRef]
- Parker, S.F.; Baker, P.J.; McGreevy, R. A vision for the future of neutron scattering and muon spectroscopy in the 2050s. ACS Phys. Chem. Au 2024, 4, 439–452. [Google Scholar] [CrossRef]
- Melo, J.P.C.; Chaves, L.V.G.; Silva, S.V.F.; Duarte, J.; Corrêa, K.M.S.; Oliveira, N.G.P.L.; Cassimiro, J.; Velasquez, C.E.; da Silva, C.A.M.; Pereira, C. Evaluation of different external neutron sources for a hybrid system based on the SEALER reactor. Ann. Nucl. Energy 2025, 214, 111234. [Google Scholar] [CrossRef]
- Lucia, U.; Grisolia, G. Energy amplifier systems as sustainable nuclear reactors: An overview. Sustainability 2024, 16, 2743. [Google Scholar] [CrossRef]
- Marques, R.V.A.; Velasquez, C.E.; Pereira, C. Neutronic evaluation for different external neutron sources in a small-subcritical fast reactor. Nucl. Eng. Des. 2024, 417, 112868. [Google Scholar] [CrossRef]
- Pozzi, F.; Ferrarini, M.; Ferrulli, F.; Silari, M. Impact of the newly proposed ICRU/ICRP quantities on neutron calibration fields and extended range neutron rem-counters. J. Radiol. Prot. 2019, 39, 920–937. [Google Scholar] [CrossRef]
- García-Fernandez, G.F.; Gallego, E.; Gómez-Ros, J.M.; Vega-Carrillo, H.R.; Guzmán-García, K.A.; Cevallos-Robalino, L.E.; García-Baonza, R.; Fuentes-Hernández, E. Benchmarking of stray neutron fields produced by synchrocyclotrons and synchrotrons in compact proton therapy centers (CPTC) using MCNP6 Monte Carlo code. Appl. Radiat. Isot. 2023, 193, 110645. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.C.; Kim, H.; Han, H.; Choi, Y.; Kim, S.; Lee, J.; Min, B.I.; Suh, K.; Kim, C.K. Calculation of dose conversion coefficients for radiation workers in various postures. Radiat. Phys. Chem. 2025, 229, 112413. [Google Scholar] [CrossRef]
- Caridi, F.; Mottese, A.F.; Paladini, G.; Pistorino, L.; Gregorio, F.; Lanza, S.; Randazzo, G.; Marguccio, S.; Belvedere, A.; D’Agostino, M.; et al. Multivariate statistics, radioactivity and radiological hazard evaluation in marine sediments of selected areas from Sicily, Southern Italy. J. Mar. Sci. Eng. 2025, 13, 769. [Google Scholar] [CrossRef]
- Asadov, S.M.; Mustafaeva, S.N.; Guseinov, D.T.; Kelbaliev, K.I. Dependence of the X-ray dosimetric parameters of AgGaS2xSe2−2x single crystals on their composition. Tech. Phys. 2018, 63, 546–550. [Google Scholar] [CrossRef]
- El Bakkali, J.; Doudouh, A.; El Bardouni, T.; Ghalbzouri, T.E.L.; Yerrou, R. Intercomparison of S-Factor values calculated in Zubal voxelized phantom for eleven radionuclides commonly used in targeted prostate cancer therapy. Phys. Eng. Sci. Med. 2022, 45, 1251–1256. [Google Scholar] [CrossRef]
- Qi, Z.; Yang, Z.; Li, J.; Guo, Y.; Yang, G.; Yu, Y.; Zhang, J. The advancement of neutron-shielding materials for the transportation and storage of spent nuclear fuel. Materials 2022, 15, 3255. [Google Scholar] [CrossRef]
- Howard, R.H.; Ruggles, A.E. Design and out-of-pile testing of a novel irradiation experiment vehicle to support qualification of nuclear thermal propulsion components. Nucl. Eng. Des. 2020, 361, 110516. [Google Scholar] [CrossRef]
- Şekerci, M.; Özdoğan, H.; Kaplan, A. A study on the cross-section data of 43,44m,46,47Sc isotopes via (d,x) reactions on natural abundance targets under the effects of deuteron optical models. Appl. Radiat. Isot. 2023, 194, 110717. [Google Scholar] [CrossRef]
- Mossini, E.; Revay, Z.; Camerini, A.; Giola, M.; Magugliani, G.; Macerata, E.; Mariani, M. Determination of nuclear graphite impurities by prompt gamma activation analysis to support decommissioning operations. J. Radioanal. Nucl. Chem. 2022, 331, 3117–3123. [Google Scholar] [CrossRef]
- Wang, K.; Ma, L.; Yang, C.; Bian, Z.; Zhang, D.; Cui, S.; Wang, M.; Chen, Z.; Li, X. Recent progress in Gd-containing materials for neutron shielding applications: A review. Materials 2023, 16, 4305. [Google Scholar] [CrossRef]
- Han, I.; Demir, L. Mass attenuation coefficients, effective atomic and electron numbers of Ti and Ni alloys. Radiat. Meas. 2009, 44, 289–294. [Google Scholar] [CrossRef]
- Yilmaz, D.; Şahin, Y.; Demir, L. Studies on mass attenuation coefficient, mass energy absorption coefficient, and kerma for Fe alloys at photon energies of 17.44 to 51.70 keV. Turk. J. Phys. 2015, 39, 11. [Google Scholar] [CrossRef]
- Stettner, C.; Baumgartner, N.; Hranitzky, C.; Poljanc, K.; Stadtmann, H.; Streli, C. A novel approach towards the calculation of dose rate constants for ambient dose equivalent H*(10) by including low energy X-rays. Appl. Radiat. Isot. 2021, 178, 109964. [Google Scholar] [CrossRef] [PubMed]
- Ouaggou, I.A.; Bakari, D.; Rrhioua, A.; Zerfaoui, M.; Oulhouq, Y.; Talbi, M.; Benmessaoud, M. Evaluation of ambient dose equivalent for photoneutrons around linear accelerator and their radioprotection quantities. Radiat. Phys. Chem. 2023, 212, 111096. [Google Scholar] [CrossRef]
- D’Avino, V.; Ambrosino, F.; Bedogni, R.; Campoy, A.I.C.; La Verde, G.; Vernetto, S.; Vigorito, C.F.; Pugliese, M. Characterization of thermoluminescent dosimeters for neutron dosimetry at high altitudes. Sensors 2022, 22, 5721. [Google Scholar] [CrossRef]
- Zehtabvar, M.; Taghandiki, K.; Madani, N.; Sardari, D.; Bashiri, B. A review on the application of machine learning in gamma spectroscopy: Challenges and opportunities. Spectrosc. J. 2024, 2, 123–144. [Google Scholar] [CrossRef]
- Pakari, O.V.; Lucas, A.; Darby, F.B.; Lamirand, V.P.; Maurer, T.; Bisbee, M.G.; Cao, L.R.; Pautz, A.; Pozzi, S.A. Gamma-ray spectroscopy in low-power nuclear research reactors. J. Nucl. Eng. 2024, 5, 26–43. [Google Scholar] [CrossRef]
- Troyanov, V.M.; Toshinsky, G.I.; Stepanov, V.S.; Petrochenko, V.V. Lead-bismuth cooled reactors: History and the potential of development. Part 1. History of development. Nucl. Energy Technol. 2022, 8, 187–195. [Google Scholar] [CrossRef]
- Luoni, F.; Boscolo, D.; Fiore, G.; Bocchini, L.; Horst, F.; Reidel, C.-A.; Schuy, C.; Cipriani, C.; Binello, A.; Baricco, M.; et al. Dose attenuation in innovative shielding materials for radiation protection in space: Measurements and simulations. Radiat. Res. 2022, 198, 107–119. [Google Scholar] [CrossRef]
- Moshkbar-Bakhshayesh, K.; Mohtashami, S. Validation of codes for modeling and simulation of nuclear power plants: A review. Nucl. Eng. Des. 2024, 421, 113120. [Google Scholar] [CrossRef]
- Yokoyama, S.; Hamada, N.; Tsujimura, N.; Kunugita, N.; Nishida, K.; Ezaki, I.; Kato, M.; Okubo, H. Regulatory implementation of the occupational equivalent dose limit for the lens of the eye and underlying relevant efforts in Japan. Int. J. Radiat. Biol. 2022, 99, 604–619. [Google Scholar] [CrossRef]
- Loya, M.; Sanín, L.H.; González, P.R.; Ávila, O.; Duarte, R.; Ojeda, S.L.; Montero-Cabrera, M.E. Measurements of radiation exposure of dentistry students during their radiological training using thermoluminescent dosimetry. Appl. Radiat. Isot. 2016, 107, 234–238. [Google Scholar] [CrossRef]
Identifier | Location (x, y, z) [cm] | Point Description |
---|---|---|
Position A | (71.0, 0.0, 73.3) | Lateral to the reactor, near-core position |
Position B | (71.0, 0.0, 111.9) | Lateral to the reactor, elevated position along the vertical axis |
Position C | (60.0, 0.0, 162.5) | Top of the reactor, experimental handling area |
Position D | (25.0, 0.0, 162.5) | Upper intermediate section, near instructional and student access areas |
Position E | (0.0, 0.0, 162.5) | Center of the reactor top, a typical area for experimental practice |
Key Property Related to Oxidation | Al-6061-T6 | SS-316L | Implications in Corrosive Environments |
---|---|---|---|
Density (g/cm3) | 2.70 | 8.00 | Steel is denser but provides greater structural integrity. |
Melting Point (°C) | 582–651 | 1375–1400 | Steel has higher resistance to elevated temperatures. |
Corrosion Resistance | Good in neutral environments, weak in the presence of chlorides or minerals | Excellent in humid and radioactive environments | Superior durability to Al-6061-T6 in contact with mineralized water |
Surface Oxide | Forms Al2O3, less stable in irradiated environments | Forms Cr/Fe/Ni oxides, self-passivating and stable | The formation of a Cr-rich passive layer in SS-316L provides notable corrosion resistance. |
Thermal Conductivity (W/m·K) | 167 | 14.6 | Al-6061-T6 dissipates heat more effectively, but its performance is compromised by oxidation. |
Thermal Expansion Coefficient (×10−6/K) | 23.6 | 16.0 | Al-6061-T6 expands more, increasing the likelihood of cracking. |
Tensile Strength (MPa) | 310 | 485 | Steel provides greater mechanical strength. |
Yield Strength (MPa) | 276 | 170 | Al-6061-T6 deforms less before yielding, but is more prone to fatigue. |
Behavior Under Irradiation | Accelerated oxide degradation and microcrack formation | High-dimensional stability | SS-316L addresses the accelerated degradation and microcracking observed in Al-6061-T6 under irradiation. |
Oxidation Resistance in Reactor Water | Mineral deposits, embrittlement, and wall thinning were observed | High resistance to oxidation with minerals and radiation | SS-316L is the most resilient long-term candidate. |
Position | Thermal | Uncertainty (%) | Epithermal | Uncertainty (%) | Fast | Uncertainty (%) | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Al | SS | Al | SS | Al | SS | Al | SS | Al | SS | Al | SS | |
A | 9.83 | 3.85 | 1.13 | 2.18 | 11.59 | 4.61 | 1.04 | 2.01 | 19.84 | 8.10 | 0.77 | 1.46 |
B | 4.39 | 1.48 | 1.56 | 3.17 | 5.17 | 1.76 | 1.43 | 2.94 | 8.85 | 3.14 | 1.04 | 2.14 |
C | 7.46 | 0.88 | 0.61 | 1.94 | 10.11 | 1.38 | 0.51 | 1.49 | 15.81 | 2.70 | 0.4 | 1.02 |
D | 42.64 | 4.17 | 0.43 | 1.11 | 59.81 | 7.01 | 0.36 | 0.86 | 92.31 | 14.59 | 0.29 | 0.62 |
E | 59.69 | 5.90 | 0.34 | 0.86 | 83.80 | 10.08 | 0.29 | 0.79 | 127.55 | 20.36 | 0.25 | 0.56 |
Position | Al/SS | % Al/SS | Al/SS | ||||
---|---|---|---|---|---|---|---|
Thermal | Epithermal | Fast | Thermal | Epithermal | Fast | Total Fluence | |
A | 2.5 | 2.5 | 2.5 | 24/23 | 28/29 | 48/47 | 41.26/16.56 |
B | 3.0 | 2.9 | 2.8 | 25/26 | 28/28 | 48/46 | 18.41/6.38 |
C | 8.5 | 7.3 | 5.9 | 22/18 | 30/28 | 47/54 | 33.38/4.96 |
D | 10.2 | 8.5 | 6.3 | 22/16 | 31/27 | 47/57 | 194.76/25.77 |
E | 10.1 | 8.3 | 6.3 | 22/16 | 31/28 | 47/56 | 271.04/36.34 |
Position | Emean [MeV] | H*(10)n ICRP74 [µSv/h] | Uncertainty (%) | H*n ICRU95 [µSv/h] | Uncertainty (%) | |||||
---|---|---|---|---|---|---|---|---|---|---|
Al | SS | Al | SS | Al | SS | Al | SS | Al | SS | |
A | 1.14 | 1.25 | 10.98 | 4.66 | 0.98 | 1.81 | 10.20 | 4.36 | 1.02 | 1.88 |
B | 1.16 | 1.39 | 4.89 | 1.86 | 1.19 | 2.87 | 4.57 | 1.75 | 1.23 | 2.89 |
C | 0.73 | 1.01 | 7.02 | 1.59 | 0.45 | 1.16 | 6.10 | 1.38 | 0.47 | 1.21 |
D | 0.65 | 0.97 | 39.27 | 8.92 | 0.29 | 0.76 | 33.32 | 7.59 | 0.30 | 0.87 |
E | 0.61 | 0.92 | 52.67 | 12.07 | 0.27 | 0.68 | 44.35 | 10.21 | 0.28 | 0.77 |
Position | Emean [MeV] | H*(10)γ ICRP74 [µSv/h] | Uncertainty [%] | H*γ ICRU95 [µSv/h] | Uncertainty [%] | |||||
---|---|---|---|---|---|---|---|---|---|---|
Al | SS | Al | SS | Al | SS | Al | SS | Al | SS | |
A | 1.26 | 1.40 | 4.61 | 2.01 | 0.42 | 0.54 | 3.99 | 1.74 | 0.42 | 0.54 |
B | 1.27 | 1.46 | 2.66 | 1.09 | 0.56 | 0.74 | 2.31 | 0.94 | 0.56 | 0.74 |
C | 1.17 | 1.55 | 1.05 | 0.36 | 0.56 | 0.67 | 0.91 | 0.31 | 0.56 | 0.67 |
D | 1.19 | 1.80 | 2.24 | 0.74 | 0.41 | 1.20 | 1.94 | 0.64 | 0.41 | 1.21 |
E | 1.23 | 1.93 | 2.80 | 0.99 | 0.41 | 0.65 | 2.43 | 0.86 | 0.41 | 0.65 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Medina-Castro, D.; Vega-Carrillo, H.R.; Baltazar-Raigosa, A.; Soto-Bernal, T.G.; López-Callejas, R.; Rodríguez-Méndez, B.G. An Assessment of Replacing Aluminum Tubes Hosting Nuclear Fuels with Stainless Steel in a Subcritical Nuclear Reactor. Energies 2025, 18, 3213. https://doi.org/10.3390/en18123213
Medina-Castro D, Vega-Carrillo HR, Baltazar-Raigosa A, Soto-Bernal TG, López-Callejas R, Rodríguez-Méndez BG. An Assessment of Replacing Aluminum Tubes Hosting Nuclear Fuels with Stainless Steel in a Subcritical Nuclear Reactor. Energies. 2025; 18(12):3213. https://doi.org/10.3390/en18123213
Chicago/Turabian StyleMedina-Castro, Diego, Héctor René Vega-Carrillo, Antonio Baltazar-Raigosa, Tzinnia Gabriela Soto-Bernal, Régulo López-Callejas, and Benjamín Gonzalo Rodríguez-Méndez. 2025. "An Assessment of Replacing Aluminum Tubes Hosting Nuclear Fuels with Stainless Steel in a Subcritical Nuclear Reactor" Energies 18, no. 12: 3213. https://doi.org/10.3390/en18123213
APA StyleMedina-Castro, D., Vega-Carrillo, H. R., Baltazar-Raigosa, A., Soto-Bernal, T. G., López-Callejas, R., & Rodríguez-Méndez, B. G. (2025). An Assessment of Replacing Aluminum Tubes Hosting Nuclear Fuels with Stainless Steel in a Subcritical Nuclear Reactor. Energies, 18(12), 3213. https://doi.org/10.3390/en18123213