High-Temperature Molten Salt Heat Exchanger Technology: Research Advances, Challenges, and Future Perspectives
Abstract
:1. Introduction
2. Application Field of MS-HXs
2.1. Molten Salt Heat Exchangers in Molten Salt Reactors
2.2. MS-HXs in Concentrated Solar Power Systems
2.3. MS-HXs in Thermal Energy Storage Systems
2.4. Safety Evaluation and Analysis of Molten Salt Energy Systems
3. Selection of Molten Salts
3.1. MS Used in Molten Salt Reactors
3.2. MS Used in CSP Systems and TES Systems
4. Design and Optimization of MS-HXs
4.1. Shell-and-Tube MS-HXs
- High-temperature/pressure capability;
- Exceptional thermal cycle resistance;
- Streamlined fabrication using standardized components;
- Maintenance accessibility through removable tube bundles.
4.2. Compact MS-HXs
- Reduced material requirements: CHEs use less material in manufacturing, lowering production costs.
- Compact size and weight: Their smaller dimensions and reduced weight simplify system integration and transportation.
- Faster thermal response: With lower thermal inertia, CHEs provide quicker response times, enabling systems to adapt more flexibly to load variations.
- Modular design: The inherent modularity of CHEs facilitates easy system expansion and maintenance, enhancing overall adaptability and reliability.
- Higher power density: CHEs demonstrate significantly greater volume-specific power density compared to conventional STHXs.
5. MS-HX Fabrication: Status and Challenges
5.1. Corrosion and Materials Selection for MS-HXs
5.2. Fabrication Technology of MS-HXs
5.3. Phase Transformation and Operational Risks
6. Conclusions
- The improvement of molten salt properties includes enhancing the performance of molten salts in flow heat transfer, thermal energy storage, and other aspects; reducing the production and purification costs of molten salts; and modifying molten salts in various ways to mitigate their corrosion effects on metal components.
- Continuously focus on the development of new alloys, enhancing their corrosion resistance while increasing the machinability of metals in additive manufacturing and etching processes, and reducing alloy manufacturing costs.
- Keep a continuous focus on the application and development of multi-objective optimization methods and topology optimization in the research of heat exchanger channel structure optimization. Improve the operational precision of diffusion bonding, additive manufacturing, and etching technologies, and accelerate the iteration speed and practical application of these technologies.
Author Contributions
Funding
Conflicts of Interest
Abbreviations
MS | Molten salt |
ST-MS-HXs | Shell-and-Tube Molten salt heat exchangers |
MS-HXs | Molten salt heat exchangers |
CHEs | Compact heat exchangers |
PCHE | Printed Circuit Heat Exchanger |
MSR | Molten salt reactors |
TMSR-LF1 | Thorium-based Molten Salt Reactor-Liquid Fuel |
CSP | Concentrated solar power |
CFD | Computational Fluid Dynamics |
Nu | Nusselt number |
FIV | Flow-Induced Vibration |
f | Friction factor |
j | Colburn j-factor |
Pr | Prandtl number |
PHE | Plate heat exchangers |
PFHE | Plate-fin heat exchangers |
TES | Thermal energy storage |
ONRL | Oak Ridge National Laboratory |
TO | Topology Optimization |
AM | Additive Manufacturing |
SEM | Scanning Electron Microscope |
EDX | Energy-Dispersive X-ray Spectroscopy |
XRD | X-ray Diffraction |
R&D | Research and development |
References
- Gielen, D.; Boshell, F.; Saygin, D.; Bazilian, M.D.; Wagner, N.; Gorini, R. The role of renewable energy in the global energy transformation. Energy Strategy Rev. 2019, 24, 38–50. [Google Scholar] [CrossRef]
- Hassan, Q.; Viktor, P.; Al-Musawi, T.J.; Ali, B.M.; Algburi, S.; Alzoubi, H.M.; Al-Jiboory, A.K.; Sameen, A.Z.; Salman, H.M.; Jaszczur, M. The renewable energy role in the global energy Transformations. Renew. Energy Focus 2024, 48, 100545. [Google Scholar] [CrossRef]
- Huber, N.; Herget, R.; Price, B.; Zäch, C.; Hersperger, A.M.; Pütz, M.; Kienast, F.; Bolliger, J. Renewable energy sources: Conflicts and opportunities in a changing landscape. Reg. Environ. Change 2017, 17, 1241–1255. [Google Scholar] [CrossRef]
- Kabeyi, M.J.B.; Olanrewaju, O.A. Sustainable energy transition for renewable and low carbon grid electricity generation and supply. Front. Energy Res. 2022, 9, 743114. [Google Scholar] [CrossRef]
- Holechek, J.L.; Geli, H.M.E.; Sawalhah, M.N.; Valdez, R. A global assessment: Can renewable energy replace fossil fuels by 2050? Sustainability 2022, 14, 4792. [Google Scholar] [CrossRef]
- Rabbi, M.F.; Popp, J.; Máté, D.; Kovács, S. Energy security and energy transition to achieve carbon neutrality. Energies 2022, 15, 8126. [Google Scholar] [CrossRef]
- IEA Electricity 2025. 2025. Available online: https://www.iea.org/reports/electricity-2025 (accessed on 12 March 2025).
- Yu, S.C.; Chen, L.; Zhao, Y.; Li, H.X.; Zhang, X.R. A brief review study of various thermodynamic cycles for high temperature power generation systems. Energy Convers. Manag. 2015, 94, 68–83. [Google Scholar] [CrossRef]
- Zhang, P.; Ma, F.; Xiao, X. Thermal energy storage and retrieval characteristics of a molten-salt latent heat thermal energy storage system. Appl. Energy 2016, 173, 255–271. [Google Scholar] [CrossRef]
- Tiznobaik, H.; Shin, D. Enhanced specific heat capacity of high-temperature molten salt-based nanofluids. Int. J. Heat Mass Transf. 2013, 57, 542–548. [Google Scholar] [CrossRef]
- Janz, G.J. Molten Salts Handbook; Elsevier: Amsterdam, The Netherlands, 2013. [Google Scholar]
- Barton, J.L.; Bloom, E. A boiling point method for determination of vapor pressures of molten salts. J. Phys. Chem. 1956, 60, 1413–1416. [Google Scholar] [CrossRef]
- Li, X.; Kong, W.; Wang, Z.; Chang, C.; Bai, F. Thermal model and thermodynamic performance of molten salt cavity receiver. Renew. Energy 2010, 35, 981–988. [Google Scholar] [CrossRef]
- Yuan, F.; Li, M.-J.; Ma, Z.; Jin, B.; Liu, Z. Experimental study on thermal performance of high-temperature molten salt cascaded latent heat thermal energy storage system. Int. J. Heat Mass Transf. 2018, 118, 997–1011. [Google Scholar] [CrossRef]
- Xie, G.N.; Sundén, B.; Wang, Q.W. Optimization of compact heat exchangers by a genetic algorithm. Appl. Therm. Eng. 2008, 28, 895–906. [Google Scholar] [CrossRef]
- Abeykoon, C. Compact heat exchangers–Design and optimization with CFD. Int. J. Heat Mass Transf. 2020, 146, 118766. [Google Scholar] [CrossRef]
- Bošnjaković, M.; Tadijanović, V. Environment impact of a concentrated solar power plant. Teh. Glas. 2019, 13, 68–74. [Google Scholar] [CrossRef]
- Bulmer, J.J.; Gift, E.H.; Holl, R.J.; Jacobs, A.M.; Jaye, S.; Koffman, E.; McVean, R.L.; Oehl, R.G.; Rossi, R.A. Reactor Design and Feasibility Study: Fused Salt Fast Breeder; Oak Ridge School of Reactor Technology: Oak Ridge, TN, USA, 1956. [Google Scholar]
- Briant, R.C.; Weinberg, A.M. Molten fluorides as power reactor fuels. Nucl. Sci. Eng. 1957, 2, 797–803. [Google Scholar] [CrossRef]
- Bulmer, J.J. Fused Salt Fast Breeder: Reactor Design and Feasibility Study; United States Atomic Energy Commission, Technical Information Service Extension; University of Michigan: Ann Arbor, MI, USA, 1957. [Google Scholar]
- Haubenreich, P.N.; Engel, J.R.; Prince, B.E.; Claiborne, H. MSRE Design Operations Report Part III. Nuclear Analysis; Oak Ridge National Lab. (ORNL): Oak Ridge, TN, USA, 1964.
- Grimes, W.R.; Cantor, S. Molten salts as blanket fluids in controlled fusion reactors. In The Chemistry of Fusion Technology: Proceedings of a Symposium on the Role of Chemistry in the Development of Controlled Fusion, an American Chemical Society Symposium, Held in Boston, MA, USA, April 1972; Springer: New York, NY, USA, 1972; pp. 161–190. [Google Scholar]
- Cantor, S. Physical Properties of Molten-Salt Reactor Fuel, Coolant, and Flush Salts; Oak Ridge National Lab. (ORNL): Oak Ridge, TN, USA, 1968.
- Hoffman, H.W.; Cohen, S.I. Fused Salt Heat Transfer: Part III: Forced-Convection Heat Transfer in Circular Tubes Containing the Salt Mixture NaNO2-NaNO3-KNO3; ORNL-2433; Oak Ridge National Laboratory: Oak Ridge, TN, USA, 1960.
- DOE U, S. Nuclear Energy Research Advisory Committee and the Generation IV International Forum, a Technology Roadmap for Generation IV Nuclear Energy Systems; US DOE Report GIF-002; US DOE: Washington, DC, USA, 2002.
- Generation IV Nuclear Reactors: WNA—World Nuclear Association. Available online: https://world-nuclear.org/ (accessed on 10 August 2024).
- McNeese, L.E. Molten-Salt Reactor Program; Semiannual Progress Report for Period Ending 31 August 1974; Oak Ridge National Lab. (ORNL): Oak Ridge, TN, USA, 1975.
- Gen IV International Forum. Education and Training Series 97, Overview and Update on MSR Activities Within GIF. 22 January 2025. Available online: https://www.gen-4.org/resources/webinars/education-and-training-series-97-overview-and-update-msr-activities-within-gif (accessed on 13 March 2025).
- Ball, S.J.; Kerlin, T.W. Stability Analysis of the Molten-Salt Reactor Experiment; Oak Ridge National Lab. (ORNL): Oak Ridge, TN, USA, 1965.
- Ravi Kumar, K.; Chaitanya, N.V.V.K. Towards sustainable energy–exploring the supercritical carbon dioxide (S-CO2) Brayton cycle for various applications: A critical review. Int. J. Ambient. Energy 2024, 45, 2378046. [Google Scholar] [CrossRef]
- Wright, S.A.; Radel, R.F.; Vernon, M.E.; Pickard, P.S.; Rochau, G.E. Operation and Analysis of a Supercritical CO2 Brayton Cycle; Sandia National Laboratories (SNL): Albuquerque, NM, USA; Livermore, CA, USA, 2010.
- Purjam, M.; Goudarzi, K.; Keshtgar, M. A new supercritical carbon dioxide brayton cycle with high efficiency. Heat Transf.-Asian Res. 2017, 46, 465–482. [Google Scholar] [CrossRef]
- Yoo, S.; Lee, W.; Lee, K.Y. A Conceptual Design of Supercritical CO2 Brayton Cycle for a Small Modular Molten Salt Reactor. In Proceedings of the Transactions of the Korean Nuclea R Society Spring Meeting, Jeju, Republic of Korea, 17–19 May 2022. [Google Scholar]
- Conboy, T.; Wright, S.; Pasch, J.; Fleming, D.; Rochau, G.; Fuller, R. Performance characteristics of an operating supercritical CO2 Brayton cycle. J. Eng. Gas Turbines Power 2012, 134, 111703. [Google Scholar] [CrossRef]
- Wu, P.; Ma, Y.; Gao, C.; Liu, W.; Shan, J.; Huang, Y.; Wang, J.; Zhang, D.; Ran, X. A review of research and development of supercritical carbon dioxide Brayton cycle technology in nuclear engineering applications. Nucl. Eng. Des. 2020, 368, 110767. [Google Scholar] [CrossRef]
- Xiao, Y.; Zhou, Y.; Yuan, Y.; Huang, Y.; Tian, G. Research Advances in the Application of the Supercritical CO2 Brayton Cycle to Reactor Systems: A Review. Energies 2023, 16, 7367. [Google Scholar] [CrossRef]
- Haubenreich, P.N.; Engel, J.R. Experience with the molten-salt reactor experiment. Nucl. Appl. Technol. 1970, 8, 118–136. [Google Scholar] [CrossRef]
- Desideri, U.; Zepparelli, F.; Morettini, V.; Garroni, E. Comparative analysis of concentrating solar power and photovoltaic technologies: Technical and environmental evaluations. Appl. Energy 2013, 102, 765–784. [Google Scholar] [CrossRef]
- Research Advancement and Potential Prospects of Thermal Energy Storage in Concentrated Solar Power Application-Scientific Figure on ResearchGate. Available online: https://www.researchgate.net/figure/Schematic-of-a-solar-tower-or-central-receiver_fig4_372599117 (accessed on 16 March 2025).
- Gauché, P.; Rudman, J.; Mabaso, M.; Landman, W.A.; von Backström, T.W.; Brent, A.C. System value and progress of CSP. Sol. Energy 2017, 152, 106–139. [Google Scholar] [CrossRef]
- Romero, M.; González-Aguilar, J. Solar thermal CSP technology. Wiley Interdiscip. Rev. Energy Environ. 2014, 3, 42–59. [Google Scholar] [CrossRef]
- Praveen, R.P. Performance analysis and optimization of central receiver solar thermal power plants for utility scale power generation. Sustainability 2019, 12, 127. [Google Scholar] [CrossRef]
- Chu, S.; Majumdar, A. Opportunities and challenges for a sustainable energy future. Nature 2012, 488, 294–303. [Google Scholar] [CrossRef]
- Strielkowski, W.; Civín, L.; Tarkhanova, E.; Tvaronavičienė, M.; Petrenko, Y. Renewable energy in the sustainable development of electrical power sector: A review. Energies 2021, 14, 8240. [Google Scholar] [CrossRef]
- Paiano, A. Photovoltaic waste assessment in Italy. Renew. Sustain. Energy Rev. 2015, 41, 99–112. [Google Scholar] [CrossRef]
- Bird, L.; Lew, D.; Milligan, M.; Carlini, E.M.; Estanqueiro, A.; Flynn, D.; Gomez-Lazaro, E.; Holttinen, H.; Menemenlis, N.; Orths, A.; et al. Wind and solar energy curtailment: A review of international experience. Renew. Sustain. Energy Rev. 2016, 65, 577–586. [Google Scholar] [CrossRef]
- Bauer, T.; Odenthal, C.; Bonk, A. Molten salt storage for power generation. Chem. Ing. Tech. 2021, 93, 534–546. [Google Scholar] [CrossRef]
- Caraballo, A.; Galán-Casado, S.; Caballero, Á.; Serena, S. Molten salts for sensible thermal energy storage: A review and an energy performance analysis. Energies 2021, 14, 1197. [Google Scholar] [CrossRef]
- Zhang, S.; Zhao, X.; Li, Y. Application and research progress of high-temperature molten salt systems. Electroplat. Finish. 2016, 38, 22–27. (In Chinese) [Google Scholar]
- Liu, P.; Tong, Y.; Yang, Q. New advances in molten salt systems and related applications. Electrochemistry 2007, 13, 351. (In Chinese) [Google Scholar]
- McGreevy, R.L.; Pusztai, L. The structure of molten salts. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 1990, 430, 241–261. [Google Scholar]
- McMurray, J.W.; Raiman, S.S. Thermodynamic modeling of the K-KCl and Mg-MgCl2 binary systems using the CALPHAD method. Sol. Energy 2018, 170, 1039–1042. [Google Scholar] [CrossRef]
- Peng, Q.; Ding, J.; Wei, X.; Yang, J.; Yang, X. The preparation and properties of multi-component molten salts. Appl. Energy 2010, 87, 2812–2817. [Google Scholar] [CrossRef]
- Kelleher, B. Molten Flinak Salt [Photograph]; Wikimedia Commons. 18 April 2014. Available online: https://commons.wikimedia.org/wiki/File:Molten_Flinak_Salt.JPG (accessed on 18 March 2025).
- ORNL. Presentation slides [PDF]; Oak Ridge National Laboratory; Public Domain. 20 October 2011. Available online: https://commons.wikimedia.org/w/index.php?curid=17051440 (accessed on 18 March 2025).
- Perry, A.M.; Bauman, H.F. Reactor physics and fuel-cycle analyses. Nucl. Appl. Technol. 1970, 8, 208–219. [Google Scholar] [CrossRef]
- Grimes, W.R.; Cuneo, D.R.; Blankenship, F.F.; Keilholtz, G.W.; Poppendick, H.F.; Robinson, M.T. Chemical aspects of molten fluoride salt reactor fuels. Fluid-Fueled React. 1958, 569–594. [Google Scholar]
- Idaho National Laboratory. (n.d.). Performance Assessment for the Disposal of Remote-Handled Transuranic Waste at the Waste Isolation Pilot Plant (WIPP) (Document No. 4502650). Available online: https://web.archive.org/web/20140808054526/http://www.inl.gov/technicalpublications/Documents/4502650.pdf (accessed on 14 March 2025).
- Roper, R.; Harkema, M.; Sabharwall, P.; Riddle, C.; Chisholm, B.; Day, B.; Marotta, P. Molten salt for advanced energy applications: A review. Ann. Nucl. Energy 2022, 169, 108924. [Google Scholar] [CrossRef]
- Zhou, X.; Li, Z.; Lu, Y.; Huang, H.; He, Z.; Dai, Z.; Xu, H. Development strategy for thorium molten salt reactor materials. Strateg. Study Chin. Acad. Eng. 2019, 21, 29–38. [Google Scholar] [CrossRef]
- Wang, K.; Wang, C.; Yang, Q.; He, Z.; Wang, N. Uncertainty and sensibility analysis of reactivity insertion transient accident of a 150 MWt molten salt reactor (SM-MSR). Nucl. Tech. 2024, 47, 110602. [Google Scholar]
- Reilly, H.E.; Kolb, G.J. An Evaluation of Molten-Salt Power Towers Including Results of the Solar Two Project; Sandia National Lab. (SNL-NM): Albuquerque, NM, USA; Sandia National Lab. (SNL-CA): Livermore, CA, USA, 2001.
- Gil, A.; Medrano, M.; Martorell, I.; Lázaro, A.; Dolado, P.; Zalba, B.; Cabeza, L.F. State of the art on high temperature thermal energy storage for power generation. Part 1—Concepts, materials and modellization. Renew. Sustain. Energy Rev. 2010, 14, 31–55. [Google Scholar] [CrossRef]
- González-Roubaud, E.; Pérez-Osorio, D.; Prieto, C. Review of commercial thermal energy storage in concentrated solar power plants: Steam vs. molten salts. Renew. Sustain. Energy Rev. 2017, 80, 133–148. [Google Scholar] [CrossRef]
- Nunes, V.M.B.; Queirós, C.S.; Lourenço, M.J.V.; Santos, F.J.V.; De Castro, C.A.N. Molten salts as engineering fluids–A review: Part, I. Molten alkali nitrates. Appl. Energy 2016, 183, 603–611. [Google Scholar] [CrossRef]
- Kirst, W.E.; Nagle, W.M.; Castner, J.B. A new heat transfer medium for high temperatures. Trans. Am. Inst. Chem. Eng. 1940, 36, 371–394. [Google Scholar]
- Liu, M.; Tay, N.H.S.; Bell, S.; Belusko, M.; Jacob, R.; Will, G.; Saman, W.; Bruno, F. Review on concentrating solar power plants and new developments in high temperature thermal energy storage technologies. Renew. Sustain. Energy Rev. 2016, 53, 1411–1432. [Google Scholar] [CrossRef]
- Kearney, D.; Herrmann, U.; Nava, P.; Kelly, B.; Mahoney, R.; Pacheco, J.; Cable, R.; Potrovitza, N.; Blake, D.; Price, H. Assessment of a molten salt heat transfer fluid in a parabolic trough solar field. J. Sol. Energy Eng. 2003, 125, 170–176. [Google Scholar] [CrossRef]
- Ding, W.; Bauer, T. Progress in research and development of molten chloride salt technology for next generation concentrated solar power plants. Engineering 2021, 7, 334–347. [Google Scholar] [CrossRef]
- Lambrecht, M.; de Miguel, M.T.; Lasanta, M.I.; Pérez, F.J. Past research and future strategies for molten chlorides application in concentrated solar power technology. Sol. Energy Mater. Sol. Cells 2022, 237, 111557. [Google Scholar] [CrossRef]
- Wang, Y.; Lu, Y.; Gao, Q.; Li, F.; Ma, Y.; Wang, Y.; Wu, Y. Numerical Study on Heat Transfer and Frictional Resistance of Two Types of Molten Salts in Straight Channels and Supercritical Carbon Dioxide in Airfoil Channels. J. Therm. Sci. 2024, 33, 1443–1457. [Google Scholar] [CrossRef]
- Lippy, M.S. Development of a Minichannel Compact Primary Heat Exchanger for a Molten Salt Reactor; Virginia Tech: Blacksburg, VA, USA, 2011. [Google Scholar]
- Li, Y.; Lei, Y.; Li, J.; Du, B.; Song, C.; Wang, Y. Experimental investigation on the thermos-hydraulic performance and entransy analysis of a shell-and-tube heat exchanger with louver baffles. Appl. Therm. Eng. 2025, 269, 125928. [Google Scholar] [CrossRef]
- Romanos, N.D.; Kinyon, B.W. Vapor Generator Organization Utilizing Liquid Metal or Molten Salts. U.S. Patent 3,557,760, 26 January 1971. [Google Scholar]
- Faugeras, P.; Lecocq, A.; Romet, J.L. Low Temperature Steam Generator. U.S. Patent 3996099, 7 December 1976. [Google Scholar]
- Alang, I.; Rashid, M.D. Sustainable Electricity Generation Using Molten Salt Nuclear Reactors (MSR). Universiti Teknologi Malaysia: Pagoh, Malaysia, 2024. [Google Scholar]
- Li, Q.M.; Tian, J.; Fu, Y.; Zhou, C.; Zou, Y.; Fu, Y.; Hou, J.; Yu, X.H. Experimental Study on Heat Transfer and Flow Resistance Performance of an Air Cooled Fluoride Salt Heat Exchanger. Appl. Therm. Eng. 2025, 269, 126124. [Google Scholar] [CrossRef]
- Burgaleta, J.I.; Arias, S.; Ramirez, D. Gemasolar, the First Tower Thermosolar Commercial Plant with Molten Salt Storage; SolarPACES: Granada, Spain, 2011; pp. 20–23. [Google Scholar]
- Qian, J.; Kong, Q.; Zhang, H.; Huang, W.; Li, W. Performance of a gas cooled molten salt heat exchanger. Appl. Therm. Eng. 2016, 108, 1429–1435. [Google Scholar] [CrossRef]
- Qian, J.; Kong, Q.L.; Zhang, H.W.; Zhu, Z.H.; Huang, W.G.; Li, W.H. Experimental study for shell-and-tube molten salt heat exchangers. Appl. Therm. Eng. 2017, 124, 616–623. [Google Scholar] [CrossRef]
- Ben Khedher, N.; Mahdi, J.M.; Dulaimi, A.; Shojaeinasab Chatroudi, I.; Ebrahimnataj Tiji, M.; Ibrahem, R.K.; Yvaz, A.; Talebizadehsardari, P. On the application of novel arc-shaped fins in a shell-and-tube type of latent heat storage for energy charge enhancement. J. Energy Storage 2023, 73, 108697. [Google Scholar] [CrossRef]
- Mahdi, J.M.; Abed, A.M.; Al-Saaidi, H.A.; Ben Khedher, N.; Ibrahem, R.K.; Amara, M.B. Augmenting the thermal response of helical coil latent-heat storage systems with a central return tube configuration. Case Stud. Therm. Eng. 2023, 51, 103607. [Google Scholar] [CrossRef]
- Ben Khedher, N.; Togun, H.; Abed, A.M.; Mohammed, H.I.; Mahdi, J.M.; Ibrahem, R.K.; Yaïci, W.; Talebizadehsardari, P.; Keshmiri, A. Comprehensive analysis of melting enhancement by circular Y-shaped fins in a vertical shell-and-tube heat storage system. Eng. Appl. Comput. Fluid Mech. 2023, 17, 2227682. [Google Scholar] [CrossRef]
- He, Y.L.; Zheng, Z.J.; Du, B.C.; Wang, K.; Qiu, Y. Experimental investigation on turbulent heat transfer characteristics of molten salt in a shell-and-tube heat exchanger. Appl. Therm. Eng. 2016, 108, 1206–1213. [Google Scholar] [CrossRef]
- Du, B.C.; He, Y.L.; Wang, K.; Zhu, H.H. Convective heat transfer of molten salt in the shell-and-tube heat exchanger with segmental baffles. Int. J. Heat Mass Transf. 2017, 113, 456–465. [Google Scholar] [CrossRef]
- Qiu, Y.; Li, M.-J.; Wang, W.-Q.; Du, B.-C.; Wang, K. An experimental study on the heat transfer performance of a prototype molten-salt rod baffle heat exchanger for concentrated solar power. Energy 2018, 156, 63–72. [Google Scholar] [CrossRef]
- Xie, Q.; Liang, C.; Fu, Q.; Wang, X.; Liu, Y. Numerical investigation on heat transfer performance of molten salt in shell and tube heat exchangers with circularly perforated baffles. J. Renew. Sustain. Energy 2022, 14, 023703. [Google Scholar] [CrossRef]
- Lin, Y.; Zhang, C.; Wu, Y.; Zhang, Y.; Lu, Y. Numerical Study of Flow and Heat Transfer Characteristics of Shell-and-Tube Molten Salt Electric Heater with Circularly Perforated Baffles. J. Therm. Sci. 2025, 34, 24–33. [Google Scholar] [CrossRef]
- Yao, F.; Bi, Q.; Dong, X. Convective heat transfer of high temperature molten salt flowing across tube bundles of steam generator in a solar thermal plant. Appl. Therm. Eng. 2018, 141, 858–865. [Google Scholar] [CrossRef]
- Dong, X.; Bi, Q.; Yao, F. Experimental investigation on the heat transfer performance of molten salt flowing in an annular tube. Exp. Therm. Fluid Sci. 2019, 102, 113–122. [Google Scholar] [CrossRef]
- Dong, X.; Bi, Q.; Jiang, J.; Jiang, M. Experimental investigation on the shell-side heat transfer performance of molten salt steam generator. Int. J. Heat Mass Transf. 2020, 158, 119991. [Google Scholar] [CrossRef]
- Zeng, Y.; Cui, G.; Wu, W.; Xu, C.; Huang, J.; Wang, J.; Yang, Z. Numerical simulation study on flow heat transfer and stress distribution of shell-and-tube superheater in molten salt solar thermal power station. Processes 2022, 10, 1003. [Google Scholar] [CrossRef]
- Dong, X.; Zhang, S.; Liu, L.; Zhang, Y. Experimental thermal study of solar salt and subcritical pressure water in a shell and tube heat exchanger. Int. J. Therm. Sci. 2023, 186, 108150. [Google Scholar] [CrossRef]
- He, S.; Lu, J.; Ding, J.; Yu, T.; Yuan, Y. Convective heat transfer of molten salt outside the tube bundle of heat exchanger. Exp. Therm. Fluid Sci. 2014, 59, 9–14. [Google Scholar] [CrossRef]
- Yuan, Y.; He, C.; Lu, J.; Ding, J. Thermal performances of molten salt steam generator. Appl. Therm. Eng. 2016, 105, 163–169. [Google Scholar] [CrossRef]
- Zou, Y.; Ding, J.; Wang, W.; Lee, D.; Lu, J. Heat transfer performance of U-tube molten salt steam generator. Int. J. Heat Mass Transf. 2020, 160, 120200. [Google Scholar] [CrossRef]
- Huang, Z.; Zou, Y.; Ding, J.; Lu, J. Experimental investigation of heat transfer in coiled tube type molten salt steam generator. Appl. Therm. Eng. 2019, 148, 1131–1138. [Google Scholar] [CrossRef]
- Jiang, K.; Zhang, G.; Liu, H.; Mu, Z.; Wang, Q.; Qin, T.; Niu, Y.; Wang, X.; Zhang, Q. Design and dynamic simulation of flue gas-molten salt heat exchanger in flexible operation coal-fired power plant. J. Energy Storage 2024, 93, 112227. [Google Scholar] [CrossRef]
- Chen, Y.S.; Tian, J.; Fu, Y.; Tang, Z.F.; Zhu, H.H.; Wang, N.X. Experimental study of heat transfer enhancement for molten salt with transversely grooved tube heat exchanger in laminar-transition-turbulent regimes. Appl. Therm. Eng. 2018, 132, 95–101. [Google Scholar] [CrossRef]
- Chen, Y.S.; Tian, J.; Zhu, H.H.; Xue, J.Y.; Tang, Z.F.; Fu, Y.; Wang, N.X. Thermal sizing design and experimental evaluation of molten salt-to-air heat exchanger. Ann. Nucl. Energy 2019, 132, 504–511. [Google Scholar] [CrossRef]
- Chen, Y.S.; Dai, Y.; Zou, Y.; Zhang, J.Y.; Guo, Y.W.; Lu, H. Experimental study on convective heat transfer characteristics of fluoride salt outside the tube bundle in hairpin heat exchanger. Ann. Nucl. Energy 2024, 204, 110563. [Google Scholar] [CrossRef]
- Chen, Y.S.; Tian, J.; Zhu, H.H.; Fu, Y.; Wang, N.X. Experimental and numerical study on thermal performance of a fluoride salt-to-air heat exchanger. Ann. Nucl. Energy 2022, 168, 108876. [Google Scholar] [CrossRef]
- Gajapathy, R.; Velusamy, K.; Selvaraj, P.; Chellapandi, P.; Chetal, S.C.; Sundararajan, T. Thermal hydraulic investigations of intermediate heat exchanger in a pool-type fast breeder reactor. Nucl. Eng. Des. 2008, 238, 1577–1591. [Google Scholar] [CrossRef]
- Abu-Hamdeh, N.H.; Salilih, E.M. Numerical modelling of a parallel flow heat exchanger with two-phase heat transfer process. Int. Commun. Heat Mass Transf. 2021, 120, 105005. [Google Scholar] [CrossRef]
- Bonilla, J.; de la Calle, A.; Rodríguez-García, M.M.; Roca, L.; Valenzuela, L. Study on shell-and-tube heat exchanger models with different degree of complexity for process simulation and control design. Appl. Therm. Eng. 2017, 124, 1425–1440. [Google Scholar] [CrossRef]
- Du, B.C.; He, Y.L.; Qiu, Y.; Liang, Q.; Zhou, Y.P. Investigation on heat transfer characteristics of molten salt in a shell-and-tube heat exchanger. Int. Commun. Heat Mass Transf. 2018, 96, 61–68. [Google Scholar] [CrossRef]
- Ozden, E.; Tari, I. Shell side CFD analysis of a small shell-and-tube heat exchanger. Energy Convers. Manag. 2010, 51, 1004–1014. [Google Scholar] [CrossRef]
- Nuerlan, A.; Wang, J.; Yang, J.; Guo, Z.; Liu, Y. Design and dynamic simulation of a molten salt THS coupled to SFR. Nucl. Eng. Technol. 2024, 56, 1135–1144. [Google Scholar] [CrossRef]
- Zohuri, B. Compact Heat Exchangers; Springer: Cham, Switzerland, 2017. [Google Scholar]
- Southall, D.; Dewson, S.J. Innovative compact heat exchangers. Group 2010, 226, 218–226. [Google Scholar]
- Ayub, Z.H. Plate heat exchanger literature survey and new heat transfer and pressure drop correlations for refrigerant evaporators. Heat Transf. Eng. 2003, 24, 3–16. [Google Scholar] [CrossRef]
- Neeraas, B.O.; Fredheim, A.O.; Aunan, B. Experimental data and model for heat transfer, in liquid falling film flow on shell-side, for spiral-wound LNG heat exchanger. Int. J. Heat Mass Transf. 2004, 47, 3565–3572. [Google Scholar] [CrossRef]
- Huang, C.; Cai, W.; Wang, Y.; Liu, Y.; Li, Q.; Li, B. Review on the characteristics of flow and heat transfer in printed circuit heat exchangers. Appl. Therm. Eng. 2019, 153, 190–205. [Google Scholar] [CrossRef]
- Sabharwall, P.; McCllar, M.; Siahpush, A.; Clark, D.; Patterson, M.; Collins, J. Technology Development Roadmap for the Advanced High Temperature Reactor Secondary Heat Exchanger; Idaho National Lab. (INL): Idaho Falls, ID, USA, 2012.
- Sabharwall, P.; Clark, D.; Glazoff, M.; Zheng, G.Q.; Sridharan, K.; Anderson, M. Advanced heat exchanger development for molten salts. Nucl. Eng. Des. 2014, 280, 42–56. [Google Scholar] [CrossRef]
- Aakre, S.R.; Anderson, M.H. Pressure drop and heat transfer characteristics of nitrate salt and supercritical CO2 in a diffusion-bonded heat exchanger. Int. J. Heat Mass Transf. 2022, 189, 122691. [Google Scholar] [CrossRef]
- Kim, I.H.; Zhang, X.; Christensen, R.; Sun, X. Design study and cost assessment of straight, zigzag, S-shape, and OSF PCHEs for a FLiNaK–S-CO2 Secondary Heat Exchanger in FHRs. Ann. Nucl. Energy 2016, 94, 129–137. [Google Scholar] [CrossRef]
- Manglik, R.M.; Bergles, A.E. Heat transfer and pressure drop correlations for the rectangular offset strip fin compact heat exchanger. Exp. Therm. Fluid Sci. 1995, 10, 171–180. [Google Scholar] [CrossRef]
- Sun, X.; Zhang, X.; Christensen, R.; Anderson, M. Compact Heat Exchanger Design and Testing for Advanced Reactors and Advanced Power Cycles; The Ohio State Univ.: Columbus, OH, USA, 2018. [Google Scholar]
- Aakre, S.; Anderson, M.H. Molten Salt to Supercritical CO2 Diffusion-Bonded Heat Exchanger Testing to Support Component Certification for Advanced Nuclear Power Systems; University of Wisconsin-Madison: Madison, WI, USA, 2019. [Google Scholar]
- Fu, Q.; Ding, J.; Lao, J.; Wang, W.; Lu, J. Thermal-hydraulic performance of printed circuit heat exchanger with supercritical carbon dioxide airfoil fin passage and molten salt straight passage. Appl. Energy 2019, 247, 594–604. [Google Scholar] [CrossRef]
- Fu, Q.; Zhang, Y.; Ding, J.; Wang, W.; Lu, J. Optimization of Zigzag Passage of Pche for Molten Salt/S-CO2 Heat Exchanger. In Proceedings of the International Conference on Applied Energy 2019, Vasteras, Sweden, 12–15 August 2019. [Google Scholar]
- Wang, W.Q.; Qiu, Y.; He, Y.L.; Shi, H.Y. Experimental study on the heat transfer performance of a molten-salt printed circuit heat exchanger with airfoil fins for concentrating solar power. Int. J. Heat Mass Transf. 2019, 135, 837–846. [Google Scholar] [CrossRef]
- Kim, D.E.; Kim, M.H.; Cha, J.E.; Kim, S.O. Numerical investigation on thermal–hydraulic performance of new printed circuit heat exchanger model. Nucl. Eng. Des. 2008, 238, 3269–3276. [Google Scholar] [CrossRef]
- Xu, X.; Ma, T.; Li, L.; Zeng, M.; Chen, Y.; Huang, Y.; Wang, Q. Optimization of fin arrangement and channel configuration in an airfoil fin PCHE for supercritical CO2 cycle. Appl. Therm. Eng. 2014, 70, 867–875. [Google Scholar] [CrossRef]
- Yoon, S.H.; No, H.C.; Kang, G.B. Assessment of straight, zigzag, S-shape, and airfoil PCHEs for intermediate heat exchangers of HTGRs and SFRs. Nucl. Eng. Des. 2014, 270, 334–343. [Google Scholar] [CrossRef]
- Shi, H.Y.; Li, M.J.; Wang, W.Q.; Qiu, Y.; Tao, W.Q. Heat transfer and friction of molten salt and supercritical CO2 flowing in an airfoil channel of a printed circuit heat exchanger. Int. J. Heat Mass Transf. 2020, 150, 119006. [Google Scholar] [CrossRef]
- Niu, X.; Liu, J.; Yue, G.; Li, H.; Qi, L.; Hong, W. Numerical study on the flow and heat transfer performance of SCO2/molten salt in Z-type printed circuit heat exchangers. Appl. Therm. Eng. 2024, 247, 123015. [Google Scholar] [CrossRef]
- Yang, Y.; Lu, Y.; Wei, H.; Wu, Y.; Gao, Q. Numerical study of thermal-hydraulic performance of sCO2-molten salt printed circuit heat exchanger with discontinuous fins channel. Numer. Heat Transf. Part A Appl. 2023, 84, 198–218. [Google Scholar] [CrossRef]
- Ding, M.; Chen, Y.; Fu, Y. Thermal hydraulic performance analysis of printed circuit heat exchanger based on high temperature molten salt. Nucl. Tech. 2024, 47, 040601–040611. [Google Scholar]
- Arora, O.; Fernandez Cosials, K.; Vaghetto, R.; Hassan, Y.A. Pressure drop and friction factor study for an airfoil-fin printed circuit heat exchanger using experimental and numerical techniques. Int. J. Heat Fluid Flow 2023, 101, 109137. [Google Scholar] [CrossRef]
- Mochizuki, H. Study of thermal-hydraulics of a sinusoidal layered heat exchanger for MSR. Nucl. Eng. Des. 2022, 396, 111900. [Google Scholar] [CrossRef]
- Zhou, Y.; Yin, D.; Guo, X. Flow and heat transfer performance of molten salt and CO2-based mixtures in printed circuit heat exchangers. Appl. Therm. Eng. 2023, 224, 120104. [Google Scholar] [CrossRef]
- Jiragoontansiri, W.; Woravisuttsarakul, T.; Sae-Pueng, R.; Sukjai, Y. The effect of flow channel geometry on thermomechanical performance of printed circuit heat exchanger (PCHE). J. Nucl. Eng. Radiat. Sci. 2023, 9, 021401. [Google Scholar] [CrossRef]
- Che, S.; Zhang, S.; Burak, A.; Sun, X. Structural integrity assessment of a unit cell in a laboratory-scale Printed Circuit Heat Exchanger for Molten Salt Reactors with supercritical CO2 power cycle. In Proceedings of the Volume 2: Computer Technology and Bolted Joints; Design and Analysis, Online, 13–15 July 2021. [Google Scholar] [CrossRef]
- Lao, J.; Fu, Q.; Wang, W.; Ding, J.; Lu, J. Heat transfer characteristics of printed circuit heat exchanger with supercritical carbon dioxide and molten salt. J. Therm. Sci. 2021, 30, 880–891. [Google Scholar] [CrossRef]
- He, M.; Talaat, K.; Chen, M. Design and optimization of molten salt printed circuit steam generators. Appl. Therm. Eng. 2024, 238, 122161. [Google Scholar] [CrossRef]
- Yao, Y.; Ding, J.; Zhang, Y.; Wang, W.; Lu, J. Heat transfer performance of pillow plate heat exchanger with molten salt and supercritical carbon dioxide. Int. J. Heat Mass Transf. 2022, 183, 122211. [Google Scholar] [CrossRef]
- Tano, I.N.; Rasouli, E.; Ziev, T.; Wu, Z.; Lamprinakos, N.; Seo, J.; Schulze Balhorn, L.; Vaishnav, P.; Rollett, A.; Narayanan, V. An additively-manufactured molten salt-to-supercritical carbon di-oxide primary heat exchanger for solar thermal power generation–Design and techno-economic performance. Sol. Energy 2022, 234, 152–169. [Google Scholar] [CrossRef]
- Tano, I.N.; Rasouli, E.; Ziev, T.; Seo, J.; Lamprinakos, N.; Vaishnav, P.; Rollett, A.; Wu, Z.; Narayanan, V. A Scalable Compact Additively Manufactured Molten Salt to Supercritical Carbon Dioxide Heat Exchanger for Solar Thermal Application. J. Sol. Energy Eng. 2024, 146, 011007. [Google Scholar] [CrossRef]
- Zhu, Q.; Pishahang, M.; Bichnevicius, M.; Amy, C.; Caccia, M.; Sandhage, K.H.; Henry, A. The importance of maldistribution matching for thermal performance of compact heat exchangers. Appl. Energy 2022, 324, 119576. [Google Scholar] [CrossRef]
- Tian, W.; Peng, T.; Fan, X.; Tang, Y.; Fan, D.; Wang, Y.; Liu, X.; Meng, H.; Gu, L. Numerical analysis of turbulent mixed convection heat transfer of molten salt in horizontal tubes with uniformly cooled heat flux. Int. J. Heat Mass Transf. 2024, 228, 125630. [Google Scholar] [CrossRef]
- Prantikos, K.; Lee, T.; Tsoukalas, L.H.; Heifetz, A. Conceptual Machine Learning-Based Strategy for Molten Salt Heat Exchanger Channel Plugging Detection and Localization. In Proceedings of the 2023 American Nuclear Society Annual Meeting, Indianapolis, IN, USA, 11–14 June 2023; pp. 11–14. [Google Scholar]
- Chu, W.X.; Li, X.H.; Ma, T.; Chen, Y.T.; Wang, Q.W. Study on hydraulic and thermal performance of printed circuit heat transfer surface with distributed airfoil fins. Appl. Therm. Eng. 2017, 114, 1309–1318. [Google Scholar] [CrossRef]
- Cui, X.; Guo, J.; Huai, X.; Cheng, K.; Zhang, H.; Xiang, M. Numerical study on novel airfoil fins for printed circuit heat exchanger using supercritical CO2. Int. J. Heat Mass Transf. 2018, 121, 354–366. [Google Scholar] [CrossRef]
- Zheng, C.; Lian, W.; Li, Y.; Wu, Z. Investigation on the performance of a novel heat transfer structure based on a new twisted airfoil fin array. Appl. Therm. Eng. 2024, 256, 124134. [Google Scholar] [CrossRef]
- Rapp, R.A.; Goto, K.S. The hot corrosion of metals by molten salts. ECS Proc. Vol. 1981, 1981, 159. [Google Scholar] [CrossRef]
- Bell, S.; Steinberg, T.; Will, G. Corrosion mechanisms in molten salt thermal energy storage for concentrating solar power. Renew. Sustain. Energy Rev. 2019, 114, 109328. [Google Scholar] [CrossRef]
- Guillot, S.; Faik, A.; Rakhmatullin, A.; Lambert, J.; Veron, E.; Echegut, P.; Bessada, C.; Calvet, N.; Py, X. Corrosion effects between molten salts and thermal storage material for concentrated solar power plants. Appl. Energy 2012, 94, 174–181. [Google Scholar] [CrossRef]
- Patel, N.S.; Pavlík, V.; Boča, M. High-temperature corrosion behavior of superalloys in molten salts—A review. Crit. Rev. Solid State Mater. Sci. 2017, 42, 83–97. [Google Scholar] [CrossRef]
- Palacios, A.; Navarro, M.E.; Jiang, Z.; Avila, A.; Qiao, G.; Mura, E.; Ding, Y. High-temperature corrosion behaviour of metal alloys in commercial molten salts. Sol. Energy 2020, 201, 437–452. [Google Scholar] [CrossRef]
- Liu, Q.; Wang, Z.; Liu, W.; Yin, H.; Tang, Z.; Qian, Y. Ni-Mo-Cr alloy corrosion in molten NaCl-KCl-MgCl2 salt and vapour. Corros. Sci. 2021, 180, 109183. [Google Scholar] [CrossRef]
- Zheng, G.; Sridharan, K. Corrosion of structural alloys in high-temperature molten fluoride salts for applications in molten salt reactors. JOM 2018, 70, 1535–1541. [Google Scholar] [CrossRef]
- Vignarooban, K.; Xu, X.; Wang, K.; Molina, E.E.; Li, P.; Gervasio, D.; Kannan, A.M. Vapor pressure and corrosivity of ternary metal-chloride molten-salt based heat transfer fluids for use in concentrating solar power systems. Appl. Energy 2015, 159, 206–213. [Google Scholar] [CrossRef]
- Olson, L.C.; Ambrosek, J.W.; Sridharan, K.; Anderson, M.H.; Allen, T.R. Materials corrosion in molten LiF–NaF–KF salt. J. Fluor. Chem. 2009, 130, 67–73. [Google Scholar] [CrossRef]
- Sabharwall, P.; Clark, D.E.; Mizia, R.E.; Glazoff, M.V.; McKellar, M.G. Diffusion-welded microchannel heat exchanger for industrial processes. J. Therm. Sci. Eng. Appl. 2013, 5, 011009. [Google Scholar] [CrossRef]
- Kelly, J.P.; Finkenauer, L.R.; Roy, P.; Stolaroff, J.K.; Nguyen, D.T.; Ross, M.S.; Hoff, A.T.; Haslam, J.J. Binder jet additive manufacturing of ceramic heat exchangers for concentrating solar power applications with thermal energy storage in molten chlorides. Addit. Manuf. 2022, 56, 102937. [Google Scholar] [CrossRef]
- Du, W.; Yu, W.; France, D.M.; Singh, M.; Singh, D. Additive manufacturing and testing of a ceramic heat exchanger for high-temperature and high-pressure applications for concentrating solar power. Sol. Energy 2022, 236, 654–665. [Google Scholar] [CrossRef]
- Ren, Q.Q.; Su, Y.F.; Feldhausen, T.A.; Kurfess, R.A.; Fillingim, K.B.; Nag, S.; Pillai, R.R. Multiscale characterization of an additively manufactured property graded Ni-base alloy for molten-salts\supercritical-CO2 heat exchangers. Mater. Des. 2024, 237, 112560. [Google Scholar] [CrossRef]
- Wan, Y.; Xie, X.; Jiang, W.; Li, S.; Ye, P.; Dong, Z. Creep damage and crack propagation behavior of printed circuit heat exchanger manufactured by diffusion welding: From material to structure. J. Mater. Res. Technol. 2023, 27, 1446–1460. [Google Scholar] [CrossRef]
- Chen, K.; Huang, C.; Qi, X.; Ke, H.; Zhao, Z. Molecular dynamics study on diffusion welding technology of PCHE. IET Conf. Proc. 2024, 2024, 160–165. [Google Scholar] [CrossRef]
- Ma, T.; Xin, F.; Li, L.; Xu, X.-Y.; Chen, Y.-T.; Wang, Q.-W. Effect of fin-endwall fillet on thermal hydraulic performance of airfoil printed circuit heat exchanger. Appl. Therm. Eng. 2015, 89, 1087–1095. [Google Scholar] [CrossRef]
- Sun, S.; Moreira, T.A.; Rankouhi, B.; Yu, X.; Jentz, I.W.; Thoma, D.J.; Anderson, M.H.; Qian, X. Topology optimization, additive manufacturing and thermohydraulic testing of high-temperature heat exchangers. Int. J. Heat Mass Transf. 2025, 242, 126809. [Google Scholar] [CrossRef]
- Yang, Q.; Chen, L.; Ke, H.; Gu, L.; Zheng, X.; Li, S.; Tao, W. Multi-layer topology optimization of dual-fluid convective heat transfer in printed circuit heat exchangers. Appl. Therm. Eng. 2024, 257, 124434. [Google Scholar] [CrossRef]
- Zhang, Y.; Haddad, F.; Li, P. Analysis of Heat Transfer of Molten Salts Startup Flow in Cold Pipes Avoiding Freezing in Solar and Nuclear Energy Systems. J. Sol. Energy Eng. 2025, 147, 011002. [Google Scholar] [CrossRef]
- Ali, M.; Ul-Hamid, A.; Khan, T.; Bake, A.; Butt, H.; Bamidele, O.E.; Saeed, A. Corrosion-related failures in heat exchangers. Corros. Rev. 2021, 39, 519–546. [Google Scholar] [CrossRef]
High-Temperature Working Fluid | Low-Temperature Working Fluid | |
---|---|---|
Primary Loop Intermediate Heat Exchanger | FLiBe | FLiNaK or FLiBe |
Conditions at the Working Fluid Inlet | T: 600 °C~700 °C P: 1~2 bar | T: 500 °C P: 1.5 bar |
Secondary Loop Molten Salt-Water Evaporator | FLiNaK, FLiBe | Water or Steam |
Conditions at the Working Fluid Inlet | T: 550 °C~600 °C P: 1.5 bar | T: 150 °C P: 1.5 Mpa |
Thermophysical Property | FLiBe 1 | FLiNaK 2 |
---|---|---|
Density (kg/m3) | ρ = 2413 − 0.488 × T | ρ = 2579 – 0.624 × T |
Specific heat (J/kg-K) | 2386 ± 3% | 1884 |
Thermal conductivity (W/m-K) | 1.1 | K = 0.36 + 0.00056 × T |
Viscosity (cP) | µ = 0.116 e3755/T | μ = 0.04 e4170/T |
Thermophysical Property | Solar Salt 1 | Hitec 2 | Hitec XL 3 |
---|---|---|---|
Density (kg/m3) @300 °C | 1889 | 1860 | 1992 |
Specific heat (J/kg-K) @300 °C | 1495 | 1560 | 1447 |
Thermal conductivity (W/m-K) | 0.5 | 0.48 | 0.43 |
Viscosity (cP) @300 °C | 3.26 | 3.16 | 6.37 |
Heat Transfer Medium Temperature | FliBe | FliNaK | Solar Salt | Hitec | Hitec XL |
---|---|---|---|---|---|
The upper limit working temperature (°C) | 663~700 | 700 | 565 | 538 | 425 |
The lower limit temperature (°C) | ca. 635 | ca. 600 | ca. 290 | ca. 200 | ca. 200 |
Boiling point temperature (°C) | 1430 | 1570 | — | 873 | — |
Freezing point temperature (°C) | 459 | 462 | 220 | 142 | 120 |
Key Alloys | Type of Molten Salt | 550–600 °C (μm/Year) | 650–700 °C (μm/Year) |
---|---|---|---|
Hastelloy N | FLiBe | <2 | <10 |
316L | FLiBe | 10–20 | 20–40+ |
Hastelloy N | Solar Salt | 1–5 | 5–10 |
316L | Solar Salt | 10–30 | 30–50+ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zheng, C.; Cheng, K.; Han, D. High-Temperature Molten Salt Heat Exchanger Technology: Research Advances, Challenges, and Future Perspectives. Energies 2025, 18, 3195. https://doi.org/10.3390/en18123195
Zheng C, Cheng K, Han D. High-Temperature Molten Salt Heat Exchanger Technology: Research Advances, Challenges, and Future Perspectives. Energies. 2025; 18(12):3195. https://doi.org/10.3390/en18123195
Chicago/Turabian StyleZheng, Chunyang, Keyong Cheng, and Dongjiang Han. 2025. "High-Temperature Molten Salt Heat Exchanger Technology: Research Advances, Challenges, and Future Perspectives" Energies 18, no. 12: 3195. https://doi.org/10.3390/en18123195
APA StyleZheng, C., Cheng, K., & Han, D. (2025). High-Temperature Molten Salt Heat Exchanger Technology: Research Advances, Challenges, and Future Perspectives. Energies, 18(12), 3195. https://doi.org/10.3390/en18123195