Application of Mercury Intrusion Porosimetry in Coal Pore Structure Characterization: Conformance Effect and Compression Effect Correction
Abstract
:1. Introduction
2. Research Methods
2.1. Experimental Samples
2.2. MIP Experiment
3. Correction Methods for the MIP Experimental Data
3.1. Determination of the “Actual Entry Pressure” and “Closure Pressure”
3.1.1. Fractal Dimension Method
3.1.2. Conformance Volume and Intrusion Volume Identification Method
3.2. Correction Methods for the Mercury Intrusion Volume and Pore Volume
3.2.1. Conformance Volume and Intrusion Volume Correction Method
3.2.2. Stage Correction Method
3.3. Analysis of the Correction Results
3.3.1. Identification Results of the Correction Pressure Interval
3.3.2. Pore Size Structure Correction Results
3.3.3. Correction Results for Porosity, Apparent Density, and True Density
4. New MIP Experimental Data Correction Method
4.1. Proposal for the Correction Method
4.2. Pore Structure Correction Analysis
4.3. Impact of the Conformance Effect and Compression Effect on the Correction Results
4.3.1. Impact of the Conformance Volume on the Correction Results
4.3.2. Impact of the Coal Matrix Volume Compression on the Correction Results
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mou, P.W.; Pan, J.N.; Niu, Q.H.; Wang, Z.Z.; Li, Y.B.; Song, D.Y. Coal Pores: Methods, Types, and Characteristics. Energy Fuels 2021, 35, 7467–7484. [Google Scholar] [CrossRef]
- Lu, J.L.; Fu, X.H.; Kang, J.Q.; Cheng, M.; Wang, Z.Z. Characterization of Full Pore and Stress Compression Response of Reservoirs with Different Coal Ranks. Front. Earth Sci. 2021, 9, 764853. [Google Scholar] [CrossRef]
- Dong, D.W.; Yang, J.S.; Hu, Q.J.; Cui, S.T.; Sun, F.J.; Zhang, J.D.; Cui, X.R. Pore Structure Characteristics of Low-rank Coal Reservoirs with Different Ash yields and Their Implications for Recoverability of Coalbed Methane—A Case Study from the Erlian Basin, northeastern China. Front. Earth Sci. 2023, 17, 18–29. [Google Scholar] [CrossRef]
- Tian, X.H.; Song, D.Z.; He, X.Q.; Khan, M.; Liu, X.F.; Ji, H.J.; Li, Z.L.; Qiu, L.M. A Systematic Review on the Applications of Atomic Force Microscopy for Coal and Rock Characterization. Measurement 2024, 232, 114722. [Google Scholar] [CrossRef]
- Yu, Y.B.; Rong, K.; Cui, W.T.; Cheng, W.M.; Chen, Y.T.; Wei, W. Pore Structure Dynamic Evolution of Coal during Hydraulic Intrusion based on NMR. Measurement 2024, 227, 114247. [Google Scholar] [CrossRef]
- Wen, Y.Z.; Ni, G.H.; Zhang, X.Y.; Zheng, Y.C.; Wang, G.; Wang, Z.Y.; Huang, Q.M. Fine Characterization of Pore Structure of Acidified Anthracite based on Liquid Intrusion Method and Micro-CT. Energy 2023, 263, 125639. [Google Scholar]
- Ling, Y.; Zhao, L.Y.; Wang, K.; Xia, P.; Yang, C.; Shi, F.W.; Yao, Y.Z. How Does Subcritical CO2 Affect the Microstructure of Coal under Saturated Water Conditions at Different Temperatures. Energy Fuels 2025, 39, 1588–1600. [Google Scholar] [CrossRef]
- Liu, S.Q.; Sang, S.X.; Fang, H.H. Characteristics of High-rank Coal Structure Parallel and Perpendicular to the Bedding Plane via NMR and X-ray CT. Pet. Sci. 2020, 17, 925–938. [Google Scholar] [CrossRef]
- Zheng, S.J.; Yao, Y.B.; Liu, D.M.; Sang, S.X.; Liu, S.Q.; Wang, M.; Zhou, X.Z.; Wang, R.; Han, S.J.; Liu, T. Re-evaluating the Accurate Multiphase Water Distribution in Coals: Unifying Experiment and Theory. Chem. Eng. J. 2023, 464, 142637. [Google Scholar] [CrossRef]
- Ren, W.G.; Zhou, H.W.; Zhong, J.C.; Xue, D.J.; Wang, C.S.; Liu, Z.L. A Multi-Scale Fractal Approach for Coal Permeability Estimation via MIP and NMR Methods. Energies 2022, 15, 2807. [Google Scholar] [CrossRef]
- Li, Y.B.; Song, D.Y.; Liu, S.M.; Ji, X.F.; Hao, H.J. Evaluation of Pore Properties in Coal through Compressibility Correction based on Mercury Intrusion Porosimetry: A Practical Approach. Fuel 2021, 291, 120130. [Google Scholar] [CrossRef]
- Washburn, E.W. The Dynamics of Capillary Flow. Phys. Rev. 1921, 17, 273–783. [Google Scholar] [CrossRef]
- Liu, S.Q.; Sang, S.X.; Wang, G.; Ma, J.S.; Wang, X.; Wang, W.F.; Du, Y.; Wang, T. FIB-SEM and X-ray CT Characterization of Interconnected Pores in High-rank Coal Formed from Regional Metamorphism. J. Pet. Sci. Eng. 2017, 148, 21–31. [Google Scholar] [CrossRef]
- Liu, S.Q.; Wang, H.; Sang, S.X.; Liu, T.; Zheng, S.J. Effects of Pore Structure Changes on the CH4 Adsorption Capacity of Coal during CO2-ECBM. Fuel 2022, 330, 125529. [Google Scholar] [CrossRef]
- Peng, S.; Zhang, T.W.; Loucks, R.G.; Shuitz, J. Application of Mercury Injection Capillary Pressure to Mudrocks: Conformance and Compression Corrections. Mar. Pet. Geol. 2017, 88, 30–40. [Google Scholar] [CrossRef]
- Liu, S.Q.; Ma, J.S.; Sang, S.X.; Wang, T.; Du, Y.; Fang, H.H. The Effects of Supercritical CO2 on Mesopore and Macropore Structure in Bituminous and Anthracite Coal. Fuel 2018, 223, 32–43. [Google Scholar] [CrossRef]
- Ren, B.; Zheng, S.J.; Ping, L.H.; Wang, M.; Dai, X.G.; Liu, Y.Z.; Xu, S.; Wu, X.P. Re-Calibrating the Mercury-Intrusion-Porosimetry-Measured Pore Size Distribution of Coals: A Novel Method for Calculating the Matrix Compression Coefficient. Processes 2024, 12, 1928. [Google Scholar] [CrossRef]
- Yang, Q.L.; Xue, J.H.; Li, W.; Du, X.H.; Ma, Q.; Zhan, K.L.; Chen, Z.H. Comprehensive Evaluation and Interpretation of Mercury Intrusion Porosimetry Data of Coals Based on Fractal Theory, Tait Equation and Matrix Compressibility. Fuel 2021, 298, 120823. [Google Scholar] [CrossRef]
- Zhou, S.D.; Liu, D.M.; Karpyn, Z.T.; Cai, Y.D.; Yao, Y.B. Dual Compressibility Characteristics of Lignite, Subbituminous, and High-Volatile Bituminous Coals: A New Insight into Permeability. Transp. Porous Media 2021, 136, 295–317. [Google Scholar] [CrossRef]
- Comisky, J.T.; Santiago, M.; Mccollom, B.; Buddhala, A.; Newsham, K.E. Sample Size Effects on the Application of Mercury Injection Capillary Pressure for Determining the Storage Capacity of Tight Gas and Oil Shales. In Proceedings of the Canadian Unconventional Resources Conference, Calgary, AB, Canada, 15–17 November 2011. [Google Scholar]
- Zhang, S.S.; Wu, C.F.; Liu, H. Comprehensive Characteristics of Pore Structure and Factors Influencing Micropore Development in the Laochang Mining Area, Eastern Yunnan, China. J. Pet. Sci. Eng. 2020, 190, 107090. [Google Scholar] [CrossRef]
- Xin, F.D.; Xu, H.; Tang, D.Z.; Liu, D.; Cao, C. Problems in Pore Property Testing of Lignite: Analysis and Correction. Int. J. Coal Geol. 2021, 245, 103829. [Google Scholar] [CrossRef]
- Yu, Y.X.; Luo, X.R.; Wang, Z.X.; Cheng, M.; Lei, Y.H.; Zhang, L.K.; Yin, J.T. A new Correction Method for Mercury Injection Capillary Pressure (MICP) to Characterize the Pore Structure of Shale. J. Nat. Gas Sci. Eng. 2019, 68, 102896. [Google Scholar] [CrossRef]
- Liu, L.L.; Cui, Z.H.; Wang, J.J.; Xia, Z.H.; Duan, L.J.; Yang, Y.; Li, M.; Li, T. Pore Size Distribution Characteristics of High Rank Coal with Various Grain Sizes. ACS Omega 2020, 5, 19785–19795. [Google Scholar] [CrossRef]
- Reed, R.M.; Loucks, R.G. Low-thermal-maturity (<0.7% VR) Mudrock Pore Systems: Mississippian Barnett Shale, Southern Fort Worth Basin. Gulf Coast Assoc. Geol. Soc. 2015, 4, 15–28. [Google Scholar]
- Zhou, Y.Q.; Xu, J.; Lan, Y.Y.; Zi, H.; Cui, Y.L.; Chen, Q.X.; You, L.Z.; Fan, X.Q.; Wang, G.W. New Insights into Pore Fractal Dimension from Mercury Injection Capillary Pressure in Tight Sandstone. Geoenergy Sci. Eng. 2023, 228, 212059. [Google Scholar] [CrossRef]
- Fu, D.; Belhaj, H.; Bera, A. Modeling and Simulation of Transition Zones in Tight Carbonate Reservoirs by Incorporation of Improved Rock Typing and Hysteresis Models. J. Pet. Explor. Prod. Technol. 2018, 8, 1051–1068. [Google Scholar] [CrossRef]
- Han, B.B.; Qin, Y.; Zhang, Z.; Wang, G.; Wang, P. Study on Coal Compressibility and Correction of Compression Amount based on Compressibility of Mercury Injection Test. Coal Sci. Technol. 2015, 43, 68–72. [Google Scholar]
- Liu, S.Q.; Wang, H.; Wang, R. Research Advances on Characteristics of Pores and Fractures in Coal Seams. Acta Sedimentol. Sin. 2021, 39, 212–230. [Google Scholar]
- Fu, W.; Hu, W.S.; Yi, T.S.; Kane, Q.I.; Zhang, M.; Huang, X. Fractal Dimension Analysis of Pores in Coal Reservoir and Their Impact on Petrophysical Properties: A Case Study in the Province of Guizhou, SW China. Minerals 2022, 12, 1425. [Google Scholar] [CrossRef]
- Lv, R.S.; Zhu, Y.C.; Ma, X.Y.; Ni, X.M.; Ren, J.G. Coupled Seepage Mechanics Model of Coal Containing Methane Based on Pore Structure Fractal Features. Fractal Fract. 2022, 6, 391. [Google Scholar] [CrossRef]
- Liu, C.J.; Wang, G.X.; Sang, S.X.; Gilani, W.; Rudolph, V. Fractal Analysis in Pore Structure of Coal under Conditions of CO2 Sequestration Process. Fuel 2015, 139, 125–132. [Google Scholar] [CrossRef]
- Bailey, S. Closure and Compressibility Corrections to Capillary Pressure Data in Shales. Oral Presentation Given at the DWLS 2009 Fall Workshop. 2009. Available online: http://refhub.elsevier.com/S0264-8172(17)30296-9/sref2 (accessed on 12 June 2025).
- Loucks, R.G.; Reed, R.M.; Ruppel, S.C.; Hammes, U. Spectrum of Pore Types and Networks in Mudrocks and a Descriptive Classification for Matrix-related Mudrock Pores. AAPG Bull 2012, 96, 1071–1098. [Google Scholar] [CrossRef]
- Zhong, B.Y.; Zhu, Y.M.; Feng, G.J.; Xiang, J.; Wang, Y. Matrix Compression and Pore Heterogeneity in the Coal-Measure Shale Reservoirs of the Qinshui Basin: A Multifractal Analysis. Fractal Fract. 2024, 8, 580. [Google Scholar] [CrossRef]
Number | Sampling Position | Ro, max | Industrial Analysis | φ | ρbulk | ρture | |||
---|---|---|---|---|---|---|---|---|---|
Mad | Aad | Vdaf | FCad | ||||||
#1 | Saier Energy No.6 mine | 0.40 | 11.04 | 4.87 | 43.99 | 47.10 | 4.05 | 1.35 | 1.41 |
#2 | Yangzhuang mine | 0.72 | 2.05 | 5.92 | 39.94 | 55.28 | 2.62 | 1.31 | 1.35 |
#3 | Shoushan mine | 1.35 | 0.90 | 13.48 | 19.44 | 68.97 | 3.04 | 1.31 | 1.35 |
#4 | Xinyuan mine | 1.81 | 0.96 | 6.15 | 15.69 | 78.31 | 2.53 | 1.42 | 1.46 |
#5 | Yuwu mine | 2.19 | 1.51 | 12.08 | 12.47 | 75.63 | 2.90 | 1.43 | 1.47 |
#6 | Sihe mine | 3.33 | 4.21 | 11.07 | 7.14 | 78.67 | 2.65 | 1.57 | 1.61 |
Samples | The Fractal Dimension Method | The Conformance Volume and Intrusion Volume Identification Method | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Fractal Dimension | Pressure Interval | Corresponding Pore Diameter | Correction Parameters | Pressure Interval | Corresponding Pore Diameter | ||||||||||
D1 | D2 | D3 | P1, MPa | P2, MPa | P3, MPa | d1 | d2 | d3 | m | n | Pc, MPa | Pi, MPa | dc | di | |
#1 | 2.59 | 2.80 | 3.91 | 0.052 | 10.32 | 72.89 | 24173.7 | 120.8 | 17.1 | 0.15 | −1.35 | 0.031 | 6.81 | 40304.5 | 183.1 |
#2 | 2.08 | 3.05 | 3.83 | 0.041 | 8.26 | 72.89 | 30198.9 | 150.9 | 17.1 | 0.12 | −1.16 | 0.035 | 28.45 | 41675.9 | 51.7 |
#3 | 2.29 | 2.85 | 3.97 | 0.038 | 6.87 | / | 33008.4 | 181.5 | / | 0.02 | −1.10 | 0.137 | 8.02 | 10741.8 | 183.3 |
#4 | 2.39 | 2.92 | 3.92 | 0.041 | 13.76 | / | 30270.2 | 90.6 | / | 0.03 | −1.38 | 0.066 | 10.37 | 22450.5 | 141.9 |
#5 | 2.05 | 3.06 | 3.69 | 0.041 | 6.87 | / | 30279.5 | 181.5 | / | 0.01 | −1.12 | 0.092 | 7.69 | 16028.9 | 191.3 |
#6 | 2.29 | 2.85 | 3.97 | 0.038 | 6.87 | / | 33008.4 | 181.5 | / | 0.01 | −1.07 | 0.153 | 13.16 | 9619.8 | 111.8 |
Sample | Uncorrected | Conformance Volume and Intrusion Volume Correction Method | Stage Correction Method | ||||||
---|---|---|---|---|---|---|---|---|---|
φ, % | ρbulk, g/cm3 | ρture, g/cm3 | φ, % | ρbulk, g/cm3 | ρture, g/cm3 | φ, % | ρbulk, g/cm3 | ρture, g/cm3 | |
#1 | 6.34 | 1.22 | 1.25 | 1.59 | 1.23 | 1.25 | 3.45 | 1.23 | 1.27 |
#2 | 4.63 | 1.25 | 1.28 | 2.42 | 1.29 | 1.33 | 2.41 | 1.29 | 1.33 |
#3 | 5.96 | 1.30 | 1.34 | 0.22 | 1.35 | 1.36 | 1.35 | 1.35 | 1.37 |
#4 | 4.73 | 1.19 | 1.22 | 0.44 | 1.27 | 1.27 | 1.38 | 1.27 | 1.28 |
#5 | 5.02 | 1.28 | 1.31 | 0.36 | 1.45 | 1.46 | 1.97 | 1.45 | 1.48 |
#6 | 4.85 | 1.26 | 1.29 | 0.3 | 1.45 | 1.46 | 1.46 | 1.45 | 1.47 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, S.; Liang, Y.; Sang, S.; Wang, H.; Wang, W.; Sun, J.; Li, F. Application of Mercury Intrusion Porosimetry in Coal Pore Structure Characterization: Conformance Effect and Compression Effect Correction. Energies 2025, 18, 3185. https://doi.org/10.3390/en18123185
Liu S, Liang Y, Sang S, Wang H, Wang W, Sun J, Li F. Application of Mercury Intrusion Porosimetry in Coal Pore Structure Characterization: Conformance Effect and Compression Effect Correction. Energies. 2025; 18(12):3185. https://doi.org/10.3390/en18123185
Chicago/Turabian StyleLiu, Shiqi, Yu Liang, Shuxun Sang, He Wang, Wenkai Wang, Jianbo Sun, and Fukang Li. 2025. "Application of Mercury Intrusion Porosimetry in Coal Pore Structure Characterization: Conformance Effect and Compression Effect Correction" Energies 18, no. 12: 3185. https://doi.org/10.3390/en18123185
APA StyleLiu, S., Liang, Y., Sang, S., Wang, H., Wang, W., Sun, J., & Li, F. (2025). Application of Mercury Intrusion Porosimetry in Coal Pore Structure Characterization: Conformance Effect and Compression Effect Correction. Energies, 18(12), 3185. https://doi.org/10.3390/en18123185