Thermal Comfort, Environmental Quality, and Energy Consumption in the Built Environment
1. The Interplay of Key Factors
2. Key Contributions from the Special Issue
2.1. Optimizing Ventilation for Energy Efficiency, Comfort, and Sustainable Cooling Solutions
2.2. Innovative HVAC Control and Air Distribution Strategies
2.3. Biophilic Design and Occupant Well-Being
3. Towards Integrated Solutions
- Renewables Integration: Solar energy and passive cooling strategies can decouple comfort from high energy consumption. Simultaneously, it is becoming imperative to incorporate circular economy principles like building repurposing and material reuse [26].
- Holistic Retrofitting: As shown in the multi-family building study, deep energy retrofits must prioritize the indoor environmental quality alongside the energy efficiency of the space [30]. This is also an important change introduced into the 2024 recast of the Energy Performance of Buildings Directive, EU [31].
4. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lamb, S.; Kwok, K.C.S. A longitudinal investigation of work environment stressors on the performance and wellbeing of office workers. Appl. Ergon. 2016, 52, 104–111. [Google Scholar] [CrossRef] [PubMed]
- Seppanen, O.; Fisk, W.J.; Faulkner, D. Control of temperature for health and productivity in offices. ASHRAE Trans. 2005, 111, 1–9. [Google Scholar]
- Fisk, W.J. Health and productivity gains from better indoor environments and their relationship with building energy efficiency. Annu. Rev. Environ. Resour. 2000, 25, 537–566. [Google Scholar] [CrossRef]
- Kent, M.G.; Huynh, N.K.; Mishra, A.K.; Tartarini, F.; Lipczynska, A.; Li, J.; Sultan, Z.; Goh, E.; Karunagaran, G.; Natarajan, A.; et al. Energy savings and thermal comfort in a zero energy office building with fans in Singapore. Build. Environ. 2023, 243, 110674. [Google Scholar] [CrossRef]
- Yang, L.; Yan, H.; Lam, J.C. Thermal comfort and building energy consumption implications—A review. Appl. Energy 2014, 115, 164–173. [Google Scholar] [CrossRef]
- Rupp, R.F.; Vásquez, N.G.; Lamberts, R. A review of human thermal comfort in the built environment. Energy Build. 2015, 105, 178–205. [Google Scholar] [CrossRef]
- Mishra, A.K.; Ramgopal, M. Field studies on human thermal comfort—An overview. Build. Environ. 2013, 64, 94–106. [Google Scholar] [CrossRef]
- Bienvenido-Huertas, D.; Pulido-Arcas, J.A.; Rubio-Bellido, C.; Perez-Fargallo, A. Feasibility of adaptive thermal comfort for energy savings in cooling and heating: A study on Europe and the Mediterranean basin. Urban Clim. 2021, 36, 100807. [Google Scholar] [CrossRef]
- Lipczynska, A.; Schiavon, S.; Graham, L.T. Thermal comfort and self-reported productivity in an office with ceiling fans in the tropics. Build. Environ. 2018, 135, 202–212. [Google Scholar] [CrossRef]
- Hoyt, T.; Arens, E.; Zhang, H. Extending air temperature setpoints: Simulated energy savings and design considerations for new and retrofit buildings. Build. Environ. 2015, 88, 89–96. [Google Scholar] [CrossRef]
- Hurnik, M. Testing Method for Non-Isothermal Radial Wall Jets from Ceiling Diffusers Used in Building Ventilation. Energies 2025, 18, 411. [Google Scholar] [CrossRef]
- Ferdyn-Grygierek, J.; Grygierek, K. Ventilation Methods for Improving the Indoor Air Quality and Energy Efficiency of Multi-Family Buildings in Central Europe. Energies 2024, 17, 2232. [Google Scholar] [CrossRef]
- Barnat, E.; Sekret, R.; Babiarz, B. Cooling of Air in Outdoor Areas of Human Habitation. Energies 2024, 17, 6303. [Google Scholar] [CrossRef]
- Dhariwal, J.; Manandhar, P.; Bande, L.; Marpu, P.; Armstrong, P.; Reinhart, C.F. Evaluating the effectiveness of outdoor evaporative cooling in a hot, arid climate. Build. Environ. 2019, 150, 281–288. [Google Scholar] [CrossRef]
- Stojanovic, D.; Vujovic, M.; Ding, Y.; Katic, M. Context-aware module for evaporative cooling in the outdoor built environment. Int. J. Archit. Comput. 2023, 21, 100–119. [Google Scholar] [CrossRef]
- Koper, P. Influence of Control Strategy on Heat Recovery Efficiency in a Single-Duct Periodic Ventilation Device. Energies 2024, 17, 5801. [Google Scholar] [CrossRef]
- Taheri, S.; Hosseini, P.; Razban, A. Model predictive control of heating, ventilation, and air conditioning (HVAC) systems: A state-of-the-art review. J. Build. Eng. 2022, 60, 105067. [Google Scholar] [CrossRef]
- Rockett, P.; Hathway, E.A. Model-predictive control for non-domestic buildings: A critical review and prospects. Build. Res. Inf. 2017, 45, 556–571. [Google Scholar] [CrossRef]
- Bode, F.I.; Joldos, T.O.; Sirbu, G.M.; Danca, P.; Cosoiu, C.; Nastase, I. Innovative High-Induction Air Diffuser for Enhanced Air Mixing in Vehicles and Personalized Ventilation Applications. Energies 2024, 17, 2930. [Google Scholar] [CrossRef]
- Melikov, A. Personalized ventilation. Indoor Air 2004, 14, 157–167. [Google Scholar] [CrossRef]
- Richardson, M.; Butler, C.W. Nature connectedness and biophilic design. Build. Res. Inf. 2022, 50, 36–42. [Google Scholar] [CrossRef]
- Lipczynska, A.; Kaczmarczyk, J.; Dziedzic, B. Effect of Indoor Green Walls on Environment Perception and Well-Being of Occupants in Office Buildings. Energies 2024, 17, 5690. [Google Scholar] [CrossRef]
- Budaniya, M.; Mishra, A.K.; Rai, A.C.; Dasgupta, M.S. Indoor plants’ effect on occupants’ performance, perceived comfort, and affect in an open-plan space in composite climatic regions, India. Build. Environ. 2025, 274, 112785. [Google Scholar] [CrossRef]
- Ma, X.; Du, M.; Deng, P.; Zhou, T.; Hong, B. Effects of green walls on thermal perception and cognitive performance: An indoor study. Build. Environ. 2024, 250, 111180. [Google Scholar] [CrossRef]
- Yao, R.; Zhang, S.; Du, C.; Schweiker, M.; Hodder, S.; Olesen, B.W.; Toftum, J.; d’Ambrosio, F.R.; Gebhardt, H.; Zhou, S. Evolution and performance analysis of adaptive thermal comfort models–A comprehensive literature review. Build. Environ. 2022, 217, 109020. [Google Scholar] [CrossRef]
- Palomar-Torres, A.; Rey-Hernández, J.M.; Rey-Hernández, A.; Rey-Martínez, F.J. Decarbonizing Near-Zero-Energy Buildings to Zero-Emission Buildings: A Holistic Life Cycle Approach to Minimize Embodied and Operational Emissions Through Circular Economy Strategies. Appl. Sci. 2025, 15, 2670. [Google Scholar] [CrossRef]
- Rugani, R.; Bernagozzi, M.; Picco, M.; Salvadori, G.; Marengo, M.; Zhang, H.; Fantozzi, F. Thermal comfort and energy efficiency evaluation of a novel conductive-radiative Personal Comfort System. Build. Environ. 2023, 244, 110787. [Google Scholar] [CrossRef]
- Rawal, R.; Schweiker, M.; Kazanci, O.B.; Vardhan, V.; Jin, Q.; Duanmu, L. Personal comfort systems: A review on comfort, energy, and economics. Energy Build. 2020, 214, 109858. [Google Scholar] [CrossRef]
- Mishra, A.K.; Loomans, M.; Hensen, J.L.M. Thermal comfort of heterogeneous and dynamic indoor conditions—An overview. Build. Environ. 2016, 109, 82–100. [Google Scholar] [CrossRef]
- Jayalath, A.; Vaz-Serra, P.; Hui, F.K.P.; Aye, L. Thermally comfortable energy efficient affordable houses: A review. Build. Environ. 2024, 256, 111495. [Google Scholar] [CrossRef]
- Kurnitski, J. Model Indoor Environmental Quality regulation to fulfil new provisions of 2024 EPBD recast. REHVA J. 2025, 2025, 5–13. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kaczmarczyk, J.; Lipczyńska, A.; Mishra, A.K. Thermal Comfort, Environmental Quality, and Energy Consumption in the Built Environment. Energies 2025, 18, 3087. https://doi.org/10.3390/en18123087
Kaczmarczyk J, Lipczyńska A, Mishra AK. Thermal Comfort, Environmental Quality, and Energy Consumption in the Built Environment. Energies. 2025; 18(12):3087. https://doi.org/10.3390/en18123087
Chicago/Turabian StyleKaczmarczyk, Jan, Aleksandra Lipczyńska, and Asit Kumar Mishra. 2025. "Thermal Comfort, Environmental Quality, and Energy Consumption in the Built Environment" Energies 18, no. 12: 3087. https://doi.org/10.3390/en18123087
APA StyleKaczmarczyk, J., Lipczyńska, A., & Mishra, A. K. (2025). Thermal Comfort, Environmental Quality, and Energy Consumption in the Built Environment. Energies, 18(12), 3087. https://doi.org/10.3390/en18123087