Combustion Characteristics of Municipal Solid Waste in a Grate-Fired Solid-Fuel Hot Water Boiler
Abstract
1. Introduction
2. Materials and Methods
- Qgr—LHV of the fuel.
3. Results
3.1. Concentrations of Toxic Substances in Exhaust Gases
3.2. Thermal Imaging of the Boiler Surface
3.3. Results Discussion
4. Summary
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
MSW | Municipal solid waste |
References
- On the Concept of the Transition of the Republic of Kazakhstan to a “Green Economy” Decree of the President of the Republic of Kazakhstan dated 30 May 2013. No. 577. Available online: https://adilet.zan.kz/rus/docs/U1300000577 (accessed on 11 May 2025).
- Ecological Code of the Republic of Kazakhstan. Code of the Republic of Kazakhstan Dated 2 January 2021. № 400-VI LRK. Available online: https://adilet.zan.kz/eng/docs/K2100000400 (accessed on 11 May 2025).
- Gao, C.; Bian, R.; Li, P.; Yin, C.; Teng, X.; Zhang, J.; Gao, S.; Niu, Y.; Sun, Y.; Wang, Y.; et al. Analysis of carbon reduction potential from typical municipal solid waste incineration plants under MSW classification. J. Environ. Manag. 2025, 373, 123844. [Google Scholar] [CrossRef] [PubMed]
- Zhu, R.; Huang, Y. Effect of co-incineration of sludge with MSW: Evolution characteristics of coarse ash particles and associated de novo synthesis of dioxin. Particuology 2025, 100, 157–165. [Google Scholar] [CrossRef]
- Zhang, R.; Wang, L.; Deng, R.; Luo, Y. Numerical analysis of NOx reduction in large-scale MSW grate furnace through in-bed combustion optimization using multi-section fuel bed model with thermally thick treatment. Appl. Therm. Eng. 2024, 257, 124156. [Google Scholar] [CrossRef]
- Wang, Y.; Ma, H.; Zeng, W.; Bu, Q.; Yang, X. Influence of moisture content and inlet temperature on the incineration characteristics of municipal solid waste (MSW). Appl. Therm. Eng. 2025, 258 Pt B, 124677. [Google Scholar] [CrossRef]
- Sun, G.; Li, L.; Lu, D.; Wang, H.; Duan, L. Thermal processing and combustion characteristics of multi-component solid waste in coal-fired boilers. Fuel 2025, 388, 134468. [Google Scholar] [CrossRef]
- Xu, H.; Li, L.; Tang, W.; Sun, Z.; Chen, Y.; Sun, G.; Gu, Q.; Duan, L. Experimental study on the combustion behavior and NOx emission during the co-combustion of combustible industrial solid wastes. J. Energy Inst. 2023, 106, 101150. [Google Scholar] [CrossRef]
- Tan, P.; Ma, L.; Xia, J.; Fang, Q.; Zhang, C.; Chen, G. Co-firing sludge in a pulverized coal-fired utility boiler: Combustion characteristics and economic impacts. Energy 2017, 119, 392–399. [Google Scholar] [CrossRef]
- Suksankraisorn, K.; Patumsawad, S.; Vallikul, P.; Fungtammasan, B.; Accary, A. Co-combustion of municipal solid waste and Thai lignite in a fluidized bed. Energy Convers. Manag. 2004, 45, 947–956. [Google Scholar] [CrossRef]
- Qi, X.; Ma, X.; Yu, Z.; Huang, Z.; Teng, W. Numerical simulation of municipal waste and food digestate blending combustion and NOx reduction under oxygen-enriched atmospheres. Fuel 2023, 345, 128115. [Google Scholar] [CrossRef]
- Tang, J.; Zhuang, J.; Aljerf, L.; Xia, H.; Wang, T.; Gao, B. Numerical simulation modelling on whole municipal solid waste incineration process by coupling multiple software for the analysis of grate speed and air volume ratio. Process Saf. Environ. Prot. 2023, 176, 506–527. [Google Scholar] [CrossRef]
- Gu, T.; Ma, W.; Guo, Z.; Berning, T.; Yin, C. Stable and clean co-combustion of municipal sewage sludge with solid wastes in a grate boiler: A modeling-based feasibility study. Fuel 2022, 328, 125237. [Google Scholar] [CrossRef]
- Hu, Z.; Jiang, E.; Ma, X. Numerical simulation on NOx emissions in a municipal solid waste incinerator. J. Clean. Prod. 2019, 233, 650–664. [Google Scholar] [CrossRef]
- Lai, Z.; Ma, X.; Tang, Y.; Lin, H. Thermogravimetric analysis of the thermal decomposition of MSW in N2, CO2 and CO2/N2 atmospheres. Fuel Process. Technol. 2012, e102, 18–23. [Google Scholar] [CrossRef]
- Chen, S.; Huang, J.; Xiao, T.; Gao, J.; Bai, J.; Luo, W.; Dong, B. Carbon emissions under different domestic waste treatment modes induced by garbage classification: Case study in pilot communities in Shanghai, China. Sci. Total Environ. 2020, 717, 137193. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Luo, X.; Yao, S.; Li, Q.; Wang, W. Influence of flue gas recirculation on the performance of incinerator-waste heat boiler and NOx emission in a 500 t/d waste-to-energy plant. Waste Manag. 2020, 105, 450–455. [Google Scholar] [CrossRef]
- Li, Z.; Fan, T.W.; Lun, M.S.; Li, Q. Optimization of municipal solid waste incineration for low-NOx emissions through numerical simulation. Sci. Rep. 2024, 14, 19309. [Google Scholar] [CrossRef]
- Harris, E.; Zeyer, K.; Kegel, R.; Müller, B.; Emmenegger, L.; Mohn, J. Nitrous oxide and methane emissions and nitrous oxide isotopic composition from waste incineration in Switzerland. Waste Manag. 2015, 35, 135–140. [Google Scholar] [CrossRef]
- Laboratory Thermometer TLS 2. Available online: https://www.labi.kz/termometry-laboratornye/ (accessed on 11 May 2025).
- Orumbayev, R.; Kibarin, A.; Kassimov, A.; Bakhtiyar, B.; Otynchiyeva, M.; Kumargazina, M.; Torgayev, A.; Iskakov, D.; Zhekenov, Y. Hot Water Boiler. RK Patent 35056, 2020. Available online: https://gosreestr.kazpatent.kz/Invention/Details?docNumber=325478 (accessed on 27 May 2025).
- Saint Petersburg, NPO CKTI. Thermal Calculation Of Boilers. Available online: https://portal.tpu.ru/ (accessed on 11 May 2025).
- Ultrasonic Flowmeter-Counter Portable Vzlyot PRC Operation Manual. Available online: https://vzljot.ru/ (accessed on 11 May 2025).
- Testo Thermal Imagers Firmware for Testo 880. Available online: https://www.testo.com/en-KW/testo-880/p/0563-0880-V1 (accessed on 11 May 2025).
- Testo 350-Analysis Box for Exhaust Gas Analysis Systems. Available online: https://www.testo.com/en-PH/testo-350/p/0632-3510 (accessed on 11 May 2025).
- Practical Guide: Industrial Flue Gas Analysis, Testo. Available online: https://www.testo.com/en-UK/downloads/emission-practical-guide-registration (accessed on 11 May 2025).
- Kaiser, E.R. The Sulfur Balance of Incinerators. J. Air Pollut. Control. Assoc. 1968, 18, 171–174. [Google Scholar] [CrossRef]
- Lasek, J.; Głód, K.; Supernok, K.; Bigda, J. Emission of Gaseous Pollutants During Combustion and Co-Combustion of Thermally Treated Municipal Solid Waste. Energies 2024, 17, 5823. [Google Scholar] [CrossRef]
- Zuo, X.; Wang, G.; Wang, J.; Xue, Q. Study of Mixed Combustion Behavior of Pulverized Municipal Solid Waste and Anthracite Coal. Processes 2024, 12, 2853. [Google Scholar] [CrossRef]
- Shin, J.-S.; Shun, D.; Cho, C.-H.; Bae, D.-H. A Study on the Co-Combustion Characteristics of Coal and Bio-SRF in CFBC. Energies 2023, 16, 1981. [Google Scholar] [CrossRef]
- Muthuraman, M.; Namioka, T.; Yoshikawa, K. A comparative study on co-combustion performance of municipal solid waste and Indonesian coal with high ash Indian coal: A thermogravimetric analysis. Fuel Process Technol. 2010, 91, 550–558. [Google Scholar] [CrossRef]
- Zhou, X.; Zhou, P.; Zhao, X.; Song, Z.; Wang, W.; Sun, J.; Mao, Y. Applicability of municipal solid waste incineration (MSWI) system integrated with pre-drying or torrefaction for flue gas waste heat recovery. Energy 2021, 224, 120157. [Google Scholar]
- Shim, S.H.; Jeong, S.H.; Min, H.K.; Lee, S.S. Characteristic of Acidic Gas Emission from Combustion with Pre-blending of Coal and Sludge. J. Korean Soc. Environ. Eng. 2014, 36, 103–108. [Google Scholar] [CrossRef]
- Wu, H.; Zhu, L.; Cai, J.; Lv, H. Effect of Sewage Sludge Addition on the Co-Combustion Characteristics of Municipal Solid Waste Incineration. Processes 2024, 12, 2172. [Google Scholar] [CrossRef]
Parameter | Unit | Value |
---|---|---|
Nominal thermal power | kW | 400 |
Fuel consumption | kg/h | 36.8 |
Estimated boiler efficiency | % | 85 |
Boiler furnace volume | m3 | 25.23 |
Water consumption (max.) | t/h | 4.5 |
Type | % | LHV, kJ/kg |
---|---|---|
Moisture, W | 16.0 | |
Ash, A | 30.2 | |
Sulfur, S | 0.8 | 16,929 |
Carbon, C | 44.7 | |
Hydrogen, H | 2.9 | |
Nitrogen, N | 0.6 | |
Oxygen, O | 4.8 |
Equipment | Absolute Error | Relative Error σ, % | Measured Values |
---|---|---|---|
Flowmeter Vzlyot PRC, Manufacturer: Vzlyot, Saint Petersburg, Russia [23] | ±1.5% from 1.0 to 20 m3/s | 0.2 | 0–5.1 m3/h |
Laboratory thermometers, Manufacturer: LAB international, Almaty, Kazakhstan [20] | ±1.0 °C | 0.16 | 0–100 °C |
Thermal imager Testo 880, Manufacturer: Testo SE & Co., Titisee-Neustadt, Germany [24] | <0.1 °C at 30 °C | 0.4 | 0–143 °C |
Gas analyzer Testo 350, Manufacturer: Testo SE & Co., Titisee-Neustadt, Germany [25] | NOx: abs. ± 2 ppm with measured values from 0 to 39.9 ppm; from 40 ppm ±5% of measured value | 5 | NOx: 0–120 ppm; NO: 0–105 ppm; CO2: 0–7.28%; SO2: 0–121 ppm. |
CO: ±10 ppm | 1 | CO: 0–2510 | |
Temperature: ±1.0 °C | 0.16 | Temperature: 20–185 °C |
Parameter | Standard Deviation, σ | Standard Error |
---|---|---|
O2, % | 1.15 | ±0.01 |
CO, ppm | 228 | ±1.43 |
NOx, ppm | 18.97 | ±0.12 |
CO2, % | 1.12 | ±0.01 |
SO2, ppm | 7.28 | ±0.05 |
Temperature, °C | 12.51 | ±0.93 |
Type | Mass | % | LHV, kJ/kg |
---|---|---|---|
Paper/cardboard | 3.91 | 20.99 | |
Textiles/rags | 3,41 | 18.30 | |
Plastic | 4.47 | 23.99 | 17,962 |
Organic waste | 4.70 | 25.23 | |
Ceramics | 1.23 | 6.60 | |
Metal | 0.57 | 3.06 | |
Rubber | 0.08 | 0.43 | |
Wood | 0.26 | 1.40 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Umyshev, D.R.; Kibarin, A.A.; Seidaliyeva, A.B.; Iskakov, D.O.; Zhekenov, Y.L.; Jambayev, I.K.; Umysheva, M.M. Combustion Characteristics of Municipal Solid Waste in a Grate-Fired Solid-Fuel Hot Water Boiler. Energies 2025, 18, 3028. https://doi.org/10.3390/en18123028
Umyshev DR, Kibarin AA, Seidaliyeva AB, Iskakov DO, Zhekenov YL, Jambayev IK, Umysheva MM. Combustion Characteristics of Municipal Solid Waste in a Grate-Fired Solid-Fuel Hot Water Boiler. Energies. 2025; 18(12):3028. https://doi.org/10.3390/en18123028
Chicago/Turabian StyleUmyshev, Dias Raybekovich, Andrey Anatoliyevich Kibarin, Aiganym Bulatkyzy Seidaliyeva, Dilshat Ozatuly Iskakov, Yeldos Lesbekovich Zhekenov, Ilyas Kermyly Jambayev, and Madina Maratovna Umysheva. 2025. "Combustion Characteristics of Municipal Solid Waste in a Grate-Fired Solid-Fuel Hot Water Boiler" Energies 18, no. 12: 3028. https://doi.org/10.3390/en18123028
APA StyleUmyshev, D. R., Kibarin, A. A., Seidaliyeva, A. B., Iskakov, D. O., Zhekenov, Y. L., Jambayev, I. K., & Umysheva, M. M. (2025). Combustion Characteristics of Municipal Solid Waste in a Grate-Fired Solid-Fuel Hot Water Boiler. Energies, 18(12), 3028. https://doi.org/10.3390/en18123028