Diagnosis of Power Transformer On-Load Tap Changer Mechanical Faults Based on SABO-Optimized TVFEMD and TCN-GRU Hybrid Network
Abstract
:1. Introduction
2. Theoretical Foundation
2.1. Time-Varying Filtered Empirical Mode Decomposition
- (1)
- Local Cutoff Frequency Rearrangement to Eliminate Mode Mixing.
- (2)
- Filtering Stage Based on Time-Varying Filters.
2.2. Subtraction-Average-Based Optimizer
2.3. Temporal Convolutional Network
- (1)
- Residual Block: To mitigate gradient vanishing and exploding problems in deep networks, the TCN employs residual connections to enhance stability and training efficiency while maintaining model complexity. As shown in Figure 2a,b, the TCN module is primarily composed of multiple residual blocks, each consisting of four main parts: the dilated causal convolution layer (Dilated Causal Conv), normalization layer (WeightNorm), activation function layer (ReLU), regularization layer (Dropout).
- (2)
- Dilated Causal Convolution: This is the core operation of the TCN, combining the temporal dependence of causal convolution with the long-range modeling capability of dilated convolution. It allows the TCN to efficiently handle long-range dependencies in time-series data. Its structure is depicted in Figure 2c. Unlike recurrent neural networks (e.g., LSTM and GRUs) that process sequential data step-by-step, dilated causal convolution achieves parallel computation through convolution operations, improving computational efficiency. This method ensures causality in time-series modeling, extends the receptive field, captures richer temporal features with a shallower network, and supports efficient parallel computation.
2.4. Gated Recurrent Unit
2.5. Fault Diagnosis Model Based on SABO-TVFEMD-TCN-GRU
3. OLTC Mechanical Fault Simulation Experiment
4. Data Analysis
4.1. Signal Decomposition Results Based on SABO-TVFEMD
4.2. Fault Diagnosis Based on the TCN-GRU
4.3. Ablation and Comparison Experiments
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ismail, F.B.; Mazwan, M.; Al-Faiz, H.; Marsadek, M.; Hasini, H.; Al-Bazi, A.; Yang Ghazali, Y.Z. An offline and online approach to the OLTC condition monitoring: A review. Energies 2022, 15, 6435. [Google Scholar] [CrossRef]
- Liu, X.; Aichhorn, A.; Liu, L.; Li, H. Coordinated control of distributed energy storage system with tap changer transformers for voltage rise mitigation under high photovoltaic penetration. IEEE Trans. Smart Grid 2012, 3, 897–906. [Google Scholar] [CrossRef]
- Nadolny, Z. Design and Optimization of Power Transformer Diagnostics. Energies 2023, 16, 6466. [Google Scholar] [CrossRef]
- Dabaghi-Zarandi, F.; Behjat, V.; Gauvin, M.; Picher, P.; Ezzaidi, H.; Fofana, I. Power Transformers OLTC Condition Monitoring Based on Feature Extraction from Vibro-Acoustic Signals: Main Peaks and Euclidean Distance. Sensors 2023, 23, 7020. [Google Scholar] [CrossRef]
- Dabaghi-Zarandi, F.; Behjat, V.; Gauvin, M.; Picher, P.; Ezzaidi, H.; Fofana, I. Using Deep Learning to Detect Anomalies in On-Load Tap Changer Based on Vibro-Acoustic Signal Features. Energies 2024, 17, 1665. [Google Scholar] [CrossRef]
- Rivas, E.; Burgos, J.C.; García-Prada, J.C. Vibration analysis using envelope wavelet for detecting faults in the OLTC tap selector. IEEE Trans. Power Deliv. 2010, 25, 1629–1636. [Google Scholar] [CrossRef]
- Bengtsson, C. Status and trends in transformer monitoring. IEEE Trans. Power Deliv. 1996, 11, 1379–1384. [Google Scholar] [CrossRef]
- Ezzaidi, H.; Fofana, I.; Picher, P.; Gauvin, M. On the Feasibility of Detecting Faults and Irregularities in On-Load Tap Changers (OLTCs) by Vibroacoustic Signal Analysis. Sensors 2024, 24, 7960. [Google Scholar] [CrossRef]
- Saveliev, A.; Tsukao, S.; Schmitten, P.; Hochmuth, H.; Foata, M.; Nakahata, M.; Tamura, S. Detection of On-Load Tap-Changer Contact Wear Using Vibroacoustic Measurements. IEEE Trans. Power Deliv. 2024, in press. [Google Scholar] [CrossRef]
- Li, H.; Dou, L.; Li, S.; Kang, Y.; Yang, X.; Dong, H. Abnormal State Detection of OLTC Based on Improved Fuzzy C-means Clustering. Chin. J. Electr. Eng. 2023, 9, 129–141. [Google Scholar] [CrossRef]
- Duan, R.; Wang, F. Fault diagnosis of on-load tap-changer in converter transformer based on time-frequency vibration analysis. IEEE Trans. Ind. Electron. 2016, 63, 3815–3823. [Google Scholar] [CrossRef]
- Wang, Z.; He, G.; Du, W.; Zhou, J.; Han, X.; Wang, J.; Kou, Y. Application of parameter optimized variational mode decomposition method in fault diagnosis of gearbox. IEEE Access 2019, 7, 44871–44882. [Google Scholar] [CrossRef]
- Lei, Y.; Lin, J.; He, Z.; Zuo, M.J. A review on empirical mode decomposition in fault diagnosis of rotating machinery. Mech. Syst. Signal Process. 2013, 35, 108–126. [Google Scholar] [CrossRef]
- Liu, J.; Wang, G.; Zhao, T.; Zhang, L. Fault Diagnosis of On-Load Tap-Changer Based on Variational Mode Decomposition and Relevance Vector Machine. Energies 2017, 10, 946. [Google Scholar] [CrossRef]
- Wang, L.; Liu, Z.; Miao, Q.; Zhang, X. Time-frequency analysis based on ensemble local mean decomposition and fast kurtogram for rotating machinery fault diagnosis. Mech. Syst. Signal Process. 2018, 103, 60–75. [Google Scholar] [CrossRef]
- Xin, J.; Zhou, C.; Jiang, Y.; Tang, Q.; Yang, X.; Zhou, J. A signal recovery method for bridge monitoring system using TVFEMD and encoder-decoder aided LSTM. Measurement 2023, 214, 112797. [Google Scholar] [CrossRef]
- Hao, C.; Liu, B.; Li, Y.; Zhuo, Y.; Ma, Y. A data recovery method for extra-long-span railway bridge health monitoring based on TVFEMD and CNN-GRU. Meas. Sci. Technol. 2024, 35, 086139. [Google Scholar] [CrossRef]
- Viel, F.; Maciel, R.C.; Seman, L.O.; Zeferino, C.A.; Bezerra, E.A.; Leithardt, V.R.Q. Hyperspectral image classification: An analysis employing CNN, LSTM, transformer, and attention mechanism. IEEE Access 2023, 11, 24835–24850. [Google Scholar] [CrossRef]
- Trujillo-Guerrero, M.F.; Román-Niemes, S.; Jaén-Vargas, M.; Cadiz, A.; Fonseca, R.; Serrano-Olmedo, J.J. Accuracy comparison of CNN, LSTM, and Transformer for activity recognition using IMU and visual markers. IEEE Access 2023, 11, 106650–106669. [Google Scholar] [CrossRef]
- Xiaoyan, H.; Bingjie, L.; Jing, S.; Hua, L.; Guojing, L. A novel forecasting method for short-term load based on TCN-GRU model. In Proceedings of the 2021 IEEE International Conference on Energy Internet (ICEI), Southampton, UK, 27–29 September 2021; pp. 1–6. [Google Scholar]
- Li, L.; Li, Y.; Mao, R.; Li, L.; Hua, W.; Zhang, J. Remaining useful life prediction for lithium-ion batteries with a hybrid model based on TCN-GRU-DNN and dual attention mechanism. IEEE Trans. Transp. Electrific. 2023, 9, 4726–4740. [Google Scholar] [CrossRef]
- Xiang, X.; Li, X.; Zhang, Y.; Hu, J. A short-term forecasting method for photovoltaic power generation based on the TCN-ECANet-GRU hybrid model. Sci. Rep. 2024, 14, 6744. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, M.; Corchado, J.M.; Marreiros, G. Machine learning techniques applied to mechanical fault diagnosis and fault prognosis in the context of real industrial manufacturing use-cases: A systematic literature review. Appl. Intell. 2022, 52, 14246–14280. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Cai, Z.; Ding, K. An enhanced bearing fault diagnosis method based on TVF-EMD and a high-order energy operator. Meas. Sci. Technol. 2018, 29, 095108. [Google Scholar] [CrossRef]
- Zhou, C.; Xiong, Z.; Bai, H.; Xing, L.; Jia, Y.; Yuan, X. Parameter-adaptive TVF-EMD feature extraction method based on improved GOA. Sensors 2022, 22, 7195. [Google Scholar] [CrossRef]
- Trojovský, P.; Dehghani, M. Subtraction-average-based optimizer: A new swarm-inspired metaheuristic algorithm for solving optimization problems. Biomimetics 2023, 8, 149. [Google Scholar] [CrossRef]
- Liu, G.; Ma, Y.; Wang, N. Rolling Bearing Fault Diagnosis Based on SABO–VMD and WMH–KNN. Sensors 2024, 24, 5003. [Google Scholar] [CrossRef]
- García-Martínez, C.; Gutiérrez, P.D.; Molina, D.; Lozano, M.; Herrera, F. Since CEC 2005 competition on real-parameter optimisation: A decade of research, progress and comparative analysis’s weakness. Soft Comput. 2017, 21, 5573–5583. [Google Scholar] [CrossRef]
- Suganthan, P.N.; Hansen, N.; Liang, J.J.; Deb, K.; Chen, Y.P.; Auger, A.; Tiwari, S. Problem Definitions and Evaluation Criteria for the CEC 2005 Special Session on Real-Parameter Optimization; Technical Report 2005005; Kanpur Genetic Algorithms Laboratory, IIT Kanpur: Kanpur, India, 2005. [Google Scholar]
- Marini, F.; Walczak, B. Particle swarm optimization (PSO). A tutorial. Chemom. Intell. Lab. Syst. 2015, 149, 153–165. [Google Scholar] [CrossRef]
- Faris, H.; Aljarah, I.; Al-Betar, M.A.; Mirjalili, S. Grey wolf optimizer: A review of recent variants and applications. Neural Comput. Appl. 2018, 30, 413–435. [Google Scholar] [CrossRef]
- Lea, C.; Vidal, R.; Reiter, A.; Hager, G.D. Temporal convolutional networks: A unified approach to action segmentation. In Lecture Notes in Computer Science, Proceedings of the Computer Vision–ECCV 2016 Workshops, Amsterdam, The Netherlands, 8–10 and 15–16 October 2016; Springer International Publishing: Cham, Switzerland, 2016; Part III; pp. 1–14. [Google Scholar]
- Lea, C.; Flynn, M.D.; Vidal, R.; Reiter, A.; Hager, G.D. Temporal convolutional networks for action segmentation and detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 1–10. [Google Scholar]
- Li, C.; Shen, C.; Zhang, H.; Sun, H.; Meng, S. A novel temporal convolutional network via enhancing feature extraction for the chiller fault diagnosis. J. Build. Eng. 2021, 42, 103014. [Google Scholar] [CrossRef]
- Dey, R.; Salem, F.M. Gate-Variants of Gated Recurrent Unit (GRU) Neural Networks. In Proceedings of the 2017 IEEE 60th International Midwest Symposium on Circuits and Systems (MWSCAS), Boston, MA, USA, 6–9 August 2017; pp. 1597–1600. [Google Scholar]
- Chung, J.; Gulcehre, C.; Cho, K.; Bengio, Y. Empirical evaluation of gated recurrent neural networks on sequence modeling. arXiv 2014, arXiv:1412.3555. [Google Scholar]
- Liao, G.P.; Gao, W.; Yang, G.J.; Guo, M.F. Hydroelectric generating unit fault diagnosis using 1-D convolutional neural network and gated recurrent unit in small hydro. IEEE Sens. J. 2019, 19, 9352–9363. [Google Scholar] [CrossRef]
- Li, S.; Tang, G.; Chen, X.; Lin, T. Stock Index Forecasting Using a Novel Integrated Model Based on CEEMDAN and TCN-GRU-CBAM. IEEE Access 2024, 12, 122524–122543. [Google Scholar] [CrossRef]
- Cai, C.; Li, Y.; Su, Z.; Zhu, T.; He, Y. Short-term electrical load forecasting based on VMD and GRU-TCN hybrid network. Appl. Sci. 2022, 12, 6647. [Google Scholar] [CrossRef]
- Liang, X.; Wang, Y.; Gu, H. A Mechanical Fault Diagnosis Method for Transformer CM-Type On-Load Tap Changer Based on Vibration Intensity During the Entire Switching Process. Proc. Chin. Soc. Electr. Eng. 2024, 44, 4145–4157. [Google Scholar]
- Liang, X.; Wang, Y.; Gu, H. A Mechanical Fault Diagnosis Model of On-Load Tap Changer Based on Same-Source Heterogeneous Data Fusion. IEEE Trans. Instrum. Meas. 2022, 71, 1–9. [Google Scholar] [CrossRef]
- Shi, Y.; Ruan, Y.; Li, L.; Zhang, B.; Yuan, K.; Luo, Z.; Huang, Y.; Xia, M.; Li, S.; Lu, S. A Mechanical Fault Diagnosis Method for UCG-Type On-Load Tap Changers in Converter Transformers Based on Multi-Feature Fusion. Actuators 2024, 13, 387. [Google Scholar] [CrossRef]
- Qian, G.; Wang, S. Fault Diagnosis of On-Load Tap-Changer Based on the Parameter-Adaptive VMD and SA-ELM. In Proceedings of the 2020 IEEE International Conference on High Voltage Engineering and Application (ICHVE), Beijing, China, 6–10 September 2020; pp. 1–4. [Google Scholar]
Function | Expression | Search Space |
---|---|---|
F1 | [−100,100] | |
F2 | [−10,10] | |
F9 | [−5.12,5.12] | |
F10 | [−32,32] |
Parameter | Search Range | Search Results | |||
---|---|---|---|---|---|
Normal | Fault 1 | Fault 2 | Fault 3 | ||
[0.1,0.15,0.2,0.25,0.3] | 0.2 | 0.25 | 0.25 | 0.2 | |
n | [10,15,20,25,30] | 25 | 20 | 20 | 15 |
IMFs | Energy Ratios | Peak Frequencies | IMFs | Energy Ratios | Peak Frequencies |
---|---|---|---|---|---|
IMF1 | 8.01% | 2139.43 Hz | IMF6 | 0.92% | 239.94 Hz |
IMF2 | 45.08% | 1766.20 Hz | IMF7 | 0.04% | 59.98 Hz |
IMF3 | 27.70% | 726.47 Hz | IMF8 | 0.03% | 26.66 Hz |
IMF4 | 10.65% | 499.87 Hz | IMF9 | 0.06% | 13.33 Hz |
IMF5 | 7.44% | 339.91 Hz | IMF10 | 0.07% | 0.51 Hz |
Parameters | Optimization Range | Optimal Parameters |
---|---|---|
Kernel size | {2, 3, 4, 5} | 3 |
Number of filters | {32, 64, 128} | 64 |
Dilation factors | / | [1, 2, 4] |
Residual blocks | {2, 3, 4, 5} | 3 |
Conv1D_filters | / | 128 |
Conv1D_kenel size | / | 1 × 1 |
Conv1D_activation | / | ReLU |
GRU hidden units | {32, 64, 128} | 64 |
Dropout Rate | {0.1, 0.2, 0.3, 0.5} | 0.2 |
Optimizer | / | Adam |
Learning Rate | {0.001, 0.0001, 0.00001} | 0.001 |
Batch Size | / | 32 |
Epochs | / | 200 |
Model | Average Accuracy |
---|---|
SABO-TVFEMD-TCN-GRU | 96.38% |
TVFEMD-TCN-GRU | 91.62% |
VMD-TCN-GRU | 88.12% |
EMD-TCN-GRU | 84.62% |
Model | Average Accuracy |
---|---|
SABO-TVFEMD-TCN-GRU | 96.38% |
SABO-TVFEMD-TCN | 91.88% |
SABO-TVFEMD-GRU | 87.25% |
SABO-TVFEMD-LSTM | 82.75% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, S.; Hong, Z.; Min, Q.; Zou, D.; Zhao, Y.; Qi, R.; Zhao, T. Diagnosis of Power Transformer On-Load Tap Changer Mechanical Faults Based on SABO-Optimized TVFEMD and TCN-GRU Hybrid Network. Energies 2025, 18, 2934. https://doi.org/10.3390/en18112934
Wang S, Hong Z, Min Q, Zou D, Zhao Y, Qi R, Zhao T. Diagnosis of Power Transformer On-Load Tap Changer Mechanical Faults Based on SABO-Optimized TVFEMD and TCN-GRU Hybrid Network. Energies. 2025; 18(11):2934. https://doi.org/10.3390/en18112934
Chicago/Turabian StyleWang, Shan, Zhihu Hong, Qingyun Min, Dexu Zou, Yanlin Zhao, Runze Qi, and Tong Zhao. 2025. "Diagnosis of Power Transformer On-Load Tap Changer Mechanical Faults Based on SABO-Optimized TVFEMD and TCN-GRU Hybrid Network" Energies 18, no. 11: 2934. https://doi.org/10.3390/en18112934
APA StyleWang, S., Hong, Z., Min, Q., Zou, D., Zhao, Y., Qi, R., & Zhao, T. (2025). Diagnosis of Power Transformer On-Load Tap Changer Mechanical Faults Based on SABO-Optimized TVFEMD and TCN-GRU Hybrid Network. Energies, 18(11), 2934. https://doi.org/10.3390/en18112934