A Technical Analysis of the H2 Purification Trains Downstream of Alkaline Electrolyzers
Abstract
:1. Introduction
General | ||
---|---|---|
Reference | H2 destination (purity) | Topic |
Pyle (1998) [8] | - | Informative magazine article on H2 purification |
Smolinka et al. (2015) [12] | - | Analysis of electrolysis technologies |
Taibi et al. (2020) [1] | - | Report on the scale-up of electrolysis technologies |
Alkaline electrolyzers | ||
Ramsden et al. (2009) [13] | Mobility (99.9998 mol%) | Analysis of levelized cost of centralized and distributed hydrogen production Cost estimation also available in Morgan et al. (2013) [14] |
Yao et al. (2017) [15] | (99.9 mol%) | Techno-economic assessment of H2 production via gasification, reforming and alkaline electrolysis |
Ligen et al. (2020) [7] | Mobility (ISO 14687:2019) [16] | H2 drying and purification for fuel cell vehicles |
Sanchez et al. (2020) [10] | (98.89 mol%) | Aspen Plus® model of alkaline electrolysis |
Acevedo et al. (2023) [17] | (99.99 mol%) | H2 production cost via alkaline electrolysis |
Nejadian et al. (2023) [18] | Mobility | Optimization of integrated H2 production via SOEC, PEM and alkaline electrolyzer |
Sakas et al. (2022) [19] | (99.999 mol%) | Based on industrial scale alkaline electrolyzer |
Hu et al. (2024) [20] | n.a. | Strategy for regulation of pressure and lye flow rate during high load periods |
Qiao et al. (2024) [11] | n.a. | Aspen Plus® simulation of alkaline water electrolysis |
Shangguan et al. (2024) [21] | >99.8 mol% | Optimization of performance to establish dynamic thermal balance model |
Zhang et al. (2024) [22] | n.a. | Model of O2 purity based on 50 Nm3 H2/h industrial scale system |
Wang et al. (2025) [23] | 99.8 mol% | Comparative experimental study of alkaline and PEM electrolysis |
PEM electrolyzers | ||
Cohen et al. (2009) [9] | ||
Kwon et al. (2023) [24] | Fuel cell (99.9998 mol%) | Effects of operating conditions in DeOxo reactor |
Nejadian et al. (2023) [18] | Mobility | Optimization of integrated H2 production via SOEC, PEM and alkaline electrolyzer |
Crespi et al. (2023) [25] | Fuel cell (99.9995 mol%) | Experimental and theoretical evaluation of PEM electrolysis for dynamic operation |
Wang et al. (2025) [23] | 99.99 mol% | Comparative experimental study of alkaline and PEM electrolysis |
Molina et al. (2025) [26] | n.a. | Study of parameters affecting efficiency, focusing on temperature control |
2. Tuning of the Thermodynamic Package
- Physical equilibrium, to describe the vapor–liquid equilibrium in the separation equipment;
- Chemical equilibrium, to describe the electrolytes’ dissociation in water.
2.1. Physical Equilibrium: Vapor–Liquid Equilibrium Model
- PC-SAFT (perturbed chain SAFT), based on perturbation theory. A generated function is used, which can be distinguished in different terms, representing the repulsive interactions (hard chain, expressed by ) and attractive interactions (dispersion, expressed by , polar, expressed by and association, expressed by ) [28]. The generated function is related to the residual Helmholtz energy, which, in turn, depends on the compressibility coefficient. Knowing Ψ, it is possible to determine all the thermodynamic functions of interest. In particular, the fugacity coefficient can be calculated.
- A main section using the ENRTL-RK model, which is suitable to describe the behavior of electrolytes in aqueous solution at low pressure levels (i.e., the default choice for modeling the vapor phase when ENRTL as a property package is selected in Aspen Plus®);
- A subsection (subflowsheet) using the PR model, which is suitable to describe the behavior of the gas phase at high pressure levels.
2.2. Chemical Equilibrium: Electrolyte Dissociation in Water
- Dissociation approach: This describes the complete dissociation of strong electrolytes in the liquid phase (see (5)). In this case, an equilibrium constant is not required, as the molecular species dissociates completely into the corresponding ions.KOH → K+ + OH−
- Equilibrium approach: This describes the dissociation equilibrium of electrolytes in the liquid phase (see (6)). In this case, an equilibrium constant is necessary for determining the amount of molecular species dissociated into the corresponding ions.KOH ↔ K+ + OH−
3. Simulation of the H2 Purification Train
3.1. Atmospheric Pressure Alkaline Electrolyzer
3.2. High-Pressure Alkaline Electrolyzer
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Taibi, E.; Miranda, R.; Carmo, M.; Blanco, H. Green Hydrogen Cost Reduction; International Renewable Energy Agency (IRENA): Masdar City, United Arab Emirates, 2020. [Google Scholar]
- Sebbahi, S.; Assila, A.; Belghiti, A.A.; Laasri, S.; Kaya, S.; Hlil, E.K.; Rachidi, S.; Hajjaji, A. A comprehensive review of recent advances in alkaline water electrolysis for hydrogen production. Int. J. Hydrogen Energy 2024, 82, 583–599. [Google Scholar] [CrossRef]
- Król, A.; Gajec, M.; Holewa-Rataj, J.; Kukulska-Zając, E.; Rataj, M. Hydrogen purification technologies in the context of its utilization. Energies 2024, 17, 3794. [Google Scholar] [CrossRef]
- Du, Z.; Liu, C.; Zhai, J.; Guo, X.; Xiong, Y.; Su, W.; He, G. A review of hydrogen purification technologies for fuel cell vehicles. Catalysts 2021, 11, 393. [Google Scholar] [CrossRef]
- Dawood, F.; Anda, M.; Shafiullah, G.M. Hydrogen production for energy: An overview. Int. J. Hydrogen Energy 2020, 45, 3847–3869. [Google Scholar] [CrossRef]
- Bensmann, B.; Hanke-Rauschenbach, R.; Müller-Syring, G.; Henel, M.; Sundmacher, K. Optimal configuration and pressure levels of electrolyzer plants in context of power-to-gas applications. Appl. Energy 2016, 167, 107–124. [Google Scholar] [CrossRef]
- Ligen, Y.; Vrubel, H.; Girault, H. Energy efficient hydrogen drying and purification for fuel cell vehicles. Int. J. Hydrogen Energy 2020, 45, 10639–10647. [Google Scholar] [CrossRef]
- Pyle, W. Hydrogen Purification. Home Power 1998, 67, 43–49. [Google Scholar]
- Cohen, S.; Porter, S.; Chow, O.; Henderson, D. Hydrogen Generation from Electrolysis; OSTI: Oak Ridge, TN, USA, 2009; p. 6. [Google Scholar]
- Sánchez, M.; Amores, E.; Abad, D.; Rodríguez, L.; Clemente-Jul, C. Aspen Plus model of an alkaline electrolysis system for hydrogen production. Int. J. Hydrogen Energy 2020, 45, 3916–3929. [Google Scholar] [CrossRef]
- Qiao, S.; Wu, Y.; Zhou, J. In Simulation of alkaline water electrolysis hydrogen production system based on Aspen Plus. In Proceedings of the 2024 3rd International Conference on Energy, Power and Electrical Technology (ICEPET), Chengdu, China, 17–19 May 2024; pp. 493–496. [Google Scholar]
- Smolinka, T.; Ojong, E.T.; Garche, J. Chapter 8—Hydrogen Production from Renewable Energies—Electrolyzer Technologies. In Electrochemical Energy Storage for Renewable Sources and Grid Balancing; Moseley, P.T., Garche, J., Eds.; Elsevier: Amsterdam, The Netherlands, 2015; pp. 103–128. [Google Scholar]
- Ramsden, T.; Steward, D.; Zuboy, J. Analyzing the Levelized Cost of Centralized and Distributed Hydrogen Production Using the H2A Production Model, Version 2; National Renewable Energy Laboratory (NREL): Golden, CO, USA, 2009.
- Morgan, E.R.; Manwell, J.F.; McGowan, J.G. Opportunities for economies of scale with alkaline electrolyzers. Int. J. Hydrogen Energy 2013, 38, 15903–15909. [Google Scholar] [CrossRef]
- Yao, J.; Kraussler, M.; Benedikt, F.; Hofbauer, H. Techno-economic assessment of hydrogen production based on dual fluidized bed biomass steam gasification, biogas steam reforming, and alkaline water electrolysis processes. Energy Convers. Manag. 2017, 145, 278–292. [Google Scholar] [CrossRef]
- ISO 14687:2019; Hydrogen Fuel Quality—Product Specification. International Organization for Standardization: Switzerland, 2019. Available online: https://www.iso.org/standard/69539.html (accessed on 26 May 2025).
- Acevedo, Y.M.; Prosser, J.H.; Huya-Kouadio, J.M.; McNamara, K.R.; James, B.D. Hydrogen Production Cost with Alkaline Electrolysis; Strategic Analysis, Inc.: Arlington, VA, USA, 2023; p. 25. [Google Scholar]
- Mohebali Nejadian, M.; Ahmadi, P.; Houshfar, E. Comparative optimization study of three novel integrated hydrogen production systems with SOEC, PEM, and alkaline electrolyzer. Fuel 2023, 336, 126835. [Google Scholar] [CrossRef]
- Sakas, G.; Ibáñez-Rioja, A.; Ruuskanen, V.; Kosonen, A.; Ahola, J.; Bergmann, O. Dynamic energy and mass balance model for an industrial alkaline water electrolyzer plant process. Int. J. Hydrogen Energy 2022, 47, 4328–4345. [Google Scholar] [CrossRef]
- Hu, S.; Guo, B.; Ding, S.; Tian, Z.; Gu, J.; Yang, H.; Yang, F.; Ouyang, M. Study on the synergistic regulation strategy of load range and electrolysis efficiency of 250 kW alkaline electrolysis system under high-dynamic operation conditions. Etransportation 2024, 19, 100304. [Google Scholar] [CrossRef]
- Shangguan, Z.; Li, H.; Yang, B.; Zhao, Z.; Wang, T.; Jin, L.; Zhang, C. Optimization of alkaline electrolyzer operation in renewable energy power systems: A universal modeling approach for enhanced hydrogen production efficiency and cost-effectiveness. Int. J. Hydrogen Energy 2024, 49, 943–954. [Google Scholar] [CrossRef]
- Zhang, T.; Song, L.; Yang, F.; Ouyang, M. Research on oxygen purity based on industrial scale alkaline water electrolysis system with 50Nm3 H2/h. Appl. Energy 2024, 360, 122852. [Google Scholar] [CrossRef]
- Wang, J.; Yang, J.; Feng, Y.; Hua, J.; Chen, Z.; Liao, M.; Zhang, J.; Qin, J. Comparative experimental study of alkaline and proton exchange membrane water electrolysis for green hydrogen production. Appl. Energy 2025, 379, 124936. [Google Scholar] [CrossRef]
- Kwon, S.; Eom, S.; Choi, G. Effects of Operating Conditions on the Oxygen Removal Performance of the Deoxo Chamber in the Water Electrolysis System. Energies 2023, 16, 6685. [Google Scholar] [CrossRef]
- Crespi, E.; Guandalini, G.; Mastropasqua, L.; Campanari, S.; Brouwer, J. Experimental and theoretical evaluation of a 60 kW PEM electrolysis system for flexible dynamic operation. Energy Convers. Manag. 2023, 277, 116622. [Google Scholar] [CrossRef]
- Molina, P.; Rios, C.; Martinez de Leon, C.; Brey, J.J. Heat management system design and implementation in a PEM water electrolyser. Int. J. Hydrogen Energy 2025, 107, 656–665. [Google Scholar] [CrossRef]
- Spatolisano, E.; Restelli, F.; Pellegrini, L.A.; Cattaneo, S.; de Angelis, A.R.; Lainati, A.; Roccaro, E. Liquefied hydrogen, ammonia and liquid organic hydrogen carriers for harbour-to-harbour hydrogen transport: A sensitivity study. Int. J. Hydrogen Energy 2024, 80, 1424–1431. [Google Scholar] [CrossRef]
- Gross, J.; Sadowski, G. Perturbed-Chain SAFT: An Equation of State Based on a Perturbation Theory for Chain Molecules. Ind. Eng. Chem. Res. 2001, 40, 1244–1260. [Google Scholar] [CrossRef]
- Redlich, O.; Kwong, J.N.S. On the Thermodynamics of Solutions. V. An Equation of State. Fugacities of Gaseous Solutions. Chem. Rev. 1949, 44, 233–244. [Google Scholar] [CrossRef] [PubMed]
- Peng, D.-Y.; Robinson, D.B. A new two-constant equation of state. Ind. Eng. Chem. Fundam. 1976, 15, 59–64. [Google Scholar] [CrossRef]
- DeVaney, W.; Berryman, J.M.; Kao, P.L.; Eakin, B. High Temperature V-L-E Measurements for Substitute Gas Components, No. RR-30; Gas Processors Association: Crookham Village, UK, 1978. [Google Scholar]
- Gillespie, P.C.; Wilson, G.M. Vapor-Liquid Equilibrium Data on Water-Substitute Gas Components: N/sub 2/-H/sub 2/O, H/sub 2/-H/sub 2/O, CO-H/sub 2/O, H/sub 2/-CO-H/sub 2/O, and H/sub 2/S-H/sub 2/O; Wilco Research Co.: Provo, UT, USA, 1980; p. 1. [Google Scholar]
- Barin, I.I. Thermochemical Data of Pure Substances; Wiley: Hoboken, NJ, USA, 1995; pp. 844–924. [Google Scholar] [CrossRef]
- Wagman, D.D. The NBS Tables of Chemical Thermodynamic Properties: Selected Values for Inorganic and C1 and C2 Organic Substances in SI Units; American Chemical Society and the American Institute of Physics for the National Bureau of Standards: Washington, DC, USA, 1982; p. 20234. [Google Scholar]
- Pokrovskii, V.A.; Helgeson, H.C. Thermodynamic properties of aqueous species and the solubilities of minerals at high pressures and temperatures: The system Al2O3-H2O-KOH. Chem. Geol. 1997, 137, 221–242. [Google Scholar] [CrossRef]
- Hausmann, J.N.; Traynor, B.; Myers, R.J.; Driess, M.; Menezes, P.W. The pH of Aqueous NaOH/KOH Solutions: A Critical and Non-trivial Parameter for Electrocatalysis. ACS Energy Lett. 2021, 6, 3567–3571. [Google Scholar] [CrossRef]
- Kim, T.; Song, Y.; Kang, J.; Kim, S.K.; Kim, S. A review of recent advances in hydrogen purification for selective removal of oxygen: Deoxo catalysts and reactor systems. Int. J. Hydrogen Energy 2022, 47, 24817–24834. [Google Scholar] [CrossRef]
Ref. | T [K] | xH2 | Pexp [bar] | Pcalc,PR [bar] | Pcalc,SAFT [bar] | AADPR [%] | AADSAFT [%] |
---|---|---|---|---|---|---|---|
DeVaney et al. (1978) [31] | 366.459 | 0.0004 | 27.58 | 30.45 | 30.43 | 10% | 10% |
366.459 | 0.0008 | 55.16 | 61.18 | 61.14 | 11% | 11% | |
Gillespie et al. (1980) [32] | 422.004 | 0.0005 | 31.03 | 38.76 | 38.74 | 25% | 25% |
422.004 | 0.0012 | 65.50 | 89.66 | 89.52 | 37% | 37% | |
422.004 | 0.0019 | 103.42 | 119.67 | 144.56 | 40% | 40% | |
DeVaney et al. (1978) [31] | 477.554 | 0.0011 | 55.16 | 90.13 | 89.81 | 63% | 63% |
477.554 | 0.0004 | 27.579 | 42.35 | 42.40 | 54% | 54% | |
477.554 | 0.0027 | 110.32 | 220.88 | 220.05 | 100% | 99% | |
Gillespie et al. (1980) [32] | 477.554 | 0.0015 | 65.50 | 119.67 | 119.16 | 83% | 82% |
477.554 | 0.0004 | 31.03 | 42.35 | 42.40 | 37% | 37% | |
477.554 | 0.0026 | 103.42 | 211.58 | 210.75 | 105% | 104% | |
DeVaney et al. (1978) [31] | 588.667 | 0.0023 | 110.32 | 289.93 | 277.32 | 163% | 151% |
Gillespie et al. (1980) [32] | 588.667 | 0.003 | 137.90 | 379.19 | 362.38 | 175% | 163% |
Gas Phase | Aqueous Phase | Solid Phase | |||||
---|---|---|---|---|---|---|---|
Ref. | Species | ΔGf @ 25 °C [J/mol] | ΔHf @ 25 °C [J/mol] | ΔGf @ 25 °C [J/mol] | ΔHf @ 25 °C [J/mol] | ΔGf @ 25 °C [J/mol] | ΔHf @ 25 °C [J/mol] |
NIST | KOH | −299,999.24 | −304,396.46 | 0 | 0 | −378,678.78 | −424,391.49 |
K+ | 480,879.67 | 513,916.54 | −283,080.56 | −252,211.1 | 0 | 0 | |
OH− | 0 | −143,414.13 | −157,138.91 | −229,840.09 | 0 | 0 | |
Barin (1995) [33] | KOH | −233,762 | −232,630 | - | - | −378,858 | −424,676 |
K+ | - | - | - | - | - | - | |
OH− | - | - | - | - | - | - | |
Wagman et al. (1982) [34] | KOH | −231,000 | −232,600 | −440,500 | −482,370 | −379,080 | −424,764 |
K+ | 514,260 | −283,270 | −252,380 | - | - | ||
OH− | 0 | −143,500 | −157,244 | −229,994 | - | - | |
Pokrovskii and Helgeson (1997) [35] | KOH | - | - | −434,621.37 | −469,043.14 | - | - |
K+ | - | - | −282,461.84 | −252,169.68 | - | - | |
OH− | - | - | −157,297.48 | −230,023.77 | - | - | |
Hausmann et al. (2021) [36] | KOH | - | - | −437,107 | - | - | - |
K+ | - | - | −282,462 | - | - | - | |
OH− | - | - | −157,270 | - | - | - |
Component | Value |
O2 | <5 ppm |
H2O | <5 ppm |
KOH | <2 ppm |
UoM | H2-IN | 2 | MAKE-UP | 3 | TO-ELEC | H2-OUT | COND | |
---|---|---|---|---|---|---|---|---|
Flow rate | kmol/h | 1200 | 835 | 1077 | 9991 | 1441 | 777 | 57 |
Temperature | °C | 80 | 36.70 | 30 | 35 | 54.75 | 40 | 35.85 |
Pressure | bar-a | 1.01 | 1.02 | 1.01 | 1.02 | 1.02 | 31.9 | 3.15 |
Composition | mol% | |||||||
H2 | 65 | 93.35 | - | 0.0006 | 0.0006 | 99.999 | - | |
O2 | 0.15 | 0.20 | - | 0.0008 | 0.0008 | 0.0005 | - | |
H2O | 34.844 | 6.45 | 1 | 99.99 | 99.99 | 0.0005 | 1 | |
KOH | 0.006 | 1.89 × 10−17 | - | 0.003 | 0.003 | - | - |
UoM | H2-IN | 3 | 2 | 4 | H2-OUT | COND | |
---|---|---|---|---|---|---|---|
Flow rate | kmol/h | 973 | 500 | 971 | 969 | 967 | 3 |
Temperature | °C | 78 | 31.72 | 41.87 | 83 | 40 | 40 |
Pressure | bar-a | 30 | 30 | 30 | 30 | 30 | 30 |
Composition | mol% | ||||||
H2 | 99.40 | - | 99.69 | 99.69 | 99.999 | 0.01 | |
O2 | 0.30 | - | 0.002 | 0.0005 | 0.0005 | - | |
H2O | 0.30 | 1 | 0.30 | 0.3 | 0.0005 | 99.99 | |
KOH | 5 × 10−6 | - | - | - | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Spatolisano, E.; Pellegrini, L.A. A Technical Analysis of the H2 Purification Trains Downstream of Alkaline Electrolyzers. Energies 2025, 18, 2886. https://doi.org/10.3390/en18112886
Spatolisano E, Pellegrini LA. A Technical Analysis of the H2 Purification Trains Downstream of Alkaline Electrolyzers. Energies. 2025; 18(11):2886. https://doi.org/10.3390/en18112886
Chicago/Turabian StyleSpatolisano, Elvira, and Laura A. Pellegrini. 2025. "A Technical Analysis of the H2 Purification Trains Downstream of Alkaline Electrolyzers" Energies 18, no. 11: 2886. https://doi.org/10.3390/en18112886
APA StyleSpatolisano, E., & Pellegrini, L. A. (2025). A Technical Analysis of the H2 Purification Trains Downstream of Alkaline Electrolyzers. Energies, 18(11), 2886. https://doi.org/10.3390/en18112886