Study of the Formation and Dissociation of Methane Hydrate System in the Presence of Pure Water
Abstract
1. Introduction
2. Research Method and Laboratory Studies
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
AAD% | average absolute deviation percent |
site A of molecule i | |
a | hard-core radius |
site B of molecule j | |
B | volume parameter |
CPA | Cubic Plus Association |
C | Langmuir adsorption constant |
F | fugacity |
g | radial distribution function |
Boltzmann constant | |
binary interaction parameter | |
effective association volume | |
L | liquid water |
mean segment number in the system | |
N | constant (N = 4, 5, 10, 11) |
number of water molecule in a unit cavity | |
OF | objective function |
PC-SAFT | perturbed chain statistical association fluid theory |
p | pressure |
R | universal gas constant |
S | structure |
T | temperature |
critical temperature | |
reduced temperature | |
vdWP | Van der Waals–Platteeuw |
molar volume | |
V | volume |
W | spherical symmetric potential |
X | gas solubility |
mole fraction | |
mole fraction of gases free in the water phase | |
Y | gaseous mole fraction |
Z | compressibility factor |
References
- Shahnazar, S.; Hasan, N. Gas hydrate formation condition: Review on experimental and modeling approaches. Fluid Phase Equilibria 2014, 379, 72–85. [Google Scholar] [CrossRef]
- Li, Q.; Li, Q. Effects of Drilling Mud Properties on Hydrate Dissociation Around Wellbore during Drilling Operation in Hydrate Reservoir. Int. J. Eng. 2021, 35, 142–149. [Google Scholar] [CrossRef]
- Dvoynikov, M.V.; Nutskova, M.V.; Blinov, P.A. Developments Made in the Field of Drilling Fluids by Saint Petersburg Mining University. Int. J. Eng. Trans. A Basics 2020, 33, 702–711. [Google Scholar] [CrossRef]
- Babaee, S.; Hashemi, H.; Mohammadi, A.H.; Naidoo, P.; Ramjugernath, D. Kinetic study of hydrate formation for argon + TBAB + SDS aqueous solution system. J. Chem. Thermodyn. 2017, 116, 121–129. [Google Scholar] [CrossRef]
- Vysniauskas, A.; Bishnoi, P.R. A kinetic study of methane hydrate formation. Chem. Eng. Sci. 1983, 38, 1061–1072. [Google Scholar] [CrossRef]
- Tian, M.; Song, Y.; Zheng, J.-N.; Gong, G.; Yang, M. Effects of Temperature Gradient on Methane Hydrate Formation and Dissociation Processes and Sediment Heat Transfer Characteristics. Energy 2022, 261, 125220. [Google Scholar] [CrossRef]
- Rao, S.; Li, Z.; Deng, Y.; Huang, X.; Lu, H. Effect of material surface on the formation and dissociation of gas hydrate in restricted space between two parallel substrates. Chem. Eng. J. 2022, 450, 138120. [Google Scholar] [CrossRef]
- Song, S.-F.; Fu, S.-K.; Liao, Q.-Y.; Shi, B.-H.; Chen, H.-J.; Gong, J. Investigations on methane hydrate formation, dissociation, and viscosity in gas-water-sand system. Pet. Sci. 2022, 19, 2420–2430. [Google Scholar] [CrossRef]
- Ji, Y.; Hou, J.; Zhao, E.; Liu, C.; Guo, T.; Liu, Y.; Wei, B.; Bai, Y. Pore-scale study on methane hydrate formation and dissociation in a heterogeneous micromodel. J. Nat. Gas Sci. Eng. 2021, 95, 104230. [Google Scholar] [CrossRef]
- Ramamoorthy, R.K.; Teychené, S.; Rodriguez-Ruiz, I.; Torré, J.-P. Insights on the formation and dissociation mechanisms of cyclopentane hydrate obtained by using calorimetry and optical microscopy. Process Saf. Environ. Prot. 2021, 177, 117–122. [Google Scholar] [CrossRef]
- Saw, V.K.; Ahmad, I.; Mandal, A.; Udayabhanu, G.; Laik, S. Methane hydrate formation and dissociation in synthetic seawater. J. Nat. Gas Chem. 2012, 21, 625–632. [Google Scholar] [CrossRef]
- Skovborg, P.; Rasmussen, P. A mass transport limited model for the growth of methane and ethane gas hydrates. Chem. Eng. Sci. 1994, 49, 1131–1143. [Google Scholar] [CrossRef]
- Lekvam, K.; Ruoff, P. A reaction kinetic mechanism for methane hydrate formation in liquid water. J. Am. Chem. Soc. 1993, 115, 8565–8569. [Google Scholar] [CrossRef]
- Jäger, A.; Vinš, V.; Gernert, J.; Span, R.; Hrubý, J. Phase equilibria with hydrate formation in H2O+CO2 mixtures modeled with reference equations of state. Fluid Phase Equilibria 2012, 338, 100–113. [Google Scholar] [CrossRef]
- Meragawi, S.E.; Diamantonis, N.I.; Tsimpanogiannis, I.N.; Economou, I.G. Hydrate—Fluid phase equilibria modeling using PC-SAFT and Peng–Robinson equations of state. Fluid Phase Equilibria 2015, 413, 209–219. [Google Scholar] [CrossRef]
- Amtawong, J.; Sengupta, S.; Nguyen, M.T.; Carrejo, N.C.; Guo, J.; Fleischer, E.B.; Martin, R.W.; Janda, K.C. Kinetics of Trifluoromethane Clathrate Hydrate Formation from CHF3 Gas and Ice Particles. J. Phys. Chem. A 2017, 121, 7089–7098. [Google Scholar] [CrossRef]
- Sloan, E.D.; Koh, C.A. Clathrate Hydrates of Natural Gases, 3rd ed.; CRC Press (Taylor and Francis Group): Boca Raton, FL, USA, 2008. [Google Scholar]
- Pahlavanzadeh, H.; Kamran-Pirzaman, A.; Mohammadi, A.H. Thermodynamic modeling of pressure–temperature phase diagrams of binary clathrate hydrates of methane, carbon dioxide or nitrogen+tetrahydrofuran, 1,4-dioxane or acetone. Fluid Phase Equilibria 2012, 320, 32–37. [Google Scholar] [CrossRef]
- Dharmawardhana, P.B.; Parrish, W.R.; Sloan, E.D. Experimental thermodynamic parameters for the prediction of natural gas hydrate dissociation conditions. Ind. Eng. Chem. Fundam. 1980, 19, 410–414. [Google Scholar] [CrossRef]
- Chapman, W.G.; Gubbins, K.E.; Jackson, G.; Radosz, M. SAFT: Equation-of-state solution model for associating fluids. Fluid Phase Equilibria 1989, 52, 31–38. [Google Scholar] [CrossRef]
- Gross, J.; Sadowski, G. Application of the Perturbed-Chain SAFT equation of state to associating systems. Ind. Eng. Chem. Res. 2002, 41, 5510–5515. [Google Scholar] [CrossRef]
- Ji, X.; Held, C.; Sadowski, G. Modeling imidazolium-based ionic liquids with ePC-SAFT. Part II. Application to H2S and synthesis-gas components. Fluid Phase Equilibria 2013, 363, 59–65. [Google Scholar] [CrossRef]
- Cameretti, L.F.; Sadowski, G.; Mollerup, J.M. Modeling of Aqueous Electrolyte Solutions with Perturbed-Chain Statistical Associated Fluid Theory. Ind. Eng. Chem. Res. 2005, 44, 3355–3362. [Google Scholar] [CrossRef]
- Gross, J.; Sadowski, G. Perturbed-Chain SAFT: An equation of state based on a perturbation theory for chain molecules. Ind. Eng. Chem. Res. 2001, 40, 1244–1260. [Google Scholar] [CrossRef]
- Kontogeorgis, G.M.; Michelsen, M.L.; Folas, G.K.; Derawi, S.; Von Solms, N.; Stenby, E.H. Ten Years with the CPA (Cubic-Plus-Association) Equation of State. Part 1. Pure Compounds and Self-Associating Systems. Ind. Eng. Chem. Res. 2006, 45, 4855–4868. [Google Scholar] [CrossRef]
- Kohn, J.P.; Kurata, F. Heterogeneous phase equilibria of the methane—Hydrogen sulfide system. AIChE J. 1958, 4, 211–217. [Google Scholar] [CrossRef]
- Tsivintzelis, I.; Kontogeorgis, G.; Michelsen, M.L.; Stenby, E.H. Modeling phase equilibria for acid gas mixtures using the CPA equation of state. I. Mixtures with H2S. AIChE J. 2010, 56, 2965–2982. [Google Scholar] [CrossRef]
- Poling, B.E.; Prausnitz, J.M.; O’Connell, J.P. Properties of gases and liquids. In Industrial Combustion Series; McGraw Hill: New York, NY, USA, 2001; pp. 715–724. [Google Scholar] [CrossRef]
- Mahmoudjanloo, H.; Izadpanah, A.A.; Osfouri, S.; Mohammadi, A.H. Modeling liquid–liquid and vapor–liquid equilibria for the hydrocarbon+N-formylmorpholine system using the CPA equation of state. Chem. Eng. Sci. 2013, 98, 152–159. [Google Scholar] [CrossRef]
- Liu, X.; Jiang, R.; Li, J.; Huang, W. Characteristics of Shale Gas Reservoir in Jiyang Depression and its Significance in Drilling and Exploitation. Int. J. Eng. Trans. B Appl. 2020, 33, 1677–1686. [Google Scholar] [CrossRef]
- Poplygin, V.V.; Pavlovskaia, E.E. Investigation of the Influence of Pressures and Proppant Mass on the Well Parameters after Hydraulic Fracturing. Int. J. Eng. Trans. A Basics 2021, 34, 1066–1073. [Google Scholar] [CrossRef]
- Leusheva, E.; Morenov, V.; Tabatabaee Moradi, S. Effect of Carbonate Additives on Dynamic Filtration Index of Drilling Mud. Int. J. Eng. Trans. B Appl. 2020, 33, 934–939. [Google Scholar] [CrossRef]
- Li, D.-L.; Liang, D.-Q.; Fan, S.-S.; Li, X.-S.; Tang, L.-G.; Huang, N.-S. In situ hydrate dissociation using microwave heating: Preliminary study. Energy Convers. Manag. 2008, 49, 2207–2213. [Google Scholar] [CrossRef]
- Wang, F.; Dong, Y.; Li, S.; Zhao, Y.; Liu, S. Dynamic behavior and permeability evolution of CO2 hydrates during dissociation by depressurization: Insights from low-field nuclear magnetic resonance. Gas Sci. Eng. 2025, 135, 205548. [Google Scholar] [CrossRef]
- Shao, Z.; He, G.; Liu, H.; Lin, Q.; Sun, L.; Zhao, Y.; Huang, L. Numerical study on heat and mass transfer characteristics of hot water-induced hydrate dissociation. Int. J. Heat Mass Transf. 2025, 241, 126776. [Google Scholar] [CrossRef]
- Zhang, T.-T.; Li, B.; Wei, W.-N.; Feng, J.-C.; Wan, Q.-C. Kinetic study on the effect of ice nucleation and generation on methane hydrate dissociation below the quadruple point. Gas Sci. Eng. 2024, 131, 205468. [Google Scholar] [CrossRef]
- Zhang, H.; Wu, B.; Luo, X.; Tang, M.; Zhang, X.; Yang, L.; Nie, Y.; Zhou, J.; Zhang, L.; Li, G. Multiphysical evolution and dynamic competition involved in natural gas hydrate dissociation in porous media and its implications for engineering. Energy 2023, 289, 130032. [Google Scholar] [CrossRef]
- Hem, J.D. Study and Interpretation of the Chemical Characteristics of Natural Water; U.S. Geological Survey: Reston, VA, USA, 1959. [CrossRef]
- Nakamura, T.; Makino, T.; Sugahara, T.; Ohgaki, K. Stability boundaries of gas hydrates helped by methane—Structure-H hydrates of methylcyclohexane and cis-1,2-dimethylcyclohexane. Chem. Eng. Sci. 2002, 58, 269–273. [Google Scholar] [CrossRef]
- Jhaveri, J.; Robinson, D.B. Hydrates in the methane-nitrogen system. Can. J. Chem. Eng. 1965, 43, 75–78. [Google Scholar] [CrossRef]
- De Roo, J.L.; Peters, C.J.; Lichtenthaler, R.N.; Diepen, G.A.M. Occurrence of methane hydrate in saturated and unsaturated solutions of sodium chloride and water in dependence of temperature and pressure. AIChE J. 1983, 29, 651–657. [Google Scholar] [CrossRef]
Component | |||
---|---|---|---|
0.3834 | 3.1439 | 155.593 |
Component | |||||
---|---|---|---|---|---|
2.3203 | 0.0291 | 0.4472 | - | - | |
1.2277 | 0.0145 | 0.6736 | 0.0692 | 166.55 |
Component | |||
---|---|---|---|
4.599 | 190.56 | 0.0115 | |
22.055 | 647.13 | 0.3449 |
T(K) | P (MPa) Experimental | P (MPa) Predicted | AAD |
---|---|---|---|
288.4 | 13.15 | 13.42 | 2.05 |
287.8 | 12.14 | 12.46 | 2.63 |
286.9 | 11.02 | 11.17 | 1.35 |
286.0 | 10.10 | 10.04 | 0.58 |
285.2 | 8.92 | 9.14 | 2.46 |
284.2 | 8.09 | 8.15 | 0.73 |
283.1 | 7.11 | 7.19 | 1.12 |
Deaton and Frost | Nakamura | Jhaveri and Robinson | De Roo | This Study | ||||||
---|---|---|---|---|---|---|---|---|---|---|
T (K) | P (MPa) | T (K) | P (MPa) | T (K) | P (MPa) | T (K) | P (MPa) | T (K) | P (MPa) | |
Exp | 280.4 | 5.35 | 282.7 | 6.88 | 280.4 | 5.58 | 282.8 | 7.04 | 283.1 | 7.13 |
PC-SAFT | 281.05 | 4.96 | 283.3 | 6.42 | 281.4 | 4.96 | 283.5 | 6.49 | 283.6 | 6.72 |
CPA | 279.7 | 5.34 | 282.6 | 6.87 | 280.8 | 5.34 | 282.9 | 6.96 | 283 | 7.19 |
Exp | 280.9 | 5.71 | 283.2 | 7.25 | 284.7 | 8.67 | 284 | 8.05 | 284.2 | 8.09 |
PC-SAFT | 281.65 | 5.24 | 283.7 | 6.8 | 285.2 | 8.1 | 284.6 | 7.46 | 284.7 | 7.64 |
CPA | 281 | 5.64 | 283.1 | 7.27 | 284.6 | 8.63 | 284.1 | 7.96 | 284.1 | 8.15 |
Exp | 281.5 | 6.06 | 283.7 | 7.65 | 287.3 | 11.65 | 285 | 9.04 | 285.2 | 8.91 |
PC-SAFT | 282.2 | 565 | 284.2 | 7.21 | 287.6 | 11.14 | 285.6 | 8.39 | 285.5 | 8.6 |
CPA | 281.6 | 6.02 | 283.6 | 7.69 | 287.2 | 11.73 | 285.1 | 8.93 | 285 | 9.14 |
Exp | 282.6 | 6.77 | 284.3 | 8.1 | 288.9 | 14.05 | 286 | 10.04 | 286 | 10.12 |
PC-SAFT | 283.15 | 6.35 | 284.7 | 7.73 | 289.1 | 13.69 | 286.5 | 9.47 | 286.5 | 9.48 |
CPA | 282.5 | 6.8 | 284 | 8.24 | 288.8 | 14.28 | 285.9 | 10.3 | 286.1 | 10.04 |
Exp | 284.3 | 8.12 | 284.8 | 8.55 | - | - | - | - | 286.9 | 11.03 |
PC-SAFT | 284.7 | 7.73 | 285.1 | 8.2 | - | - | - | - | 287.2 | 10.59 |
CPA | 284.2 | 8.24 | 284.6 | 8.73 | - | - | - | 287.8 | 11.17 | |
Exp | 285.9 | 9.78 | 285.2 | 9.03 | - | - | - | - | 287.8 | 12.14 |
PC-SAFT | 286.2 | 9.36 | 285.6 | 8.6 | - | - | - | - | 288.8 | 11.86 |
CPA | 285.8 | 9.92 | 285.1 | 9.14 | - | - | - | - | 287.6 | 11.46 |
Exp | - | - | 284.8 | 9.54 | - | - | - | - | 288.4 | 13.16 |
PC-SAFT | - | - | 286 | 8.2 | - | - | - | - | 288.6 | 12.82 |
CPA | - | - | 285.6 | 8.73 | - | - | - | - | 288.2 | 12.42 |
PC-SAFT | 0.19 | 6.37 | 0.2 | 6.58 | 0.17 | 6.16 | 0.21 | 7 | 0.12 | 4.28 |
AAD% | ||||||||||
CPA | 0.07 | 0.9 | 0.09 | 2.07 | 0.06 | 1.77 | 0.04 | 0.89 | 0.05 | 1.55 |
AAD% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arfanejad, A.; Poplygin, V.; Shi, X. Study of the Formation and Dissociation of Methane Hydrate System in the Presence of Pure Water. Energies 2025, 18, 2849. https://doi.org/10.3390/en18112849
Arfanejad A, Poplygin V, Shi X. Study of the Formation and Dissociation of Methane Hydrate System in the Presence of Pure Water. Energies. 2025; 18(11):2849. https://doi.org/10.3390/en18112849
Chicago/Turabian StyleArfanejad, Ashkan, Vladimir Poplygin, and Xian Shi. 2025. "Study of the Formation and Dissociation of Methane Hydrate System in the Presence of Pure Water" Energies 18, no. 11: 2849. https://doi.org/10.3390/en18112849
APA StyleArfanejad, A., Poplygin, V., & Shi, X. (2025). Study of the Formation and Dissociation of Methane Hydrate System in the Presence of Pure Water. Energies, 18(11), 2849. https://doi.org/10.3390/en18112849