Impact of Multiple Inlet and Outlet Structures of Bipolar Plate Channel on the Mass Transport in ALK Electrolyzers
Abstract
:1. Introduction
2. Structure of Industrial ALK Electrolyze
3. Computational Model
3.1. Flow Governing Equations
3.2. Computational Parameters
3.3. Single-Chamber Geometry Model and Mesh Generation
3.3.1. Geometric Modelling
3.3.2. Establishment of Numerical Model and Grid Independence
3.4. Analysis Method of Flow Field Uniformity
4. Results and Discussion
4.1. Velocity and Streamline Distribution Within the Flow Field
4.2. Vorticity Distribution
4.3. Velocity Distribution Uniformity
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Nomenclature
, | Model constant for the ε equation |
Gk | Generation of turbulence kinetic energy due to mean velocity gradients [kg/(m·s3)] |
K | Turbulence kinetic energy [m2/s2] |
ui | Velocity component in the i-th direction [m/s] |
Time-averaged velocity [m/s] | |
Velocities at the measurement point [m/s] | |
Average velocity on the measurement cross-section [m/s] | |
, | Spatial coordinate in the i/j-th direction [m] |
P | Pressure [Pa] |
Ε | Dissipation rate [m2/s3] |
ρ | Fluid density [kg/m3] |
Μ | Dynamic viscosity [Pa·s] |
Inverse effective Prandtl numbers for k | |
Inverse effective Prandtl numbers for ε | |
μeff | Effective viscosity (sum of molecular and turbulent viscosity) [Pa·s] |
Vorticity vector [s−1] | |
Nabila operator [m−1] | |
Kinematic viscosity [m2/s] | |
Evaluation indicator based on velocity uniformity evaluation criterion | |
ALK | Alkaline |
CCBP | Concave–convex bipolar plate |
CFD | Computational fluid dynamics |
OH | Hydroxide ions |
RANS | Reynolds-Averaged Navier–Stokes |
RNG | Renormalization group |
References
- Castro, M.T.; Mora, J.M.; Kakati, N.; Chuang, P.Y.A.; Ocon, J.D. A Multiphysics model of a proton exchange membrane acid-alkaline electrolyze. Energy Convers. Manag. 2022, 267, 115829. [Google Scholar] [CrossRef]
- Huang, D.; Xiong, B.; Fang, J.; Hu, K.; Zhong, Z.; Ying, Y.; Ai, X.; Chen, Z. A Multiphysics model of the compactly-assembled industrial alkaline water electrolysis cell. Appl. Energy 2022, 314, 118987. [Google Scholar] [CrossRef]
- Sharshir, S.W.; Joseph, A.; Elsayad, M.M.; Tareemi, A.A.; Kandeal, A.W.; Elkadeem, M.R. A review of recent advances in alkaline electrolyzer for green hydrogen production: Performance improvement and applications. Int. J. Hydrogon Energy 2024, 49, 458–488. [Google Scholar] [CrossRef]
- Ding, S.; Guo, B.; Hu, S.; Gu, J.; Yang, F.; Li, Y.; Dang, J.; Liu, B.; Ma, J. Analysis of the effect of characteristic parameters and operating conditions on exergy efficiency of alkaline water electrolyzer. J. Power Sources 2022, 537, 231532. [Google Scholar] [CrossRef]
- Zarghami, A.; Deen, N.G.; Vreman, A.W. CFD modelling of multiphase flow in an alkaline water electrolyzer. Chem. Eng. Sci. 2020, 227, 115926. [Google Scholar] [CrossRef]
- Khaligh, V.; Ghezelbash, A.; Zarei, M.; Liu, J.; Won, W. Efficient integration of alkaline water electrolyzer–A model predictive control approach for a sustainable low-carbon district heating system. Energy Convers. Manag. 2023, 292, 117404. [Google Scholar] [CrossRef]
- Lee, J.; Alam, A.; Ju, H. Multidimensional and transient modelling of an alkaline water electrolysis cell. Int. J. Hydrogen Energy 2021, 46, 13678–13690. [Google Scholar] [CrossRef]
- Zhang, Z.; Jin, L.; Deng, L.; Li, W.; Liu, M.; Geng, Z.; Zhang, C. Three-dimensional simulation of two-phase flow distribution in spherical concave-convex shaped flow field for alkaline water electrolyzer. Int. J. Hydrogen Energy 2023, 48, 33401–33410. [Google Scholar] [CrossRef]
- Gao, L.Y.; Yang, L.; Wang, C.H.; Shan, G.X.; Huo, X.Y.; Zhang, M.F.; Li, W.; Zhang, J.L. Three-dimensional two-phase CFD simulation of alkaline electrolyzers. J. Electrochem. 2023, 29, 3. [Google Scholar]
- Ahmed, D.H.; Sung, H.J. Effects of channel geometrical configuration and shoulder width on PEMFC performance at high current density. J. Power Sources 2006, 162, 327–339. [Google Scholar] [CrossRef]
- Park, J.; Ligrani, P.M. Numerical predictions of heat transfer and fluid flow characteristics for seven different dimpled surfaces in a channel. Numer. Heat Transf. Appl. 2005, 47, 209–232. [Google Scholar] [CrossRef]
- Wang, T.; Wang, J.; Wang, P.; Wang, F.; Liu, L.; Guo, H. Non-uniform liquid flow distribution in an alkaline water electrolyzer with concave-convex bipolar plate (CCBP): A numerical study. Int. J. Hydrogen Energy 2023, 48, 12200–12214. [Google Scholar] [CrossRef]
- Wang, T.; Wang, J.; Wang, P.; Ren, Z.; Yan, X.; Wang, W.; Guo, W. Plate structure design guideline for commercial alkaline water electrolyzers (AWEs) with improved liquid flow uniformity: Multi-scale quantitative criteria and experimental validation. Int. J. Hydrogen Energy 2024, 49, 907–924. [Google Scholar] [CrossRef]
- Haug, P.; Kreitz, B.; Koj, M.; Turek, T. Process modelling of an alkaline water electrolyzer. Int. J. Hydrogen Energy 2017, 42, 15689–15707. [Google Scholar] [CrossRef]
- Lattieff, F.A.; Jweeg, M.J.; Majdi, H.S.; Al-Qrimli, F.A.M. Modeling of electrocatalytic hydrogen evolution via high voltage alkaline electrolyzer with different nano-electrocatalysts. Int. J. Hydrogen Energy 2024, 51, 78–90. [Google Scholar] [CrossRef]
- Zakaria, Z.; Kamarudin, S.K. A review of alkaline solid polymer membrane in the application of AEM electrolyzer: Materials and characterization. Int. J. Energy Res. 2021, 45, 18337–18354. [Google Scholar] [CrossRef]
- Li, Y.; Deng, X.; Gu, J.; Zhang, T.; Guo, B.; Yang, F.Y.; Ouyang, M.G. Comprehensive review and prospect of the modelling of alkaline water electrolysis system for hydrogen production. Automot. Eng. 2022, 44, 567–582. [Google Scholar]
- Phillips, R.; Edwards, A.; Rome, B.; Jones, D.R.; Dunnill, C.W. Minimising the ohmic resistance of an alkaline electrolysis cell through effective cell design. Int. J. Hydrogen Energy 2017, 42, 23986–23994. [Google Scholar] [CrossRef]
- Xue, L.; Song, S.; Chen, W.; Liu, B.; Wang, X. Enhancing Efficiency in Alkaline Electrolysis Cells: Optimizing Flow Channels through Multiphase Computational Fluid Dynamics Modeling. Energies 2024, 17, 448. [Google Scholar] [CrossRef]
- Liu, L.; Wang, J.; Ren, Z.; Wang, F.; Wang, T.; Guo, H. Ultrathin reinforced composite separator for alkaline water elec-trolysis: Comprehensive performance evaluation. Int. J. Hydrogen Energy 2023, 48, 23885–23893. [Google Scholar] [CrossRef]
- ANSYS Inc. ANSYS Flunet Users’ Guide 2016; ANSYS Inc.: Canonsburg, PA, USA, 2016. [Google Scholar]
- Rivera, F.F.; Pérez, T.; Castañeda, L.F.; Nava, J.L. Mathematical modelling and simulation of electro-chemical reactors: A critical review. Chem. Eng. Sci. 2021, 239, 116622. [Google Scholar] [CrossRef]
- Linn, R.V.; Awruch, A.M. Adaptative finite element simulation of unsteady turbulent com-pressible flows on unstructured meshes. Comput. Fluids 2023, 254, 105816. [Google Scholar] [CrossRef]
- Tao, H.G.; Chen, H.X.; Xie, J.L.; Shu, Z.H.; Hu, Y.X.; Lu, H. Flow uniformity index based on area-weighted and mass-weighted average velocity. CIESC J. 2010, 61, 116–120. [Google Scholar]
- De Oliveira, J.D.; Cardoso, E.M.; de Souza, R.R.; Copetti, J.B.; Varón, L.M.; Moreira, J.R.S. On fluctuations in velocity fields during convective mass transfer in hydrogen generation through water electrolysis. Int. J. Hydrogen Energy 2024, 80, 394–405. [Google Scholar] [CrossRef]
- Abdelouahed, L.; Hreiz, R.; Poncin, S.; Valentin, G.; Lapicque, F. Hydrodynamics of gas bubbles in the gap of lantern blade electrodes without forced flow of electrolyte: Experiments and CFD modelling. Chem. Eng. Sci. 2014, 111, 255–265. [Google Scholar] [CrossRef]
Turbulence Model | Fluid Medium | Inlet/Outlet Boundary Conditions | Wall Boundary Conditions | Pressure-Velocity Coupling | Discretization Scheme |
---|---|---|---|---|---|
RNG k-ε | H2O | Velocity inlet 2.1 m/s Pressure outlet | No-slip condition | SIMPLE | Second-order upwind scheme |
Structural Configuration | Concave–Convex Structure Shapes | Number of Inlets | Number of Outlets | Number of Elements |
---|---|---|---|---|
Case A | Spherical | 1 | 1 | 1,397,530 |
Case B | Square | 2,836,298 | ||
Case C | Triangular | 2,778,067 | ||
Case D | Spherical | 3 | 3 | 1,490,483 |
Case E | Square | 3,147,665 | ||
Case F | Triangular | 2,854,809 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, W.; Xu, C.; Chen, M.; Wang, S.; Yang, L.; Zhang, Y.; Luo, M.; Li, Z.; Wang, Z. Impact of Multiple Inlet and Outlet Structures of Bipolar Plate Channel on the Mass Transport in ALK Electrolyzers. Energies 2025, 18, 2771. https://doi.org/10.3390/en18112771
Zhao W, Xu C, Chen M, Wang S, Yang L, Zhang Y, Luo M, Li Z, Wang Z. Impact of Multiple Inlet and Outlet Structures of Bipolar Plate Channel on the Mass Transport in ALK Electrolyzers. Energies. 2025; 18(11):2771. https://doi.org/10.3390/en18112771
Chicago/Turabian StyleZhao, Wanxiang, Chengjie Xu, Mingya Chen, Shuiyong Wang, Lin Yang, Yimin Zhang, Mengqi Luo, Zishuo Li, and Zhiyuan Wang. 2025. "Impact of Multiple Inlet and Outlet Structures of Bipolar Plate Channel on the Mass Transport in ALK Electrolyzers" Energies 18, no. 11: 2771. https://doi.org/10.3390/en18112771
APA StyleZhao, W., Xu, C., Chen, M., Wang, S., Yang, L., Zhang, Y., Luo, M., Li, Z., & Wang, Z. (2025). Impact of Multiple Inlet and Outlet Structures of Bipolar Plate Channel on the Mass Transport in ALK Electrolyzers. Energies, 18(11), 2771. https://doi.org/10.3390/en18112771