Enhanced Wind Power Forecasting Using Graph Convolutional Networks with Ramp Characterization and Error Correction
Abstract
1. Introduction
- (1)
- A novel ramp-aware graph neural network model is introduced. By performing Pearson correlation analysis, meteorological variables strongly correlated with distinct ramp phases are selected, and a multi-event feature graph is constructed to quantify the physical coupling characteristics of ramp events. The model then combines this graph representation with a BiLSTM network to enhance wind power forecasting accuracy.
- (2)
- An error correction and dynamic feedback mechanism is developed. This module captures systematic prediction biases through error component modeling, providing a quantitative foundation for correction. It then performs dynamic adjustment of the power output in real time to continuously calibrate the forecasts.
2. Correlation Method
2.1. Definition of WPREs
2.2. GCN Model
2.3. BiLSTM Model
2.4. Error Correction Model
3. Short-Term Prediction Based on WPREs Recognition and GCN
3.1. Basic Idea of Forecasting
3.2. Prediction and Evaluation Index
3.3. Data Preprocessing
- (1)
- Missing value supplementation
- (2)
- Outlier correction
4. Case Analysis
4.1. Original Dataset Description
4.2. Calculation of Scheduling Time Period Weights and Indicator Weights
4.3. GCN Node Analysis
4.4. Predictive Model Results Analysis
- (1)
- Analysis of the prediction results considering the recognition of ramp features
- (2)
- Analysis of the prediction results with multi-step prediction
4.5. Analysis of Prediction Results of Error Correction Model
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Farah, S.; David, W.A.; Humaira, N.; Aneela, Z.; Steffen, E. Short-term multi-hour ahead country-wide wind power prediction for Germany using gated recurrent unit deep learning. Renew. Sustain. Energy Rev. 2022, 167, 112700. [Google Scholar] [CrossRef]
- Hanifi, S.; Liu, X.L.; Lin, Z.; Lotfian, S. A critical review of wind power forecasting methods-past, present and future. Energies 2020, 13, 3764. [Google Scholar] [CrossRef]
- Cao, B.; Chang, L. Development of short-term wind power forecasting methods. In Proceedings of the 2022 IEEE 7th Southern Power Electronics Conference, SPEC, Nadi, Fiji, 5–8 December 2022. [Google Scholar]
- Global Wind Report 2024—Global Wind Energy Council. Available online: https://www.gwec.net/reports/globalwindreport/2024 (accessed on 3 July 2024).
- González-Sopeña, J.; Pakrashi, V.; Ghosh, B. An overview of performance evaluation metrics for short-term statistical wind power forecasting. Renew. Sustain. Energy Rev. 2021, 138, 110515. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, N.; Du, E.; Yan, J.; Han, S.; Liu, Y. A comprehensive review for wind, solar, and electrical load forecasting methods. Glob. Energy Interconnect. 2022, 5, 9–30. [Google Scholar] [CrossRef]
- Liu, H.; Li, Y.; Duan, Z.; Chen, C. A review on multi-objective optimization framework in wind energy forecasting techniques and applications. Energy Convers. Manag. 2020, 224, 113324. [Google Scholar] [CrossRef]
- He, J.J.; Yu, C.J.; Li, Y.L.; Xiang, H.Y. Ultra-short term wind prediction with wavelet transform, deep belief network and ensemble learning. Energy Convers. Manag. 2020, 205, 112418. [Google Scholar] [CrossRef]
- Jiang, Y.; Chen, Y.C.; Kun, Y.U.; Liao, Y.C. Short-term wind power forecasting using hybrid method based on enhanced boosting algorithm. J. Mod. Power Syst. Clean Energy 2017, 5, 126–133. [Google Scholar] [CrossRef]
- Lin, Z.; Liu, X.; Collu, M. Wind power prediction based on high-frequency SCADA data along with isolation forest and deep learning neural networks. Int. J. Electr. Power Energy Syst. 2020, 118, 105835. [Google Scholar] [CrossRef]
- Lu, P.; Ye, L.; Zhao, Y.; Dai, B.; Pei, M.; Tang, Y. Review of meta-heuristic algorithms for wind power prediction: Methodologies, applications and challenges. Appl. Energy 2021, 301, 117446. [Google Scholar] [CrossRef]
- Dhiman, H.S.; Deb, D.; Guerrero, J.M. On wavelet transform based convolutional neural network and twin support vector regression for wind power ramp event prediction. Sustain. Comput. Inform. Syst. 2022, 36, 100795. [Google Scholar] [CrossRef]
- Zhou, B.; Duan, H.; Wu, Q.; Wang, H.; Or, S.W.; Chan, K.W.; Meng, Y. Short-term prediction of wind power and its ramp events based on semi-supervised generative adversarial network. Int. J. Electr. Power Energy Syst. 2021, 125, 106411. [Google Scholar] [CrossRef]
- He, B.; Ye, L.; Pei, M.; Lu, P.; Dai, B.; Li, Z.; Wang, K. A combined model for short-term wind power forecasting based on the analysis of numerical weather prediction data. Energy Rep. 2022, 8, 929–939. [Google Scholar] [CrossRef]
- Lu, P.; Ye, L.; Pei, M.; Zhao, Y.; Dai, B.; Li, Z. Short-term wind power forecasting based on meteorological feature extraction and optimization strategy. Renew. Energy 2022, 184, 642–661. [Google Scholar] [CrossRef]
- Yang, T.; Yang, Z.; Li, F.; Wang, H. A short-term wind power forecasting method based on multivariate signal decomposition and variable selection. Appl. Energy 2024, 360, 122759. [Google Scholar] [CrossRef]
- Hou, G.; Wang, J.; Fan, Y. Multistep short-term wind power forecasting model based on secondary decomposition, the kernel principal component analysis, an enhanced arithmetic optimization algorithm, and error correction. Energy 2023, 286, 129640. [Google Scholar] [CrossRef]
- Yang, M.; Che, R.; Yu, X.; Su, X. Dual NWP wind speed correction based on trend fusion and fluctuation clustering and its application in short-term wind power prediction. Energy 2024, 302, 131802. [Google Scholar] [CrossRef]
- Yang, M.; Wang, D.; Xu, C.; Dai, B.; Ma, M.; Su, X. Power transfer characteristics in fluctuation partition algorithm for wind speed and its application to wind power forecasting. Renew. Energy 2023, 211, 582–594. [Google Scholar] [CrossRef]
- Yang, M.; Guo, Y.; Huang, Y. Wind power ultra-short-term prediction method based on NWP wind speed correction and double clustering division of transitional weather process. Energy 2023, 282, 128947. [Google Scholar] [CrossRef]
- Ye, L.; Li, Y.; Pei, M.; Zhao, Y.; Li, Z.; Lu, P. A novel integrated method for short-term wind power forecasting based on fluctuation clustering and history matching. Appl. Energy 2022, 327, 120131. [Google Scholar] [CrossRef]
- Yang, M.; Wang, T.; Zhang, X.; Zhang, W.; Wang, B. Considering dynamic perception of fluctuation trend for long-foresight-term wind power prediction. Energy 2023, 289, 130016. [Google Scholar] [CrossRef]
- Zhao, B.; He, X.; Ran, S.; Zhang, Y.; Cheng, C. Spatial correlation learning based on graph neural network for medium-term wind power forecasting. Energy 2024, 296, 131164. [Google Scholar] [CrossRef]
- Xiao, F.; Ping, X.; Li, Y.; Xu, Y.; Kang, Y.; Liu, D.; Zhang, N. The Short-Term Prediction of Wind Power Based on the Convolutional Graph Attention Deep Neural Network. Energy Eng. 2024, 121, 359–376. [Google Scholar] [CrossRef]
- Lv, Y.; Hu, Q.; Xu, H.; Lin, H.; Wu, Y. An ultra-short-term wind power prediction method based on spatial-temporal attention graph convolutional model. Energy 2024, 293, 130751. [Google Scholar] [CrossRef]
- Cui, Y.; Chen, Z.; He, Y.; Xiong, X.; Li, F. An algorithm for forecasting day-ahead wind power via novel long short-term memory and wind power ramp events. Energy 2022, 263, 125888. [Google Scholar] [CrossRef]
- Tascikaraoglu, A.; Uzunoglu, M. A review of combined approaches for prediction of short-term wind speed and power. Renew. Sustain. Energy Rev. 2014, 34, 243–254. [Google Scholar] [CrossRef]
- Wu, X.; Sun, R.; Qiao, Y.; Lu, Z. Estimation of error distribution for wind power prediction based on power curves of wind farms. Power Syst. Technol. 2017, 41, 1801–1807. [Google Scholar]
- Zhao, J.; Guo, Y.; Xiao, X.; Wang, J.; Chi, D.; Guo, Z. Multi-step wind speed and power forecasts based on a WRF simulation and an optimized association method. Appl. Energy 2017, 197, 183–202. [Google Scholar] [CrossRef]
- Wang, Q.; Yu, P.; Lv, M.; Wu, X.; Li, C.; Chang, X.; Wu, L. Real-time prediction of wave-induced hull girder loads for a large container ship based on the recurrent neural network model and error correction strategy. Int. J. Nav. Arch. Ocean Eng. 2024, 16, 100587. [Google Scholar] [CrossRef]
- Zhang, S.; Liu, M.; Liu, M.; Lei, Z.; Zeng, G.; Chen, Z. Day-ahead wind power prediction using an ensemble model considering multiple indicators combined with error correction. Appl. Soft Comput. 2023, 148, 110873. [Google Scholar] [CrossRef]
- Ye, L.; Dai, B.; Li, Z.; Pei, M.; Zhao, Y.; Lu, P. An ensemble method for short-term wind power prediction considering error correction strategy. Appl. Energy 2022, 322, 119475. [Google Scholar] [CrossRef]
- Hu, J.; Zhang, L.; Tang, J.; Liu, Z. A novel transformer ordinal regression network with label diversity for wind power ramp events forecasting. Energy 2023, 280, 128075. [Google Scholar] [CrossRef]
- Dalton, A.; Bekker, B.; Koivisto, M.J. Simulation and detection of wind power ramps and identification of their causative atmospheric circulation patterns. Electr. Power Syst. Res. 2021, 192, 106936. [Google Scholar] [CrossRef]
- Gallego-Castillo, C.; Cuerva-Tejero, A.; Lopez-Garcia, O. A review on the recent history of wind power ramp forecasting. Renew. Sustain. Energy Rev. 2015, 52, 1148–1157. [Google Scholar] [CrossRef]
- Zhang, J.; Cui, M.; Hodge, B.-M.; Florita, A.; Freedman, J. Ramp forecasting performance from improved short-term wind power forecasting over multiple spatial and temporal scales. Energy 2017, 122, 528–541. [Google Scholar] [CrossRef]
- Zhao, Y.; Liao, H.; Pan, S.; Zhao, Y. Interpretable multi-graph convolution network integrating spatio-temporal attention and dynamic combination for wind power forecasting. Expert Syst. Appl. 2024, 255, 124766. [Google Scholar] [CrossRef]
- Wei, C.; Pi, D.; Ping, M.; Zhang, H. Short-term load forecasting using spatial-temporal embedding graph neural network. Electr. Power Syst. Res. 2023, 225, 109873. [Google Scholar] [CrossRef]
- Zhao, J.; Yan, Z.; Zhou, Z.; Chen, X.; Wu, B.; Wang, S. A ship trajectory prediction method based on GAT and LSTM. Ocean Eng. 2023, 289, 116159. [Google Scholar] [CrossRef]
- Wei, Y.; Chen, Z.; Zhao, C.; Chen, X.; He, J.; Zhang, C. A three-stage multi-objective heterogeneous integrated model with decomposition-reconstruction mechanism and adaptive segmentation error correction method for ship motion multi-step prediction. Adv. Eng. Inform. 2023, 56, 101954. [Google Scholar] [CrossRef]
Spring | Summer | Autumn | Winter | |
---|---|---|---|---|
Ramp-up event | 9 | 12 | 12 | 11 |
Ramp-down event | 8 | 11 | 11 | 13 |
Non-ramp event | 3 | 4 | 2 | 2 |
Index | Spring | Summer | Autumn | Winter | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Method | MAE | MAPE | RMSE | MAE | MAPE | RMSE | MAE | MAPE | RMSE | MAE | MAPE | RMSE | |
Before | 30.066 | 0.128 | 38.965 | 39.666 | 0.128 | 70.922 | 65.134 | 0.108 | 91.625 | 65.768 | 0.022 | 94.946 | |
After | 12.597 | 0.051 | 17.690 | 23.506 | 0.068 | 40.483 | 29.304 | 0.052 | 52.756 | 42.067 | 0.014 | 59.691 |
Season | Step | Evaluation Indicators | Model 1 | Model 2 | Model 3 |
---|---|---|---|---|---|
Spring | 1-step ahead | MAE | 22.869 | 27.127 | 15.1713 |
MAPE | 0.0836 | 0.1756 | 0.0595 | ||
RMSE | 32.1357 | 33.843 | 21.9507 | ||
2-step ahead | MAE | 21.9859 | 25.93 | 21.3648 | |
MAPE | 0.0789 | 0.0929 | 0.0786 | ||
RMSE | 30.8346 | 36.0336 | 29.7885 | ||
3-step ahead | MAE | 22.8793 | 22.3461 | 22.214 | |
MAPE | 0.0785 | 0.089 | 0.0781 | ||
RMSE | 32.2695 | 31.6698 | 30.7075 | ||
Summer | 1-step ahead | MAE | 39.6276 | 36.1062 | 19.0921 |
MAPE | 0.1712 | 0.1237 | 0.0693 | ||
RMSE | 71.8246 | 68.3593 | 32.8247 | ||
2-step ahead | MAE | 38.7775 | 34.8332 | 23.9008 | |
MAPE | 0.1543 | 0.0804 | 0.0745 | ||
RMSE | 72.0189 | 68.0761 | 40.4538 | ||
3-step ahead | MAE | 40.4744 | 38.2804 | 26.6685 | |
MAPE | 0.2226 | 0.1278 | 0.0984 | ||
RMSE | 72.5032 | 69.5466 | 44.9899 | ||
Autumn | 1-step ahead | MAE | 56.7392 | 51.3428 | 50.7459 |
MAPE | 0.1002 | 0.0663 | 0.0591 | ||
RMSE | 87.0996 | 78.8623 | 79.7704 | ||
2-step ahead | MAE | 55.7436 | 51.863 | 51.9949 | |
MAPE | 0.1052 | 0.0704 | 0.079 | ||
RMSE | 83.9547 | 79.9794 | 80.7358 | ||
3-step ahead | MAE | 55.4655 | 52.0087 | 49.404 | |
MAPE | 0.1133 | 0.1045 | 0.078 | ||
RMSE | 83.3012 | 78.4778 | 76.3651 | ||
Winner | 1-step ahead | MAE | 66.7616 | 62.837 | 55.5984 |
MAPE | 0.0223 | 0.021 | 0.0157 | ||
RMSE | 95.7773 | 90.7758 | 81.2365 | ||
2-step ahead | MAE | 71.1707 | 57.9993 | 58.812 | |
MAPE | 0.0235 | 0.0196 | 0.019 | ||
RMSE | 98.3987 | 84.1629 | 83.2265 | ||
3-step ahead | MAE | 66.0338 | 62.7856 | 60.1348 | |
MAPE | 0.0221 | 0.021 | 0.0194 | ||
RMSE | 94.2949 | 89.9361 | 84.1961 |
Index | Spring | Summer | |||||
---|---|---|---|---|---|---|---|
Method | MAE | MAPE | RMSE | MAE | MAPE | RMSE | |
Before EC | 15.1713 | 0.0595 | 21.9507 | 19.0921 | 0.0693 | 32.8247 | |
After EC | 8.3576 | 0.0501 | 8.3902 | 6.8115 | 0.0547 | 13.5584 | |
Autumn | Winter | ||||||
MAE | MAPE | RMSE | MAE | MAPE | RMSE | ||
Before EC | 50.7459 | 0.0591 | 79.7704 | 55.5984 | 0.0157 | 81.2365 | |
After EC | 19.0100 | 0.0455 | 22.4820 | 30.1968 | 0.0142 | 66.7278 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, X.; Ma, Y.; Xie, J.; Zhang, G.; Xie, T. Enhanced Wind Power Forecasting Using Graph Convolutional Networks with Ramp Characterization and Error Correction. Energies 2025, 18, 2763. https://doi.org/10.3390/en18112763
He X, Ma Y, Xie J, Zhang G, Xie T. Enhanced Wind Power Forecasting Using Graph Convolutional Networks with Ramp Characterization and Error Correction. Energies. 2025; 18(11):2763. https://doi.org/10.3390/en18112763
Chicago/Turabian StyleHe, Xin, Yichen Ma, Jiancang Xie, Gang Zhang, and Tuo Xie. 2025. "Enhanced Wind Power Forecasting Using Graph Convolutional Networks with Ramp Characterization and Error Correction" Energies 18, no. 11: 2763. https://doi.org/10.3390/en18112763
APA StyleHe, X., Ma, Y., Xie, J., Zhang, G., & Xie, T. (2025). Enhanced Wind Power Forecasting Using Graph Convolutional Networks with Ramp Characterization and Error Correction. Energies, 18(11), 2763. https://doi.org/10.3390/en18112763