Development and Prospects of Biomass-Based Fuels for Heavy-Duty Truck Applications: A Case Study in Oregon
Abstract
:1. Introduction
2. Current Energy Production Scenarios in Oregon
2.1. Electricity
2.2. Renewable Energy
2.3. Natural Gas
2.4. Petroleum
3. Energy Consumption Scenarios in Oregon
4. Opportunity for Powering Trucks
4.1. Heavy Duty EVs/Battery Electric Trucks
4.2. Hydrogen Fuel Cell Electric (FCEV) Trucks
4.3. Liquified Natural Gas (LNG) Trucks
5. Limitations on Powering Trucks
5.1. Heavy Duty EVs/Battery Electric Trucks
5.2. Hydrogen Fuel Cell Electric (FCEV) Trucks
5.3. LNG Trucks
6. Why Is Liquid Fuel Still Required in Oregon?
7. Thermochemical Processes of Liquid Fuel Production
7.1. Pyrolysis Process
7.2. Challenges of Processing Pyrolysis Oil
7.3. Pyrolysis Conversion Technologies for Fuel Production
8. Oregon Legislation
8.1. Oregon Clean Fuel Program (CFP)
8.2. Climate Protection Program (CPP)
8.3. Advanced Clean Trucks (ACT) Rule
9. Discussion and Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- United Nations. Fact Sheet: Climate Change. In Proceedings of the United Nations: Sustainable Transport Conference, Beijing, China, 14–16 October 2021. [Google Scholar]
- IPCC. Sixth Assessment Report—IPCC. 2022. Available online: https://www.ipcc.ch/assessment-report/ar6/ (accessed on 21 October 2022).
- IPCC. Transport and infrastructure. In Routledge Handbook of Global Environmental Politics; Routledge: London, UK, 2022; pp. 459–470. [Google Scholar] [CrossRef]
- EPA. Global Greenhouse Gas Emissions Data|US EPA. Available online: https://www.epa.gov/ghgemissions/global-greenhouse-gas-emissions-data (accessed on 18 February 2024).
- US EPA. Climate Change Indicators: Weather and Climate. Available online: https://www.epa.gov/climate-indicators/weather-climate (accessed on 9 June 2023).
- EPA. U.S. Transportation Sector Greenhouse Gas Emissions. Washington, DC, USA. 2024. Available online: https://www.epa.gov/greenvehicles/fast-facts-transportation-greenhouse-gas-emissions (accessed on 23 May 2024).
- EPA. Fast Facts: U.S. Transportation Sector Greenhouse Gas Emissions, 1990–2022 (EPA-420-F-24-022, May 2024). Washington, DC, USA. 2024. Available online: https://www.epa.gov/greenvehicles/fast-facts-transportation-greenhouse-gas-emissions (accessed on 23 May 2024).
- U.S. Department of Energy. Transportation Fuels|Department of Energy. Available online: https://www.energy.gov/energysaver/transportation-fuels (accessed on 18 February 2024).
- Council of Foregin Relations. Timeline: Oil Dependence and U.S. Foreign Policy. Available online: https://www.cfr.org/timeline/oil-dependence-and-us-foreign-policy (accessed on 5 November 2024).
- EIA. Short-Term Energy Outlook; EIA: Washington, DC, USA, 2024. [Google Scholar]
- EIA. U.S. Energy Information Administration-EIA Independent Statistics and Analysis. Available online: https://www.eia.gov/state/analysis.php?sid=OR (accessed on 18 March 2025).
- U.S. Department of Energy. Biofuel Basics. Available online: https://www.energy.gov/eere/bioenergy/biofuel-basics (accessed on 18 February 2024).
- California Air Resources Board. Low Carbon Fuel Standard|California Air Resources Board. Available online: https://ww2.arb.ca.gov/our-work/programs/low-carbon-fuel-standard/about (accessed on 5 November 2024).
- US EPA. Regulatory Announcement Final Standards to Reduce Greenhouse Gas Emissions from Heavy-Duty Vehicles for Model Year 2027 and Beyond. Washington DC, USA. 2024. Available online: https://nepis.epa.gov/Exe/ZyPDF.cgi?Dockey=P101A93K.pdf (accessed on 5 November 2024).
- Oregon State Treasury. A Pathway to Net Zero: Positioning the Oregon Public Employees Retirement Fund for a Net Zero Carbon Future; Oregon State Treasury: Salem, OR, USA, 2024. [Google Scholar]
- Witcover, J.; Murphy, C. Oregon’s Clean Fuels Program: A Review and Status Update. Transp. Res. Rec. 2020, 2675, 367–378. [Google Scholar] [CrossRef]
- U.S. Department of State. Climate Crisis-United States Department of State. Available online: https://www.state.gov/policy-issues/climate-crisis/ (accessed on 5 November 2024).
- Oregon Deaprtment of Energy. 2022 Biennial Energy Report; Oregon Deaprtment of Energy: Salem, OR, USA, 2022. [Google Scholar]
- State of Oregon Office of the Governor. Executive Order No. 20-04; State of Oregon Office of the Governor: Salem, OR, USA, 2020. [Google Scholar]
- Oregon Department of Energy. Biennial Zero Emission Vehicle Report. Portland, OR, USA. 2023. Available online: https://www.oregon.gov/energy/energy-oregon/Pages/BIZEV.aspx (accessed on 5 November 2024).
- Oregon Department of Environmental Quality. Climate Protection Program 2024: Rulemaking at DEQ. Available online: https://www.oregon.gov/deq/rulemaking/Pages/CPP2024.aspx (accessed on 22 May 2024).
- Oregon Secretary of State. Division 271 Oregon Climate Protection Program. Available online: https://secure.sos.state.or.us/oard/displayDivisionRules.action?selectedDivision=6597 (accessed on 22 May 2024).
- Oregon Department of Environmental Quality. Oregon’s Priority Climate Action Plan; Oregon Department of Environmental Quality: Portland, OR, USA, 2024. [Google Scholar]
- Oregon Department of Environmental Quality. Clean Fuels Program Overview: Oregon Clean Fuels Program. Available online: https://www.oregon.gov/deq/ghgp/cfp/Pages/CFP-Overview.aspx (accessed on 7 May 2024).
- Oregon Department of Energy. Electric Vehicles: Is Oregon’s Grid Ready?—Energy Info. Available online: https://energyinfo.oregon.gov/blog/2022/6/27/electric-vehicles-is-oregons-grid-ready (accessed on 18 March 2025).
- EIA. Preliminary Monthly Electric Generator Inventory (Based on Form EIA-860M as a Supplement to Form EIA-860)-U.S. Energy Information Administration (EIA). Available online: https://www.eia.gov/electricity/data/eia860m/ (accessed on 20 March 2024).
- EIA. Oregon State Profile and Energy Estimates. Available online: https://www.eia.gov/state/analysis.php?sid=OR (accessed on 20 March 2024).
- Oregon Department of Energy. State of Oregon: Safety & Resilience-Trojan Nuclear Site Spent Fuel Storage. Available online: https://www.oregon.gov/energy/safety-resiliency/Pages/Trojan-Site.aspx (accessed on 19 March 2024).
- Oregon Department of Energy. Oregon Department of Energy Electric Vehicle Report Shows EV Goals are Within Reach—Energy Info. Available online: https://energyinfo.oregon.gov/blog/2023/9/20/oregon-department-of-energy-electric-vehicle-report-shows-ev-goals-are-within-reach (accessed on 18 March 2025).
- Oregon Department of Energy. Biennial Zero Emission Vehicle Report. Portland, OR, USA. 2021. Available online: https://www.oregon.gov/energy/energy-oregon/Pages/BIZEV.aspx (accessed on 19 March 2024).
- Oregon Department of Energy. Fuel Supply & Distribution System—Energy Info. Available online: https://energyinfo.oregon.gov/overview (accessed on 20 March 2025).
- EIA. Factors Affecting Diesel Prices-U.S. Energy Information Administration (EIA). Available online: https://www.eia.gov/energyexplained/diesel-fuel/factors-affecting-diesel-prices.php (accessed on 9 May 2024).
- Oregon Department of Transportation. Transportation Electrification Infrastructure Needs Analysis (TEINA); Oregon Department of Transportation: Salem, OR, USA, 2022. [Google Scholar]
- Portland General Electric. Daimler Trucks + PGE Open Electric Truck Charging Site. Available online: https://portlandgeneral.com/news/2021-04-21-daimler-portland-general-electric-open-electric-charging-site (accessed on 23 March 2024).
- HDT Trucking Info. Daimler, PGE Open ‘Electric Island’ Charging Site-Fuel Smarts-Trucking Info. Available online: https://www.truckinginfo.com/10141763/daimler-pge-open-electric-island-charging-site (accessed on 23 March 2024).
- Daimler Truck North America. TITAN Freight Systems Receives First Battery Electric Freightliner eCascadia in Oregon|Daimler. Available online: https://northamerica.daimlertruck.com/PressDetail/titan-freight-systems-receives-first-battery-2023-07-31/ (accessed on 28 March 2024).
- West Coast Clean Transit Corridor Initiative. Interstate 5 Corridor California, Oregon, Washington. 2020. Available online: https://westcoastcleantransit.com/ (accessed on 23 March 2024).
- Oregon Department of Transportation. Guide for Oregon EV Charging Deployment a TEINA Supplemental Report; Oregon Department of Transportation: Portland, OR, USA, 2023. [Google Scholar]
- Oregon Department of Transportation. Transportation Electrification Infrastructure Needs Analysis (TEINA); Oregon Department of Transportation: Portland, OR, USA, 2021. [Google Scholar]
- Sessions, J.; Lyons, C.K. Harvesting elevation potential from mountain forests. Int. J. For. Eng. 2018, 29, 192–198. [Google Scholar] [CrossRef]
- Hunter, C.; Penev, M.; Reznicek, E.; Lustbader, J.; Birky, A.; Zhang, C. Spatial and Temporal Analysis of the Total Cost of Ownership for Class 8 Tractors and Class 4 Parcel Delivery Trucks. 2021. Available online: https://www.osti.gov/servlets/purl/1821615/%0Ahttps://www.nrel.gov/docs/fy21osti/71796.pdf (accessed on 28 March 2024).
- Argonne National Laboratory. Light Duty Electric Drive Vehicles Monthly Sales Updates|Argonne National Laboratory. Available online: https://www.anl.gov/esia/light-duty-electric-drive-vehicles-monthly-sales-updates (accessed on 8 April 2024).
- Brown, A.; Cappellucci, J.; White, E.; Heinrich, A.; Cost, E. Electric Vehicle Charging Infrastructure Trends from the Alternative Fueling Station Locator: Third Quarter 2022. Golder, CO, USA. 2022. Available online: https://www.nrel.gov/publications (accessed on 8 April 2024).
- Cunanan, C.; Tran, M.K.; Lee, Y.; Kwok, S.; Leung, V.; Fowler, M. A Review of Heavy-Duty Vehicle Powertrain Technologies: Diesel Engine Vehicles, Battery Electric Vehicles, and Hydrogen Fuel Cell Electric Vehicles. Clean Technol. 2021, 3, 474–489. [Google Scholar] [CrossRef]
- Manoharan, Y.; Hosseini, S.E.; Butler, B.; Alzhahrani, H. Hydrogen Fuel Cell Vehicles; Current Status and Future Prospect. Appl. Sci. 2019, 9, 2296. [Google Scholar] [CrossRef]
- Basma, H.; Rodríguez, F. Fuel Cell Electric Tractor-Trailers: Technology Overview and Fuel Economy. 2022. Available online: https://www.theicct.org (accessed on 8 April 2024).
- Freightliner Trucks. CNG|Freightliner Trucks. Available online: https://www.freightliner.com/vocational/cng/ (accessed on 9 May 2024).
- Reuters. Diesel Prices Primed to Rise Sharply in 2024|Reuters. Available online: https://www.reuters.com/markets/europe/diesel-prices-primed-rise-sharply-2024-2024-02-06/ (accessed on 9 May 2024).
- DOE. Alternative Fuels Data Center: Natural Gas Benefits. Available online: https://afdc.energy.gov/fuels/natural-gas-benefits (accessed on 9 May 2024).
- Clean Energy Fuels. Fred Meyer Announces Arrival of First Liquefied Natural Gas Trucks. Available online: https://www.cleanenergyfuels.com/press-room/fred-meyer-announces-arrival-of-first-liquefied-natural-gas-trucks (accessed on 9 May 2024).
- Republic Services. Republic Kicks Off Earth Day Celebrations in Oregon with Expansion of Compressed Natural Gas-Powered Fleet-15 April 2016. Available online: https://media.republicservices.com/2016-04-15-Republic-Kicks-Off-Earth-Day-Celebrations-in-Oregon-with-Expansion-of-Compressed-Natural-Gas-Powered-Fleet (accessed on 9 May 2024).
- Hyliion Inc. Hyliion’s Hybrid CNG Solution Receives Positive Feedback Through NW Natural’s Truck Loan Program. Available online: https://investors.hyliion.com/news/news-details/2021/Hyliions-Hybrid-CNG-Solution-Receives-Positive-Feedback-Through-NW-Naturals-Truck-Loan-Program/default.aspx (accessed on 9 May 2024).
- NW Natural. Hyliion Equipped Low-Emission CNG/Hybrid Truck Powerfully and Effectively Carries Heavy Payloads. Available online: https://www.nwnatural.com/about-us/the-company/newsroom/2021-cng-trucks (accessed on 9 May 2024).
- Agarwal, S. The Future of the Trucking Industry: Electric Semi-Trucks. Washington, DC, USA. 2023. Available online: https://www.eesi.org (accessed on 9 May 2024).
- Burke, A.; Sinha, A.K. Technology, Sustainability, and Marketing of Battery Electric and Hydrogen Fuel Cell Medium-Duty and Heavy-Duty Trucks and Buses in 2020–2040; National Center for Sustainable Transportation: Davis, CA, USA, 2020. [Google Scholar] [CrossRef]
- International Energy Agency. Global EV Outlook 2023; International Energy Agency: Paris, France, 2023. [Google Scholar]
- Qasim, M.; Csaba, C. Major Barriers in Adoption of Electric Trucks in Logistics System. Transp. Sustain. Dev. 2021, 33, 833–846. [Google Scholar] [CrossRef]
- Earl, T.; Mathieu, L.; Cornelis, S.; Kenny, S.; Ambel, C.C.; Nix, J. Analysis of long haul battery electric trucks in EU. 2018. Available online: https://ec.europa.eu/inea/en/ten-t/ten-t-projects (accessed on 9 May 2024).
- Sharpe, B.; Basma, H. A Meta-Study of Purchase Costs for Zero-Emission Trucks. 2022. Available online: https://www.theicct.org (accessed on 9 May 2024).
- Cui, H.; Xie, Y.; Niu, T. China Is Propelling Its Electric Truck Market by Embracing Battery Swapping-International Council on Clean Transportation. Available online: https://theicct.org/china-is-propelling-its-electric-truck-market-aug23/ (accessed on 5 November 2024).
- Department of Energy. Hydrogen Production: Natural Gas Reforming|Department of Energy. Available online: https://www.energy.gov/eere/fuelcells/hydrogen-production-natural-gas-reforming (accessed on 20 March 2025).
- EPA. Hydrogen in Transportation US EPA. Available online: https://www.epa.gov/greenvehicles/hydrogen-transportation (accessed on 18 May 2025).
- Glenk, G.; Reichelstein, S. Economics of converting renewable power to hydrogen. Nat. Energy 2019, 4, 216–222. [Google Scholar] [CrossRef]
- Oregon Deaprtment of Energy. Renewable Hydrogen in Oregon: Opportunities and Challenges Submitted to the Oregon; Oregon Department of Energy: Salem, OR, USA, 2022. [Google Scholar]
- Cohce, M.K.; Rosen, M.A.; Dincer, I. Efficiency evaluation of a biomass gasification-based hydrogen production. Int. J. Hydrog. Energy 2011, 36, 11388–11398. [Google Scholar] [CrossRef]
- Safety, H.M.; Systematics, C.; Services, M.; Analytics, T. Risk Assessment of Surface Transport of Liquid Natural Gas; U.S. Department of Transportation: Washington, DC, USA, 2019. [Google Scholar]
- ExonMobil. Natural Gas|Liquified Natural Gas (LNG)|What We Are Doing|ExxonMobil. Available online: https://corporate.exxonmobil.com/what-we-do/energy-supply/natural-gas?utm_source=google&utm_medium=cpc&utm_campaign=1ECX_GAD_TRAF_TT_Non-Brand_Broad_Nat+Gas&utm_content=TT_Non-Brand_Nat+Gas&utm_term=liquefied+gas&gad_source=1&gclid=Cj0KCQjw-e6-BhDmARIsAOx (accessed on 20 March 2025).
- EIA. AEO2023 Issues in Focus: Effects of Liquefied Natural Gas Exports on the U.S. Natural Gas Market. Washington, DC, USA. 2023. Available online: https://www.eia.gov (accessed on 20 March 2025).
- Mottschall, M.; Kasten, P.; Rodríguez, F. Decarbonization of On-Road Freight Transport and the Role of LNG from a German Perspective. 2020. Available online: https://theicct.org/sites/default/files/publications/LNG-in-trucks_May2020.pdf (accessed on 20 March 2025).
- MIT Energy Initiative. Reducing Carbon Emissions from Long-Haul Trucks. Available online: https://energy.mit.edu/news/reducing-carbon-emissions-from-long-haul-trucks-a-novel-approach-to-using-clean-burning-hydrogen/ (accessed on 6 November 2024).
- Olabi, A.G.; Abdelkareem, M.A.; Wilberforce, T.; Alkhalidi, A.; Salameh, T.; Abo-Khalil, A.G.; Hassan, M.M.; Sayed, E.T. Battery electric vehicles: Progress, power electronic converters, strength (S), weakness (W), opportunity (O), and threats (T). Int. J. Thermofluids 2022, 16, 100212. [Google Scholar] [CrossRef]
- Biswas, S.; Sader, K.M.; Green, W.H. Perspective on Decarbonizing Long-Haul Trucks Using Onboard Dehydrogenation of Liquid Organic Hydrogen Carriers. Energy Fuels 2023, 37, 17003–17012. [Google Scholar] [CrossRef]
- Oregon State University. Oregon Climate Assessments; Oregon State University: Corvallis, OR, USA, 2023. [Google Scholar] [CrossRef]
- FEMA. Emergency Vehicle Safety Initiative. 2014. Available online: https://www.usfa.fema.gov/downloads/pdf/publications/fa_336.pdf (accessed on 20 December 2024).
- Department of Defense. Chapter 5 Diesel Fuel Systems Topics; Department of Defense: Washington, DC, USA, 2010. [Google Scholar]
- Bureau of Transportation Statistics. Average Age of Automobiles and Trucks in Operation in the United States. Available online: https://www.bts.gov/content/average-age-automobiles-and-trucks-operation-united-states (accessed on 6 November 2024).
- NREL. Powertrain Performance and Total Cost of Ownership Analysis for Class 8 Yard Tractors and Refuse Trucks. 2022. Available online: https://www.osti.gov/servlets/purl/1899989/ (accessed on 20 December 2024).
- NTEA. Aging Trucks Create More Service Opportunities. Available online: https://www.ntea.com/NTEA/NTEA/Member_benefits/Industry_leading_news/NTEANewsarticles/Aging_trucks_create_more_service_opportunities.aspx (accessed on 6 November 2024).
- Clean Energy Group. The EV Revolution: Cost, Performance, Safety, and Environmental Impacts. Available online: https://www.cleanegroup.org/the-ev-revolution-cost-performance-safety-and-environmental-impacts/ (accessed on 6 November 2024).
- Isikgor, F.H.; Becer, C.R. Lignocellulosic biomass: A sustainable platform for the production of bio-based chemicals and polymers. Polym. Chem. 2015, 6, 4497–4559. [Google Scholar] [CrossRef]
- Izydorczyk, G.; Skrzypczak, D.; Mironiuk, M.; Mikula, K.; Samoraj, M.; Gil, F.; Taf, R.; Moustakas, K.; Chojnacka, K. Lignocellulosic biomass fertilizers: Production, characterization, and agri-applications. Sci. Total Environ. 2024, 923, 171343. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.; Kumar, A.; Sivakumar, N.; Verma, J.P. Deconstruction of lignocellulosic biomass for bioethanol production: Recent advances and future prospects. Fuel 2022, 327, 125109. [Google Scholar] [CrossRef]
- World Bioenergy Association. Global Bioenergy Statistics 2020. 2020. Available online: https://worldbioenergy.org/uploads/201210 WBA GBS 2020.pdf (accessed on 5 May 2024).
- Mujtaba, M.; Fraceto, L.F.; Fazeli, M.; Mukherjee, S.; Savassa, S.M.; de Medeiros, G.A.; Santo Pereira, A.D.E.; Mancini, S.D.; Lipponen, J.; Vilaplana, F. Lignocellulosic biomass from agricultural waste to the circular economy: A review with focus on biofuels, biocomposites and bioplastics. J. Clean. Prod. 2023, 402, 136815. [Google Scholar] [CrossRef]
- Department of Energy. Growing America ’s Energy Future: Renewable Bioenergy; Department of Energy: Washington, DC, USA, 2014. [Google Scholar]
- Bahng, M.K.; Mukarakate, C.; Robichaud, D.J.; Nimlos, M.R. Current technologies for analysis of biomass thermochemical processing: A review. Anal. Chim. Acta 2009, 651, 117–138. [Google Scholar] [CrossRef]
- Elkasabi, Y.; Mullen, C.A. Progress on Biobased Industrial Carbons as Thermochemical Biorefinery Coproducts. Energy Fuels 2021, 35, 5627–5642. [Google Scholar] [CrossRef]
- Patel, M.; Kumar, A. Production of renewable diesel through the hydroprocessing of lignocellulosic biomass-derived bio-oil: A review. Renew. Sustain. Energy Rev. 2016, 58, 1293–1307. [Google Scholar] [CrossRef]
- Abbaszaadeh, A.; Ghobadian, B.; Omidkhah, M.R.; Najafi, G. Current biodiesel production technologies: A comparative review. Energy Convers. Manag. 2012, 63, 138–148. [Google Scholar] [CrossRef]
- Bridgwater, A.V. Review of fast pyrolysis of biomass and product upgrading. Biomass Bioenergy 2012, 38, 68–94. [Google Scholar] [CrossRef]
- Jha, S.; Nanda, S.; Acharya, B.; Dalai, A.K. A Review of Thermochemical Conversion of Waste Biomass to Biofuels. Energies 2022, 15, 6352. [Google Scholar] [CrossRef]
- Caballero, J.J.B.; Zaini, I.N.; Yang, W. Reforming processes for syngas production: A mini-review on the current status, challenges, and prospects for biomass conversion to fuels. Appl. Energy Combust. Sci. 2022, 10, 100064. [Google Scholar] [CrossRef]
- Rey, J.R.C.; Longo, A.; Rijo, B.; Pedrero, C.M.; Tarelho, L.A.C.; Brito, P.S.D.; Nobre, C. A review of cleaning technologies for biomass-derived syngas. Fuel 2024, 377, 132776. [Google Scholar] [CrossRef]
- Clemente-Castro, S.; Palma, A.; Ruiz-Montoya, M.; Giráldez, I.; Díaz, M.J. Optimizing pyrolysis parameters and product analysis of a fluidized bed pilot plant for Leucaena leucocephala biomass. Environ. Sci. Eur. 2023, 35, 88. [Google Scholar] [CrossRef]
- Liaw, S.S.; Zhou, S.; Wu, H.; Garcia-Perez, M. Effect of pretreatment temperature on the yield and properties of bio-oils obtained from the auger pyrolysis of Douglas fir wood. Fuel 2013, 103, 672–682. [Google Scholar] [CrossRef]
- Lyngfelt, A.; Leckner, B.; Mattisson, T. A fluidized-bed combustion process with inherent CO2 separation; Application of chemical-looping combustion. Chem. Eng. Sci. 2001, 56, 3101–3113. [Google Scholar] [CrossRef]
- Van Der Broek, R.; Faau, A.; Van Wijk, A. Biomass Combustion for Power Geenration. Biomass Bioenergy 2014, 11, 271–281. [Google Scholar] [CrossRef]
- Di Blasi, C. Combustion and gasification rates of lignocellulosic chars. Prog. Energy Combust. Sci. 2009, 35, 121–140. [Google Scholar] [CrossRef]
- Asadullah, M. Barriers of commercial power generation using biomass gasification gas: A review. Renew. Sustain. Energy Rev. 2014, 29, 201–215. [Google Scholar] [CrossRef]
- Farzad, S.; Mandegari, M.A.; Görgens, J.F. A critical review on biomass gasification, co-gasification, and their environmental assessments. Biofuel Res. J. 2016, 3, 483–495. [Google Scholar] [CrossRef]
- Pio, D.T.; Tarelho, L.A.C.; Pinto, P.C.R. Gasification-based biorefinery integration in the pulp and paper industry: A critical review. Renew. Sustain. Energy Rev. 2020, 133, 110210. [Google Scholar] [CrossRef]
- Roy, P.; Dias, G. Prospects for pyrolysis technologies in the bioenergy sector: A review. Renew. Sustain. Energy Rev. 2017, 77, 59–69. [Google Scholar] [CrossRef]
- Pecha, M.B.; Garcia-Perez, M. Pyrolysis of lignocellulosic biomass: Oil, char, and gas. In Bioenergy Biomass to Biofuels Waste to Energy; Academic Press: Cambridge, MA, USA, 2020; pp. 581–619. [Google Scholar] [CrossRef]
- Mahmudul, H.M.; Hagos, F.Y.; Mamat, R.; Adam, A.A.; Ishak, W.F.W.; Alenezi, R. Production, characterization and performance of biodiesel as an alternative fuel in diesel engines–A review. Renew. Sustain. Energy Rev. 2017, 72, 497–509. [Google Scholar] [CrossRef]
- Diebold, J.; Power, A. Engineering Aspects of the Vortex Pyrolysis Reactor to Produce Primary Pyrolysis Oil Vapors for Use in Resins and Adhesives. Res. Thermochem. Biomass Convers. 1988, 609–628. [Google Scholar] [CrossRef]
- Bridgwater, A.V.; Peacocke, G.V.C. Fast pyrolysis processes for biomass. Renew. Sustain. energy Rev. 2000, 4, 1–73. [Google Scholar] [CrossRef]
- Maschio, G.; Koufopanos, C.; Lucchesi, A. Pyrolysis, a promising route for biomass utilization. Bioresour. Technol. 1992, 42, 219–231. [Google Scholar] [CrossRef]
- Mood, S.H.; Ayiania, M.; Jefferson-Milan, Y.; Garcia-Perez, M. Nitrogen doped char from anaerobically digested fiber for phosphate removal in aqueous solutions. Chemosphere 2020, 240, 124889. [Google Scholar] [CrossRef]
- SMood, H.; Pelaez-Samaniego, M.R.; Garcia-Perez, M. Perspectives of Engineered Biochar for Environmental Applications: A Review. Energy Fuels 2022, 36, 7940–7986. [Google Scholar] [CrossRef]
- Mohan, D.; Pittman, C.U.; Steele, P.H. Pyrolysis of wood/biomass for Bio-oil. Prog. Energy Combust. Sci. 2017, 62, 848–889. [Google Scholar] [CrossRef]
- Lachos-Perez, D.; Martins-Vieira, J.C.; Missau, J.; Anshu, K.; Siakpebru, O.K.; Thengane, S.K.; Morais, A.R.C.; Tanabe, E.H.; Bertuol, D.A. Review on Biomass Pyrolysis with a Focus on Bio-Oil Upgrading Techniques. Analytica 2023, 4, 182–205. [Google Scholar] [CrossRef]
- Larnaudie, V.; Bule, M.; San, K.-Y.; Vadlani, P.V.; Mosby, J.; Elangovan, S.; Karanjikar, M.; Spatari, S. Life cycle environmental and cost evaluation of renewable diesel production. Fuel 2020, 279, 118429. [Google Scholar] [CrossRef]
- Inayat, A.; Ahmed, A.; Tariq, R.; Waris, A.; Jamil, F.; Ahmed, S.F.; Ghenai, C. Techno-Economical Evaluation of Bio-Oil Production via Biomass Fast Pyrolysis Process: A Review. Front. Energy Res. 2022, 9, 770355. [Google Scholar] [CrossRef]
- Garcia-Perez, M.; Wang, X.S.; Rhodes, M.J.; Tian, F.; Lee, W.-J.; Wu, H.; Li, C.-Z. Fast pyrolysis of oil mallee woody biomass: Effect of temperature on the yield and quality of pyrolysis products. Ind. Eng. Chem. Res. 2008, 47, 1846–1854. [Google Scholar] [CrossRef]
- Bridgwater, A.V.; Bridge, S.A. A Review of Biomass Pyrolysis and Pyrolysis Technologies. In Biomass Pyrolysis Liquids Upgrading and Utilization; Springer: Berlin/Heidelberg, Germany, 1991; pp. 11–92. [Google Scholar] [CrossRef]
- Lahijani, P.; Mohammadi, M.; Mohamed, A.R.; Ismail, F.; Lee, K.T.; Amini, G. Upgrading biomass-derived pyrolysis bio-oil to bio-jet fuel through catalytic cracking and hydrodeoxygenation: A review of recent progress. Energy Convers. Manag. 2022, 268, 115956. [Google Scholar] [CrossRef]
- Reza, M.S.; Iskakova, Z.B.; Afroze, S.; Kuterbekov, K.; Kabyshev, A.; Bekmyrza, K.Z.; Kubenova, M.M.; Bakar, M.S.A.; Azad, A.K.; Roy, H.; et al. Influence of Catalyst on the Yield and Quality of Bio-Oil for the Catalytic Pyrolysis of Biomass: A Comprehensive Review. Energies 2023, 16, 5547. [Google Scholar] [CrossRef]
- Sorunmu, Y.; Billen, P.; Spatari, S. A review of thermochemical upgrading of pyrolysis bio-oil Techno-economic analysis life cycle assessment, and technology readiness. GCB Bioenergy 2020, 12, 4–18. [Google Scholar] [CrossRef]
- Yang, M.; Song, X.R.; Deng, P.F.; Yang, H.R. Pyrolysis and liquefaction of biomass. Linchan Huaxue Yu Gongye/Chem. Ind. For. Prod. 2000, 20, 77–82. [Google Scholar]
- Piskorz, J.; Radlein, D.; Scott, D.S. On the mechanism of the rapid pyrolysis of cellulose. J. Anal. Appl. Pyrolysis 1986, 9, 121–137. [Google Scholar] [CrossRef]
- Custodis, V.B.F.; Hemberger, P.; Ma, Z.; Van Bokhoven, J.A. Mechanism of fast pyrolysis of lignin: Studying model compounds. J. Phys. Chem. B 2014, 118, 8524–8531. [Google Scholar] [CrossRef]
- Branca, C.; Di Blasi, C. Multistep mechanism for the devolatilization of biomass fast pyrolysis oils. Ind. Eng. Chem. Res. 2006, 45, 5891–5899. [Google Scholar] [CrossRef]
- Anca-Couce, A. Reaction mechanisms and multi-scale modelling of lignocellulosic biomass pyrolysis. Prog. Energy Combust. Sci. 2016, 53, 41–79. [Google Scholar] [CrossRef]
- IEA. The Future of Petrochemicals; IEA: Paris, France, 2018. [Google Scholar] [CrossRef]
- EPienihäkkinen; Lindfors, C.; Ohra-Aho, T.; Oasmaa, A. Improving Fast Pyrolysis Bio-Oil Yield and Quality by Alkali Removal from Feedstock. Energy Fuels 2022, 36, 3654–3664. [Google Scholar] [CrossRef]
- Diebold, J.P. A Review of the Chemical and Physical Mechanisms of the Storage Stability of Fast Pyrolysis Bio-Oils. In Nrel/Sr-570-27613; NREL: Golden, CO, USA, 2000. [Google Scholar]
- Yang, Z.; Kumar, A.; Huhnke, R.L. Review of recent developments to improve storage and transportation stability of bio-oil. Renew. Sustain. Energy Rev. 2015, 50, 859–870. [Google Scholar] [CrossRef]
- Pinheiro Pires, P.P.; Fonts, J.A.; Domine, M.E.; Arroyo, A.F.; Garcia-Perez, M.E.; Montoya, J.; Chejne, F.; Pfromm, P.; Garcia-Perez, M. Challenges and opportunities for bio-oil refining: A review. Energy Fuels 2019, 33, 4683–4720. [Google Scholar] [CrossRef]
- Czernik, S.; Bridgwater, A.V. Overview of applications of biomass fast pyrolysis oil. Energy Fuels 2004, 18, 590–598. [Google Scholar] [CrossRef]
- Bridgwater, A.V.; Czernik, S.; Piskorz, J. An Overview of Fast Pyrolysis. In Progress in Thermochemical Biomass Conversion; John Wiley & Sons: Hoboken, NJ, USA, 2008; pp. 977–997. [Google Scholar] [CrossRef]
- Wang, H.; Liu, J. Corrosion-induced changes in bio-oil aging: A gas chromatography exploration. Renew. Energy 2024, 234, 121193. [Google Scholar] [CrossRef]
- Brady, M.P.; Keiser, J.R.; Leonard, D.N.; Zacher, A.H.; Bryden, K.J.; Weatherbee, G.D. Corrosion of stainless steels in the riser during co-processing of bio-oils in a fluid catalytic cracking pilot plant. Fuel Process. Technol. 2017, 159, 187–199. [Google Scholar] [CrossRef]
- Jun, J.; Su, Y.-F.; Keiser, J.R.; Wade, J.E., IV; Kass, M.D.; Ferrell, J.R., III; Christensen, E.; Olarte, M.V.; Sulejmanovic, D. Corrosion Compatibility of Stainless Steels and Nickel in Pyrolysis Biomass-Derived Oil at Elevated Storage Temperatures. Sustainability 2023, 15, 22. [Google Scholar] [CrossRef]
- Demirbas, A. Biorefineries: For Biomass Upgrading Facilities; Elseiver: Amsterdam, The Netherlands, 2013; Volume 135. [Google Scholar] [CrossRef]
- Mostafazadeh, A.K.; Solomatnikova, O.; Drogui, P.; Tyagi, R.D. A review of recent research and developments in fast pyrolysis and bio-oil upgrading. Biomass Convers. Biorefinery 2018, 8, 739–773. [Google Scholar] [CrossRef]
- Lyu, G.; Wu, S.; Zhang, H. Estimation and comparison of bio-oil components from different pyrolysis conditions. Front. Energy Res. 2015, 3, 28. [Google Scholar] [CrossRef]
- Prabakaran, S.; Mohanraj, T.; Arumugam, A.; Sudalai, S. A state-of-the-art review on the environmental benefits and prospects of Azolla in biofuel, bioremediation and biofertilizer applications. Ind. Crops Prod. 2022, 183, 114942. [Google Scholar] [CrossRef]
- Guo, X.; Wang, S.; Guo, Z.; Liu, Q.; Luo, Z.; Cen, K. Pyrolysis characteristics of bio-oil fractions separated by molecular distillation. Appl. Energy 2010, 87, 2892–2898. [Google Scholar] [CrossRef]
- Machado, H.; Cristino, A.F.; Orišková, S.; Santos, R.G.D. Bio-Oil: The Next-Generation Source of Chemicals. Reactions 2022, 3, 118–137. [Google Scholar] [CrossRef]
- Slezak, R.; Unyay, H.; Szufa, S.; Ledakowicz, S. An Extensive Review and Comparison of Modern Biomass Reactors Torrefaction vs. Biomass Pyrolizers—Part 2. Energies 2023, 16, 2212. [Google Scholar] [CrossRef]
- Westerhof, R.J.M.; Brilman, D.W.F.; Van Swaaij, W.P.M.; Kersten, S.R.A. Effect of temperature in fluidized bed fast pyrolysis of biomass: Oil quality assessment in test units. Ind. Eng. Chem. Res. 2010, 49, 1160–1168. [Google Scholar] [CrossRef]
- Garcia-Nunez, J.A.; Pelaez-Samaniego, M.R.; Garcia-Perez, M.E.; Fonts, I.; Abrego, J.; Westerhof, R.J.M.; Garcia-Perez, M. Historical Developments of Pyrolysis Reactors: A Review. Energy Fuels 2017, 31, 5751–5775. [Google Scholar] [CrossRef]
- Kunii, D.; Levenspiel, O. Circulating fluidized-bed reactors. Chem. Eng. Sci. 1997, 52, 2471–2482. [Google Scholar] [CrossRef]
- Bérard, A.; Blais, B.; Patience, G.S. Residence time distribution in fluidized beds: Diffusion, dispersion, and adsorption. Adv. Powder Technol. 2021, 32, 1677–1687. [Google Scholar] [CrossRef]
- Yathavan, B.K.; Agblevor, F.A. Catalytic pyrolysis of pinyon-juniper using red mud and HZSM-5. Energy Fuels 2013, 27, 6858–6865. [Google Scholar] [CrossRef]
- Ren, S.; Lei, H.; Wang, L.; Bu, Q.; Chen, S.; Wu, J.; Julson, J.; Ruan, R. Biofuel production and kinetics analysis for microwave pyrolysis of Douglas fir sawdust pellet. J. Anal. Appl. Pyrolysis 2012, 94, 163–169. [Google Scholar] [CrossRef]
- Moser, K.; Wopienka, E.; Pfeifer, C.; Schwarz, M.; Sedlmayer, I.; Haslinger, W. Screw reactors and rotary kilns in biochar production–A comparative review. J. Anal. Appl. Pyrolysis 2023, 174, 106112. [Google Scholar] [CrossRef]
- Kern, S.; Halwachs, M.; Kampichler, G.; Pfeifer, C.; Pröll, T.; Hofbauer, H. Rotary kiln pyrolysis of straw and fermentation residues in a 3 MW pilot plant-Influence of pyrolysis temperature on pyrolysis product performance. J. Anal. Appl. Pyrolysis 2012, 97, 1–10. [Google Scholar] [CrossRef]
- Ingram, L.; Mohan, D.; Bricka, M.; Strobel, D.; Crocker, D.; Mitchell, B.; Mohammad, J.; Cantrell, K.; Pittman, C.U., Jr. Pyrolysis of wood and bark in an auger reactor: Physical properties and chemical analysis of the produced bio-oils. Energy Fuels 2008, 22, 614–625. [Google Scholar] [CrossRef]
- Liaw, S.-S.; Wang, Z.; Ndegwa, P.; Frear, C.; Ha, S.; Li, C.-Z.; Garcia-Perez, M. Effect of pyrolysis temperature on the yield and properties of bio-oils obtained from the auger pyrolysis of Douglas Fir wood. J. Anal. Appl. Pyrolysis 2012, 93, 52–62. [Google Scholar] [CrossRef]
- Kim, K.H.; Kim, T.-S.; Lee, S.-M.; Choi, D.; Yeo, H.; Choi, I.-G.; Choi, J.W. Comparison of physicochemical features of biooils and biochars produced from various woody biomasses by fast pyrolysis. Renew. Energy 2013, 50, 188–195. [Google Scholar] [CrossRef]
- Oasmaa, A.; Solantausta, Y.; Arpiainen, V.; Kuoppala, E.; Sipilä, K. Fast pyrolysis bio-oils from wood and agricultural residues. Energy Fuels 2010, 24, 1380–1388. [Google Scholar] [CrossRef]
- Scott, D.S.; Majerski, P.; Piskorz, J.; Radlein, D. Second look at fast pyrolysis of biomass-the RTI process. J. Anal. Appl. Pyrolysis 1999, 51, 23–37. [Google Scholar] [CrossRef]
- Rover, M.R.; Johnston, P.A.; Whitmer, L.E.; Smith, R.G.; Brown, R.C. The effect of pyrolysis temperature on recovery of bio-oil as distinctive stage fractions. J. Anal. Appl. Pyrolysis 2014, 105, 262–268. [Google Scholar] [CrossRef]
- Wang, T.; Ai, Y.; Peng, L.; Zhang, R.; Lu, Q.; Dong, C. Pyrolysis characteristics of poplar sawdust by pretreatment of anaerobic fermentation. Ind. Crops Prod. 2018, 125, 596–601. [Google Scholar] [CrossRef]
- Atsonios, K.; Panopoulos, K.D.; Bridgwater, A.V.; Kakaras, E. Biomass fast pyrolysis energy balance of a 1kg/h test rig. Int. J. Thermodyn. 2015, 18, 267–275. [Google Scholar] [CrossRef]
- Heidari, A.; Stahl, R.; Younesi, H.; Rashidi, A.; Troeger, N.; Ghoreyshi, A.A. Effect of process conditions on product yield and composition of fast pyrolysis of Eucalyptus grandis in fluidized bed reactor. J. Ind. Eng. Chem. 2014, 20, 2594–2602. [Google Scholar] [CrossRef]
- Garcìa-Pérez, M.; Chaala, A.; Pakdel, H.; Kretschmer, D.; Roy, C. Vacuum pyrolysis of softwood and hardwood biomass. Comparison between product yields and bio-oil properties. J. Anal. Appl. Pyrolysis 2007, 78, 104–116. [Google Scholar] [CrossRef]
- Le Brech, Y.; Jia, L.; Cissé, S.; Mauviel, G.; Brosse, N.; Dufour, A. Mechanisms of biomass pyrolysis studied by combining a fixed bed reactor with advanced gas analysis. J. Anal. Appl. Pyrolysis 2016, 117, 334–346. [Google Scholar] [CrossRef]
- Dutta, A.; Schaidle, J.A.; Humbird, D.; Baddour, F.G.; Sahir, A. Conceptual Process Design and Techno-Economic Assessment of Ex Situ Catalytic Fast Pyrolysis of Biomass: A Fixed Bed Reactor Implementation Scenario for Future Feasibility. Top. Catal. 2016, 59, 2–18. [Google Scholar] [CrossRef]
- Dutta, A.; Sahir, A.; Tan, E.; Humbird, D.; Snowden-Swan Lesley, J.; Meyer, P.; Ross Jeff, S.; Yap, R.; Lukas, J. Process Design and Economics for the Conversion of Lignocellulosic Biomass to Hydrocarbon Fuels: Thermochemical Research Pathways with In Situ and Ex Situ Upgrading of Fast Pyrolysis Vapors. 2015. Available online: https://www.pnl.gov (accessed on 5 May 2024).
- Wright, M.M.; Daugaard, D.E.; Satrio, J.A.; Brown, R.C. Techno-economic analysis of biomass fast pyrolysis to transportation fuels. Fuel 2010, 89, S2–S10. [Google Scholar] [CrossRef]
- Jones, S.; Valkenburg, C.; Walton, C. Production of Gasoline and Diesel from Biomass via Fast Pyrolysis, Hydrotreating and Hydrocracking: A Design Case; Pacific Northwest National Laboratory: Richland, WA, USA, 2009. [Google Scholar] [CrossRef]
- Sharifzadeh, M.; Wang, L.; Shah, N. Integrated biorefineries: CO2 utilization for maximum biomass conversion. Renew. Sustain. Energy Rev. 2015, 47, 151–161. [Google Scholar] [CrossRef]
- Zhang, Y.; Brown, T.R.; Hu, G.; Brown, R.C. Techno-economic analysis of two bio-oil upgrading pathways. Chem. Eng. J. 2013, 225, 895–904. [Google Scholar] [CrossRef]
- Brown, T.R.; Zhang, Y.; Hu, G.; Brown, R.C. Techno-economic analysis of biobased chemicals production via integrated catalytic processing. Biofuels Bioprod. Biorefining 2012, 6, 73–87. [Google Scholar] [CrossRef]
- Sharifzadeh, M.; Richard, C.J.; Liu, K.; Hellgardt, K.; Chadwick, D.; Shah, N. An integrated process for biomass pyrolysis oil upgrading: A synergistic approach. Biomass Bioenergy 2015, 76, 108–117. [Google Scholar] [CrossRef]
- Winjobi, O.; Shonnard, D.R.; Bar-Ziv, E.; Zhou, W. Techno-economic assessment of the effect of torrefaction on fast pyrolysis of pine. Biofuels Bioprod. Biorefining 2016, 10, 117–128. [Google Scholar] [CrossRef]
- Shemfe, M.B.; Gu, S.; Ranganathan, P. Techno-economic performance analysis of biofuel production and miniature electric power generation from biomass fast pyrolysis and bio-oil upgrading. Fuel 2015, 143, 361–372. [Google Scholar] [CrossRef]
- Hammer, N.L.; Boateng, A.A.; Mullen, C.A.; Wheeler, M.C. Aspen Plus® and economic modeling of equine waste utilization forlocalized hot water heating via fast pyrolysis. J. Environ. Manag. 2013, 128, 594–601. [Google Scholar] [CrossRef]
- Sharifzadeh, M.; Wang, L.; Shah, N. Decarbonisation of olefin processes using biomass pyrolysis oil. Appl. Energy 2015, 149, 404–414. [Google Scholar] [CrossRef]
- Islam, M.N.; Ani, F.N. Techno-economics of rice husk pyrolysis, conversion with catalytic treatment to produce liquid fuel. Bioresour. Technol. 2000, 73, 67–75. [Google Scholar] [CrossRef]
- Humbird, D.; Dutta, A.; Subramaniam, H.; Mendez, J. Design, scaling and cost evaluations of circulating fluidized-bed systems for biomass pyrolysis. Biofuels Bioprod. Biorefining 2023, 17, 803–816. [Google Scholar] [CrossRef]
- Gregoire, E.; Bain, R.L. Technoeconomic analysis of the production of biocrude from wood. Biomass Bioenergy 1994, 7, 275–283. [Google Scholar] [CrossRef]
- Solantausta, Y.; Beckman, D.; Northwest, P. Assessment of liquefaction and pyrolysis systems abstract a summary is presented on the developments in the state of the art of experimental direct liquefaction of biomass, and the technoeconomic studies carried out within the IEA Biomass Agreement lique. Current 1992, 2, 279–297. [Google Scholar]
- Treedet, W.; Suntivarakorn, R. Design and operation of a low cost bio-oil fast pyrolysis from sugarcane bagasse on circulating fluidized bed reactor in a pilot plant. Fuel Process. Technol. 2018, 179, 17–31. [Google Scholar] [CrossRef]
- Langston, S.; Collier, D.; Wind, C.A.; Nordberg, D.; Capp, C.A.; Wendy, S. Oregon Low Carbon Fuel Standards; Oregon Department of Environmental Quality: Portland, OR, USA, 2011. Available online: http://www.oregon.gov/deq (accessed on 5 December 2024).
- Mazzone, D.; Smith, A.; Witcover, J. Pass-Through of Alternative Fuel Policy Incentives: Evidence from Diesel and Biodiesel Markets, the U.S. Renewable Fuel Standard, and Low Carbon Fuel Standards in California and Oregon; University of California, Davis: Davis, CA, USA, 2022. [Google Scholar] [CrossRef]
- State of Oregon Department of Environmental Quality. Climate Protection Program; Oregon Department of Enviromental Quality: Portland, OR, USA, 2021. [Google Scholar]
- ODEQ. Department of Environmental Quality: Advanced Clean Trucks Reporting: Clean Vehicles: State of Oregon. Available online: https://www.oregon.gov/deq/aq/programs/pages/mdhdzev.aspx (accessed on 13 March 2025).
- ODEQ. Frequently Asked Questions Oregon’s Advanced Clean Trucks Rule. 2025. Available online: https://www.oregon.gov/deq/aq/Documents/cfpMHDtruckRulesFAQ.pdf (accessed on 13 March 2025).
- Oregon Secretary of State. Oregon Secretary of State Administrative Rules. Available online: https://secure.sos.state.or.us/oard/displayDivisionRules.action?selectedDivision=1563 (accessed on 14 March 2025).
EO 20-04 | Statutory | ||
---|---|---|---|
Vehicle Class | 2035 (45% Below 1990) (MMT CO2) | 2050 (80% Below 1990) (MMT CO2) | 2050 (75% Below 1990) (MMT CO2) |
Light-Duty Vehicles (LDV) | 6.3 | 2.3 | 2.9 |
Medium- and Heavy-Duty Vehicles (MHD) | 3.5 | 1.3 | 1.6 |
Total LDV and MHD | 9.8 | 3.6 | 4.5 |
Total Transportation | 11.4 | 4.1 | 5.2 |
Features | Slow Pyrolysis | Fast Pyrolysis | References |
---|---|---|---|
Temperature (°C) | 300–600 | 500–1000 | [103] |
Heating rates (°C/s) | 0.1–10 | 10–10,000 | [103] |
Aeration | Oxygen-free or limited (N2) | Oxygen-free (N2) | [103] |
Particle size (mm) | >2 mm | <2 mm | [103] |
Residence time (s) | Minutes-hours | Seconds | [103] |
Yields | Liquids 30–50 wt.%, biochar 35–25 wt.%, gases 15–25 wt.% | Liquids 60–80 wt.%, biochar 10–20 wt.%, gases 10–20 | [103,106] |
Target products | Biochar | Bio-oil | [103,106] |
Reactors | Fixed bed, auger, rotary kiln | Fluidized bed, ablative, rotary cone, auger | [103,106] |
Advantages | The highest yield of biochar can accept a wide range of particle size | A higher yield of bio-oil | [103,106] |
Disadvantages | Further treatment of gases is needed due to high CO concentrations | Low biochar yield, fine particle size, biomass with low moisture content (<10%) | [103,106] |
Biomass | T °C | Yield (wt.%) | References | ||
---|---|---|---|---|---|
Char | Bio-Oil | Gas | |||
Rotary kilns | |||||
Pinon-juniper wood | 500 | 30 | 59 | 11 | [145] |
Fir pellets | 500 | 23 | 62 | 16 | [146] |
Shredded pine | 500 | 30 | 58 | 12 | [147] |
Pine bark | 500 | 34 | 36 | 30 | [148] |
Auger pyrolysis | |||||
Oak | 450 | 20 | 50 | 30 | [149] |
Pinewood chips | 500 | 30 | 58 | 12 | [95] |
Douglas fir wood | 400 | 12 | 48 | 40 | [150] |
Oak bark | 450 | 27.8 | 49.6 | - | [149] |
Fluidized bed reactors | |||||
Pine wood chips and pellets | 530 | 10 | 59 | 28 | [141] |
Pitch pine | 500 | 16 | 64 | 21 | [151] |
Pine sawdust | 525 | 67–71 | [152] | ||
Spruce sawdust | 500 | 12 | 78 | 8 | [153] |
Japanese cedar | 500 | 13 | 66 | 22 | [151] |
Red oak | 400 | 21 | 67 | 13 | [154] |
Poplar sawdust | 504 | 12 | 77 | 11 | [155] |
Beech | 510 | 13 | 72 | 9 | [156] |
Eucalyptus loxophleba wood | 450 | 14 | 71 | 14 | [157] |
Fixed beds | |||||
Pine chips | 500 | 31 | 50 | 18 | [158] |
Douglas Fir | 500 | 22 | 66 | 8 | [159] |
Red oak | 500 | 24 | 67 | 8 | [159] |
Feedstock (Dry Ton per Year-DTPY) | Pyrolysis Reactor | Upgrading Technology | Products | References |
---|---|---|---|---|
Blended woody, 2000 | Dual fixed bed | Hydrotreating, hydrocracking, catalysis | Gasoline and diesel range products | [160] |
Blended (45% pulpwood, 32% woody residues, 20% construction, and demolition waste), 2000 | Circulating Fluidized bed | Hydrotreating, hydrocracking, catalysis Zeolite-HZSM5 | Gasoline and diesel range products | [161] |
Corn stover, 2000 | Fluidized bed reactor | Hydrotreating using molybdenum-cobalt catalysis, hydrocracking using nickel-molybdenum catalyst | Naphtha and diesel range products | [162] |
Hybrid poplar 2000 | Circulating Fluidized bed | Dual stage hydrotreating using cobalt molybdenum catalyst | Gasoline and diesel range products | [163] |
Hybrid poplar 2000 | Circulating fluidized bed reactor | Dual stage hydrotreating using cobalt molybdenum catalyst | Gasoline and diesel range products | [164] |
Corn stover, 2000 | fluidized bed reactor | Two-stage hydrotreating (Ru/C and Pt/C catalysts) followed by fluid catalytic cracking (HZSM-5 zeolite) | Olefins and aromatics | [165] |
One-stage hydrotreating (Ru/C catalyst) | Gasoline and diesel range products | |||
Mixed wood 2000 | fluidized bed reactor | Multistage catalytic upgrading and zeolite cracking | Olefins and aromatics (benzene, toluene, ethylene, propylene, butylene, xylene) | [166] |
Woodchips, 550 | fluidized bed reactor | None | Pyrolysis oil, gas, and char | [140] |
Norwegian spruce, 2000 | Circulating fluidized bed reactor | Integrated hydrotreating (Mo and Ni nano sulphide catalysts) and hydrothermal liquefaction/H2 production from water-soluble bio-oil | Gasoline and diesel range products | [167] |
Pine chips, 2000 | Circulating fluidized bed reactor | None | Pyrolysis oil, gas, and char | [168] |
Pinewood, 72 | fluidized bed reactor | Two-stage hydrotreating (Ru/C and Pt/C catalysts) followed by fluid catalytic cracking-HZSM-5 zeolite) | Gasoline and diesel range products | [169] |
Equine waste, 6–15 | Combustion Reduction Integrated Pyrolysis | None | Diesel range products | [170] |
Corn stover, 2000 | fluidized bed reactor | Hydrotreating (cobalt-molybdenum catalyst) Hydrocracking | Gasoline and diesel range products | [166] |
Hybrid poplar 2000 | Circulating fluidized bed reactor | Multistage catalytic upgrading and zeolite cracking. | Olefins and aromatics | [171] |
Plant Size (ton/d) | Feed Cost (USD/dry ton) | Bio-Oil Cost (USD/gal) | Total Capital Investment | Reactor Type | References |
---|---|---|---|---|---|
2.4 | USD 22 | USD 1.73 | USD 97,000 | Fluidized bed | [172] |
24 | USD 22 | USD 0.82 | USD 389,000 | Fluidized bed | [172] |
100 | USD 36 | USD 1.21 | USD 6.6 million | Fluidized bed/Circulating fluid beds | [173] |
200 | USD 36 | USD 0.99 | USD 8.8 million | Fluidized bed/Circulating fluid beds | [173] |
400 | USD 36 | USD 0.89 | USD 14 million | Fluidized bed/Circulating fluid beds | [173] |
1000 | USD 44 | USD 0.50 | USD 46 million | Vortex pyrolizer | [174] |
250 | USD 44 | USD 0.50 | USD 14 million | - | [162] |
1000 | USD 20–USD 42.50 | USD 0.59 | USD 44–143 million | Thermal liquefaction | [175] |
USD 2.46 | |||||
250 | USD 11 | USD 0.46 | USD 14 million | Fluidized bed | [176] |
1000 | USD 44 | USD 0.41 | USD 37 million | Fluidized bed | [176] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alam, A.; Macias, R.J.; Sessions, J.; Okolo, C.V.; Attreya, S.; Lyons, K.; Susaeta, A. Development and Prospects of Biomass-Based Fuels for Heavy-Duty Truck Applications: A Case Study in Oregon. Energies 2025, 18, 2747. https://doi.org/10.3390/en18112747
Alam A, Macias RJ, Sessions J, Okolo CV, Attreya S, Lyons K, Susaeta A. Development and Prospects of Biomass-Based Fuels for Heavy-Duty Truck Applications: A Case Study in Oregon. Energies. 2025; 18(11):2747. https://doi.org/10.3390/en18112747
Chicago/Turabian StyleAlam, Asiful, Robert J. Macias, John Sessions, Chukwuemeka Valentine Okolo, Swagat Attreya, Kevin Lyons, and Andres Susaeta. 2025. "Development and Prospects of Biomass-Based Fuels for Heavy-Duty Truck Applications: A Case Study in Oregon" Energies 18, no. 11: 2747. https://doi.org/10.3390/en18112747
APA StyleAlam, A., Macias, R. J., Sessions, J., Okolo, C. V., Attreya, S., Lyons, K., & Susaeta, A. (2025). Development and Prospects of Biomass-Based Fuels for Heavy-Duty Truck Applications: A Case Study in Oregon. Energies, 18(11), 2747. https://doi.org/10.3390/en18112747